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The Cognitive Side of M1
Barbara Tomasino* and Michele Gremese

IRCCS “E. Medea”, San Vito al Tagliamento, Italy

The primary motor cortex (M1) is traditionally implicated in voluntary movement

control. In order to test the hypothesis that there is a functional topography

of M1 activation in studies where it has been implicated in higher cognitive

tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional

neuroimaging experiments reporting M1 activation in relation to six cognitive functional

categories for which there was a sufficient number of studies to include, namely

motor imagery, working memory, mental rotation, social/emotion/empathy, language,

and auditory processing. The six categories activated different sub-sectors of M1, either

bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of

the left or right hemisphere detected in our study were unlikely due to button presses.

In fact, all contrasts were selected in order to eliminate M1 activation due to activity

related to the finger button press. In addition, we identified the M1 sub-region of Area

4a commonly activated by 4/6 categories, namely motor imagery and working memory,

emotion/empathy, and language. Overall, our findings lend support to the idea that there

is a functional topography of M1 activation in studies where it has been found activated

in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive

processes, likely as a product of implicit mental simulation processing.

Keywords: primary motor cortex, M1, fMRI, cognitive processing, ALE meta-analysis

INTRODUCTION

The human primary motor cortex (M1) lies in the anterior bank of the precentral sulcus and
its primary role is to control body parts movement. M1 also participates, for some aspects,
in sensorimotor transformation rather than simply controlling the parameters of movement
execution (Schieber, 2000). Indeed, studies using single-cell recording in monkeys (Ashe et al.,
1993; Pellizzer, 1996; Carpenter et al., 1999; Wise and Murray, 2000) have lent support to the idea
that M1 can be involved in higher motor functions, too. This also emerged from brain imaging
studies (Grafton et al., 1995; Porro et al., 1996; Honda et al., 1998; Karni et al., 1998) and transcranial
magnetic stimulation (TMS) studies in humans (Ganis et al., 2000; Tomasino et al., 2005, 2008).
These studies suggested that M1 does not only play a role in stimulus-response compatibility,
plasticity, motor sequence learning and memory as well as learning of sensorimotor associations
but is engaged in motor imagery and spatial transformations. Neurophysiological studies showed
that different neuronal population discharge patterns in M1 reflect several types of information
such as spatial goals, handmotion direction (Georgopoulos et al., 1989; Georgopoulos and Pellizzer,
1995), muscular force and the global goal of the task, (e.g., Scott and Kalaska, 1997; Kakei et al.,
1999). Some cells are sensitive to changes in limb posture, i.e., to the direction of movement
depending on the actual position of an arm in space (Caminiti et al., 1990), while others receive
sensory inputs (Scott, 1997). In addition, it has been shown that cortical stimulation of M1 in
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wide-awake monkeys evokes complex postures (Graziano et al.,
2002). Studies specifically related to mental rotation showed that
M1 plays a role in visuomotor transformations (Georgopoulos
et al., 1989). In particular, recent fMRI studies have shown
that M1 may be involved in tasks tapping empathy, and a
direct correlation between sensorimotor activation and empathy
for pain has been found (Lamm et al., 2007). In addition,
M1 has been found activated during emotion processing, with
participants silently reading emotional words, yet in a strategy-
dependent manner (Papeo et al., 2012). Working memory tasks
such as remembering sensory material or remembering finger
movement sequences after a time delay (Kaas et al., 2007) have
been found to activate M1, too, similarly to motor imagery and
mental rotation tasks, (e.g., Porro et al., 1996; Kosslyn et al.,
2001). Lastly, M1 activation has been reported during language
processing of action-related words (Pulvermuller et al., 2001;
Hauk et al., 2004; Pulvermuller, 2005) unexpectedly adding a
new linguistic dimension to this area (de Lafuente and Romo,
2004). Furthermore, it is known that M1 can be divided into two
separate and structurally different areas, namely Area 4a andArea
4p which differ in their cytoarchitecture and neurochemistry
(Geyer et al., 1996). Cytoarchitectonic Area 4a (Geyer et al.,
1996) is the rostral part of M1 and receives more extensive
cortico-cortical projections from area six than the more posterior
Area 4p which is more connected with somatosensory areas, see
(e.g., Geyer et al., 1996). In relation to the functional aspects of
these sub-areas, it has been suggested that the two areas differ
functionally (Geyer et al., 1996). It has been shown that area
4p was more activated by movements guided by somatosensory
information, whereas area 4a was more activated by externally
triggered movements (Geyer et al., 1996), and that activation
of area 4p was modulated by attention to action, while 4a was
not (Binkofski et al., 2002). Authors (Binkofski et al., 2002)
argued that Area 4a and Area 4p may belong to different motor
channels allowing for parallel processing of motor information
with different attention load. In particular, Area 4p might reflect
increased attention to sensory feedback, whereas Area 4a might
be responsible for maintaining the execution of amotor program,
irrespective of the amount of attention paid to it. M1 is known
to be involved in action planning and execution together with
the premotor cortex, the supplementarymotor area, the posterior
parietal cortex and subcortical areas (Binkofski et al., 2002). Here,
we use the term executive function to refer to processes involved
in execution of motor events, and cognitive to refer to non-motor
execution such as for example mental rotation or action words
processing. In a further study it has been shown that imagery of a
finger opposition sequence activated both 4a and 4p with a higher
involvement of area 4p and authors argued that this activation
reflected spatial encoding (Sharma et al., 2008).

In order to test the hypothesis that there is a functional
topography of M1 activation (both in the left and the right
hemisphere) in studies where it has been implicated in higher
cognitive tasks, we performed quantitative activation-likelihood-
estimation (ALE) meta-analyses (Eickhoff et al., 2012) of
functional neuroimaging experiments in which M1 has been
found activated by several tasks. In particular we addressed
six categories, those for which we reached a sufficient number

of studies to be included, namely: motor imagery, working
memory, mental rotation, emotion/empathy, semantic and
lexical decision, and auditory processing, in which M1 has been
found activated, for a total of 126 imaging experiments, with 1818
subjects and 2030 activation foci.

MATERIALS AND METHODS

We searched the PubMed database (http://www.ncbi.nlm.nih.
gov/pubmed/), the Web of Knowledge database (http://www.
webofknowledge.com) and the Sleuth on-line database (http://
brainmap.org) for functional neuroimaging experiments that
featured at least one cluster on the primary motor cortex. We
identified paradigms pertaining to 6 functional categories (see
Table 1). The categories included: (i)social/emotion/empathy
(empathy of pain, social cognition, e.g., subjects viewed a human
hand in pictures depicting painful or non-painful situations
or they processed emotional words), (ii) working memory
(memory, e.g., n-back task, remembering the position of a
dot), (iii) motor imagery (mental simulation of movements
e.g., mental imagery of walking or of finger tapping), (iv)
mental rotation (mental transformations, handedness decisions,
object rotation e.g., mental rotation of objects, hands and
alphanumeric characters), (v) language processing (semantic
representation, action word processing e.g., silently reading
action and non-action words or verbs), and (vi) auditory imagery
and perception1 (music imagery, perception, action sounds e.g.,
passive listening to speech, songs, tones; See Table 1). We used
the following search terms. Each of the following keywords:
somatosensory, precentral, postcentral; somatomotor, M1, S1,
was, in turn, combined to each pair of words, as follows. For
the emotion/empathy category we added: empathy and MRI,
empathy and pain, mentalizing and MRI, social cognition and
MRI, theory of mind and MRI; for the action word processing
field, we added: lexical decision, action words; for the mental
rotation field, we added: mental rotation; for the motor imagery
field, we added: motor imagery; for the working memory field,
we added for working memory; for the auditory field, we added:
auditory

Moreover, the literature cited in the filtered papers and review
articles was also assessed to identify additional neuroimaging
studies in which the M1 was found to be activated by different
cognitive/emotive tasks.

The region of interest (ROI) corresponded to M1 and was
defined by using the SPM Anatomy toolbox (Eickhoff et al.,
2005) to derive the anatomically-constrained ROIs of M1 (Geyer
et al., 1996). The anatomical masks were created by using the
“create anatomical ROIs” function of the Anatomy toolbox and
by selecting areas 4a and 4p of the left and the right hemisphere
(see Supplementary Figure 1).

Our meta-analysis included studies with PET or fMRI
experiments on healthy subjects and excluded pharmacological
trials or studies involving clinical populations. The reason for

1We considered this category as “cognitive” since in the included studies

participants were asked to perform a task after or during listening, e.g.,

discrimination task, judgments, or imagery (see Jardri et al., 2007).
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including PET studies was that, although they might have very
different temporal and spatial sensitivity and resolution than
fMRI, their inclusion increased the size of each category included
in the analysis. Altogether, PET studies in the motor imagery
category were 3/22 (13.63%), in memory were 4/29 (13.79%), in
mental rotation were 2/10 (20%), in social /emotion/empathy/self
were 1/19 (5.2%), in language were 1/32 (3.1%), and in auditory
were 2/14 (14.2%).

To date, when possible, we checked whether there was any
concordance between fMRI and PET studies using similar tasks
or paradigms. For instance, in the motor imagery category both
the study by Lacourse et al. (2005) and Boecker et al. (2002) used
imagery of finger sequences and find activation in the frontal
(e.g., superior frontal gyrus, precentral/premotor cortex), parietal
(postcentral/sensorimotor cortex, inferior, and superior parietal
lobe), and cererbellum and subcortical (putamen).

All participants were right handed except for 1 study involving
a left hander and some studies in which this information was not
reported. All single-subject reports were excluded.

We excluded a total of 331 studies that didn’t report any
cluster within the M1, and 45 that although argued to have
found activation in M1, did not report the corresponding
coordinates, 31 patients studies and 5 pharmacological studies,
and one study including younger subjects. In addition, only
studies which reported the coordinates in a standard reference
space (Talairach/Tournoux, MNI) were considered. Differences
in coordinate space (MNI vs. Talairach space) were accounted
for by transforming coordinates reported in Talairach space into
MNI coordinates by a linear transformation (Lancaster et al.,
2007). We only (when necessary) converted from Talaiarch to
MNI coordinates (and not vice versa).

For each category, we only included studies which eliminated
activations solely due to motor responses, for example, a button
press. If a task required a button press, we made sure that
the response was required in both the task and in the control
condition (see Table 1 the columns labeled “Motor response
required by the task” and “Motor response required by the
controls condition”). Many of the included studies did not
require button press. All the other studies required a button
press both in the task and in the control condition. For example,
in one of the studies (Lorey et al., 2011), it is reported that
“During MI, participants [...] when imagery was over and the
button had been pressed. In the rest condition, participants
also pressed a button at the beginning and at the end of the
rest trial with their left hand.” In (Moore-Parks et al., 2010)’s
study, subjects were asked to listen to a phrase and push two
different buttons according to whether the phrase made sense or
not. In the control task, participants listened to reverse phrases
and pushed a button. This approach enabled us to exclude
all brain activations in M1 due to button press. In addition,
we included a further column in Table 1 indicating the hand
used for but presses. In particular, we checked whether the
use of the right (dominant) hand could have introduced some
bias in the lateralization of activations in the final ALE maps
(see results).

Based on these criteria, we included a total of 126 experiments
from 85 papers for a total of 1818 subjects as and 2030 activations.

A table describing all the included studies can be found in
Table 1.

Closely following Stoodley and Schmahmann’s approach
used in an ALE meta-analysis of cerebellum-related functions
(Stoodley and Schmahmann, 2009) we first performed six
separate ALE-analyses. Each of the above categories was
separately analyzed in order to obtain the activation clusters
related to each experimental paradigm. Then, to investigate
whether activation in a subpart of M1 was shared by all the
categories, i.e., functional integration (Kurth et al., 2010), we
used the results from the conventional ALE and a conjunction
approach (see below).

Statistical Procedure
The meta-analysis was performed by using the revised
version (Eickhoff et al., 2012) of the activation likelihood
estimation (ALE) approach for coordinate-based meta-analysis
of neuroimaging results.

To account for the uncertainty that is technically inherent
to the actual location of the peaks, the method allows for
modeling each coordinate not as a single point, but by a three-
dimensional (3D) Gaussian function with 12 mm full-width
half-maximum (FWHM) (Eickhoff et al., 2012). Accordingly,
the localization probability distributions describe the probability
that a given focus actually lay within a particular voxel.
Statistical significance was determined using a permutation
test of randomly generated foci, using the same FWHM and
number of foci. The voxel-wise comparison was tested against
the null hypothesis of uniformly distributed peaks, giving a
set of ALE-values necessary for thresholding the probability
map. ALE probability maps were then thresholded at p <

0.05 (cluster level corrected for multiple comparisons; Eickhoff
et al., 2012) and a minimum cluster size of 200 mm3 was
set.

We first performed five separate ALE-analyses. For each
category, the reported coordinates for functional activations
were analyzed for topographic convergence using the ALE
method and the results were mapped on M1. The “Social-
Emotion-Empathy” analysis included 400 activation foci (312
subjects and 19 experiments), the “Working Memory” analysis
included 663 activation foci (351 subjects and 29 experiments),
the “Motor Imagery” analysis included 258 activation foci (372
subjects and 22 experiments), the “Mental Rotation” analysis
included 60 activation foci (158 subjects and 10 experiments),
the “Language processing” analysis included 387 activation
foci (474 subjects and 32 experiments) and the “Auditory”
analysis included 262 activation foci (151 subjects and 14
experiments).

An anatomical mask of M1 in MNI space was created
by using the SPM Anatomy toolbox (Eickhoff et al., 2005)
to derive the anatomically-constrained ROI of the primary
motor cortex (Geyer et al., 1996). We used the M1 ROI
(see above and Supplementary Figure 1) to mask the
resulting activation from the different ALE meta-analyses.
Thereafter, we considered only the voxels of the ROI that were
located within the cytoarchitectonically defined maximum
probability maps (MPMs) of M1 (Brodmann Area 4).
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Activations within this mask were displayed on a rendered
template brain (Colin27_T1_seg_MNI) provided by Gingerale
(http://www.brainmap.org/ale/). Activations were also assigned
histologically using the SPM Anatomy Toolbox (Eickhoff et al.,
2005). The latter approach was important in order to eliminate
activation of, e.g., the premotor cortex spilling over into the M1
mask.

Secondly, we tested whether the M1 cluster was conjointly
activated by all the categories. The resulting shared area was
identified by calculating the conjunction between the ALE files
of each category. We used the FSL (http://fsl.fmrib.ox.ac.uk) to
calculate which voxels were commonly activated by all the six
categories to show crude overlap (it does not allow to make
statistical claims). The selected mathematical operation enabled
us to transform each activation output file in a binary matrix
and then perform a mathematical matrix sum. If the sum of a
matrix cell was 6, the corresponding voxel was active in all the
six categories. If the sum was 5, it was active in five out of six
categories, and so on.

RESULTS

In this study we investigated the functional organization of the
human motor cortex (Brodmann Areas 4a–4p; Geyer et al.,
1996) by analyzing coordinates from functional neuroimaging
experiments (See Table 1 for a list of 85 studies and a total of
126 experiments) that featured at least one cluster on the primary
motor cortex. We identified six cognitive functional categories,
namely (i) social/emotion/empathy, (ii) working memory, (iii)
motor imagery, (iv) mental rotation, (v) language processing, and
(vi) auditory imagery and perception. In addition, we identified
the M1 sub-region commonly activated by four out of six
categories. The results of all our meta-analyses are shown in
Table 2. In all our analyses (see Figure 1; Supplementary Figure 2
showing results from the whole brain analysis), we found that
activations for each of the six categories were rather confined to a
subpart of M1, suggesting the presence of a common area in M1
shared by all categories. In addition, we found that some of the
six categories activated M1 bilaterally and some tasks triggered a
left- or right-lateralized activation (see below).

Social/Emotion/Empathy Associated with
Anterior Region of M1
Activation related to tasks involving social, emotion processing,
and empathic tasks converged on a cluster in the left Area 4a
(see Figure 1 and Supplementary Figure 3 for sagittal slices and
Table 2). The ROI analysis performed to restrain activation on
the M1 mask further confirmed that those coordinates belonged
to the anatomically-constrained ROIs of M1 (Geyer et al.,
1996) (see right side of the Table 2). The empathy whole brain
network found in this meta-analysis (See Supplementary Table
S2) included activations in the left amygdala, left thalamus, right
parahippocampal gyrus, left SMA, left superior medial gyrus.
These areas are in line with the commonly activated network for
emotion-empathy tasks, (e.g., Lamm et al., 2007).

Working Memory Associated with Anterior
Region of M1
Tasks involving working memory like the n-back task activated
three main clusters in the left and the right 4a (see Figure 1

and Supplementary Figure 3 for sagittal slices and Table 2).
The ROI analysis performed to restrain activation on the M1
mask further confirmed that those coordinates belonged to
the anatomically-constrained ROIs of M1 (Geyer et al., 1996)
(see right side of the Table 2). Working memory activations
(See Supplementary Table S3) matched the commonly reported
working memory brain network, (i.e., Kaas et al., 2007) thus
they showed activations in the left postcentral gyrus, left SMA,
left inferior and superior parietal lobule, right inferior parietal
lobule, right angular gyrus, left insula, right middle frontal gyrus,
right inferior frontal gyrus, right middle frontal gyrus, left middle
frontal gyrus.

Motor Imagery Associated With Anterior
and Posterior Region of M1
Activation related to motor imagery tasks was found in clusters
assigned to area 4a and to 4p bilaterally (see Figure 1 and
Supplementary Figure 3 for sagittal slices and Table 2). The ROI
analysis performed to restrain activation on the M1 mask further
confirmed that those coordinates belonged to the anatomically-
constrained ROIs of M1 (Geyer et al., 1996; see right side of the
Table 2). In addition, the whole brain motor imagery activation
network (See Supplementary Table S4) found in this meta-
analysis included activations in the right precentral gyrus, the left
SMA, the left putamen, the left inferior parietal lobule, the left
cerebellum, and the right insula. These areas are in line with the
commonly activated network for the motor imagery task, (e.g.,
Porro et al., 1996).

Mental Rotation Associated with Anterior
Region of M1
We found two clusters of activation in the left area 4a (see
Figure 1 and Supplementary Figure 3 for sagittal slices and
Table 2). The ROI analysis performed to restrain activation on
the M1 mask further confirmed that those coordinates belonged
to the anatomically-constrained ROIs of M1 (Geyer et al., 1996;
see right side of the Table 2). In addition, our meta-analysis on
the whole brain revealed (See Supplementary Table S5) that the
mental rotation network included the left postcentral gyrus, the
left inferior parietal lobule, the right superior parietal lobule,
the right postcentral gyrus, the left inferior occipital gyrus, and
the left paracentral lobule. These activations are in line with the
commonly acceptedmental rotation network, (e.g., Kosslyn et al.,
2001).

Language Processing Associated with
Anterior and Posterior Region of M1
Activation by linguistic processing of action-related words and
verbs was found clusters in areas 4a–4p bilaterally (see Figure 1
and Supplementary Figure 3 for sagittal slices and Table 2).
The ROI analysis performed to restrain activation on the M1
mask further confirmed that those coordinates belonged to the
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FIGURE 1 | (A) Relative increases in neural activity associated with each category are displayed separately on a coronal slice of the anatomical mask of M1 created

by using the SPM Anatomy toolbox (Eickhoff et al., 2005). In yellow it is shown the mask of Area 4p. The remaining part of M1 is obviously area 4a. (B) The overlay of

all the categories evidencing the functional topography in M1. Color bar shows ALE value.
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TABLE 2 | List of significant ALE foci.

Whole brain analysis ROI analysis

Region Side MNI Cluster size Region Side MNI Cluster size

x y z Voxel x y z Voxel

SOCIAL/EMOTION /EMPATHY

Area 4a L −46 −4 34 121 Area 4a 7% L −50 −10 42 48

Area 4a L −36 −22 64 60 Area 4a 28% L −36 −24 62 4

ACTION WORD/VERB PROCESSING

Area 4p 20%; Area 4a 40% L −38 −24 58 607 Area 4p 11%; Area 4a 58% L −38 −24 58 243

Area 4a R 38 −22 58 454

Area 4p 30%; Area 4a 20% R 18 −28 64 53 Area 4a 17% 4p 20% R 38 −22 58 146

Area 4a L −54 −8 42 54 Area 4p 20%; Area 4a 8% R 20 −28 64 33

MENTAL ROTATION

Area 4a L −10 −28 64 120 Area 4a 49% L −10 −28 64 102

WORKING MEMORY

Area 4a R 50 −14 44 276 Area 4a 23% L −34 −24 60 173

Area 4a 31% R 50 −14 44 84

MOTOR IMAGERY

Area 4a L −8 −20 70 661 Area 4a 12% L −10 −24 62 6

Area 4p 40%, Area 4a 40% L −36 −20 52 467 Area 4p 32%, Area 4a 10% L −36 −20 52 189

Area 4a L −32 −24 66 467 Area 4a 33% R 14 −26 66 2

Area 4a 30%, Area 4p 20% L −36 −12 44 467 Area 4a 21% R 36 −16 50 28

AUDITORY

Area 4a L −48 −14 44 256 Area 4a 29% L −48 −12 44 62

Area 4a L −44 −4 50 256

For each region of activation, the coordinates in MNI space are provided in reference to the maximally activated voxel within an area of activation, as indicated by the highest Z-value

(p < 0.05, corrected for multiple comparisons at the cluster level, height threshold p < 0.001, uncorrected). L/R = left/right.

anatomically-constrained ROIs of M1 (Geyer et al., 1996; see
right side of the Table 2). In addition, our meta-analysis (See
Supplementary Table S6) found activation in the left postcentral
gyrus, the left inferior parietal lobule, the right superior parietal
lobule, the right postcentral gyrus, the left inferior occipital gyrus,
and the left paracentral lobule. All of these activations are in line
with the commonly accepted verb processing related network,
(e.g., Crepaldi et al., 2013).

Auditory Associated with Anterior Region
of M1
We found activations in the left area 4a (see Figure 1 and
Supplementary Figure 3 for sagittal slices and Table 2). The ROI
analysis performed to restrain activation on the M1 mask further
confirmed that those coordinates belonged to the anatomically-
constrained ROIs of M1 (Geyer et al., 1996) (see right side
of the Table 2). In addition, our meta-analysis on the whole
brain (See Supplementary Table S7) revealed an auditory–related
network which included the right SMA, the left superior temporal
gyrus, the left insular lobe, the right superior temporal gyrus,
the right inferior frontal gyrus, the left supramarginal gyrus, the
left middle temporal gyrus, the left inferior frontal gyrus, the left

caudate nucleus, and the left Heschls gyrus (Brown andMartinez,
2007).

M1 Lateralization and Laterality of Button
Presses
In the case in which we found a left lateralized effect (Social-
Emotion-Empathy, Mental rotation and Auditory), there could
be some bias driven by the hand used for respond, thus we
checked the frequency of use of the right (dominant) hand in the
different categories.

In particular, for the Social-Emotion-Empathy category, 33%
of the studies involving a keypress required a right hand response,
16% left and right hand (50% were not reporting the information
related to the side of key press). For theMental Rotation category,
10% of the studies involving a keypress required a right hand
response, 60% both left and right hand (30% of the studies were
not reporting the information). For the Auditory category, 50%
of the studies involving a keypress required a right hand response,
50% both left and right hand.

Thus, it is unlike that the lateralization effects are driven
by the hand used to respond. This is evident also analyzing
the other categories for which a bilateral activation of M1 was
found despite a preponderance of right hand key presses. For
the Working Memory category, 65% of the studies involving a
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keypress required a right hand response, 21% both left and right
hand (13% of the studies were not reporting the information). For
Motor imagery 25% of the studies involving a keypress required
a right hand response, 25% a left hand response the 50% both
left and right hand. For Language processing 53% of the studies
involving a keypress required a right hand response, 20% a left
hand response, 6% required the use of both left and right hand
(20% of the studies were not reporting the information; See
Supplementary Table S1).

Shared M1 Activation: Conjunction
Analysis
We tested the possibility that one or more M1 regions
were conjointly activated by all the tested categories. The
conjunction analysis using the FSL program (http://fsl.fmrib.ox.
ac.uk/fsldownloads/) showed a single cluster activation centered
at theMNI coordinates x, y, z:−35,−25,+62, assigned to the left
precentral gyrus, with a 84.4% probability for area 4a was found
by setting the threshold of minimum cluster activation common
to 4/6 of the considered categories, namely motor imagery and
working memory, social/emotion/empathy, and language (see
Figure 2). This area was situated in area 4 and was attributable
to the hand area (Geyer et al., 1996). We reported in Figure 2

the local maxima found in some previous studies of our group
in which a hand motor localizer task was used. In particular, we
added three ROIs drawn on the mean MNI coordinates centered
on the x, y, and z coordinates derived from the hand movement
localizer task, averaged across participants, with the following
coordinates: x =−38, y = −26, z = 60 (Papeo et al., 2012); x
= −38, y = −25, z = 59 (Tomasino et al., 2010; and x = −40, y
= −22, z = 66 (Tomasino et al., 2014). The coordinates of the
conjunction analysis are located very close to these three local
maxima, differing only 3, 1, and 2 mm from the coordinates of
Papeo et al. (2012), only 3, 0, and 3 mm from the coordinates
of Tomasino et al., 2010 and only 5, 3, and 6 mm from the
coordinates of Tomasino et al. (2014).

DISCUSSION

M1 is traditionally implicated in voluntary movement control.
However, the view that M1 can also be involved in higher
motor functions has been purported by studies using different
techniques such as single cell recording in monkeys (Ashe
et al., 1993; Pellizzer, 1996; Carpenter et al., 1999; Wise and
Murray, 2000), brain imaging (Grafton et al., 1995; Porro
et al., 1996; Honda et al., 1998; Karni et al., 1998), and
transcranial magnetic stimulation (TMS) techniques in humans
(Ganis et al., 2000; Tomasino et al., 2005, 2008). These studies
suggest that M1 is engaged in motor imagery and spatial
transformations in addition to stimulus–response compatibility,
plasticity, motor sequence learning and memory, learning of
sensorimotor associations, mental rotation, linguistic processing.

In the present study we tested the hypothesis that there is
a functional topography of M1 activation in studies where it
has been implicated in higher cognitive tasks belonging to six
different categories, namely: motor imagery, working memory,
mental rotation, social/emotion/empathy, semantic and lexical
decision, auditory processing. The six categories activated
different sub-sectors of M1, either bilaterally or lateralized to
one hemisphere. This finding strengthens the idea that there is
a functional topography of M1 activation in studies where it has
been found activated in higher cognitive tasks. The involvement
of parts of M1 in cognitive processing has been confirmed by
brain lesion studies on patients and by those using virtual lesions
caused by TMS demonstrating that a lesion to M1 can lead to
a deficit in motor imagery of hand rotational movements, (e.g.,
Ganis et al., 2000; Tomasino et al., 2011).

We acknowledge that areas 4a and 4p highly vary across
participants and as a consequence the degree of smoothing is a
relevant issue. For example, Sharma et al. (2008) used a small
smoothing kernel (6 mm) while addressing areas 4a and 4p. This
limitation of the study also to having included data from both
fMRI and PET suggests that further studies are needed. However,
the GingerALE method have been previously used to address
functional topografy in areas such as the insula (Kurth et al.,

FIGURE 2 | The coordinates (in red) of the conjunction analysis showing the M1 sector conjointly activated by all the tested categories. This area was

situated in area 4 and was attributable to the hand area. We reported the local maxima found in some previous studies of our group in which a hand motor localizer

task was used. In particular, we added three ROIs drawn on the mean MNI coordinates centered on the x, y, and z coordinates derived from the hand movement

localizer task, averaged across participants, with the following coordinates: x = −38, y = −26, z = 60 (Papeo et al., 2012); x = −38, y = −25, z = 59 (Tomasino

et al., 2010) and x = −40, y = −22, z = 66 (Tomasino et al., 2014). In yellow it is shown the mask of Area 4p.
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2010) and the cerebellum (Stoodley and Schmahmann, 2009)
with the same limitation.

A View on M1 Activation during Non-Motor
and Cognitive Tasks
The reason for M1 activation in cognitive processing could be
related to mental simulation processing triggered by the task
either implicitly or explicitly, or to motor attention mechanisms.
Motor simulation entails the rehearsal of a motor task and can
occur explicitly or can be triggered implicitly (Jeannerod and
Frak, 1999). An example of implicit triggering motor imagery is
whensubjects implicitly imagine an action, with no instruction
to do so, while performing for instance mental rotation of
body parts (Zacks et al., 1999; Kosslyn et al., 2001), handedness
recognition of a visually presented hand (Parsons and Fox,
1998), judgment as to whether an action would be easy, difficult
or impossible (Johnson et al., 2002), or recognition actions
performed by others (Jeannerod and Frak, 1999). M1 may
contribute to the different cognitive processes through its role
in anticipatory/implicit mental simulation or motor attention
processing during somatotopic, dynamic remapping, a process
in which individuals mentally track and continuously update the
transformation of the body part motor image. Accordingly, the
concept of internal models is used to predict sensory events,
relations and states of other agents in the environment (Wolpert
et al., 2003; Grush, 2004; Ito, 2008; Imamizu and Kawato,
2009). Alternatively, M1 activation is modulated by a top-down
influence of cognitive strategies used to carry out the tasks
(Tomasino and Rumiati, 2013). Evidence for this explanation
could be found in the results from the six categories as described
below.

M1 Activation within the Six Cognitive
Domains
For instance, we found that M1 is involved in language
processing. The M1 activation during action-related word
processing has been related to processing demands emphasizing
the motor features of the verbs since no motor activation was
found when the task instructions stressed visual rather than
motor information (Kable et al., 2002). Similarly, it has been
proposed that M1 activation could result from the subjects’
strategy to mentally simulate the movements described by
the verbs while processing language or from the context in
which action words are presented (Tomasino and Rumiati,
2013).

Our meta-analysis also confirmed the activation of part of
M1, namely Area 4a, during social/empathic/emotion processing.
In line with the above assumptions, the M1 activation found
during social/empathic/emotional processing could result from
a co-activation of the motor circuitry because action schemes
expressing the perceived emotion trigger an implicit simulation.
Authors such as (Lamm et al., 2007) found a direct correlation
between sensorimotor activation and empathy for pain. In their
study, participants were presented pictures of painful and non-
painful needle injections and were asked to rate their own
perception of pain. One possibility could be that participants
imagined themselves performing the same proposed painful

task and their brain imagined an escape movement from the
painful stimulation (e.g., by imagining turning the head away
or performing a step backward) which involved a conspicuous
set of body movements. Accordingly, it has been proposed
that the precentral gyrus and M1 should be included in the
empathic circuit (Guo et al., 2012). M1 activation has also been
found during silent reading of emotional words (Papeo et al.,
2012).

The view that M1 activation could be dependent on the
strategy used by subjects while processing the task also relies on
evidence of M1 activation in the mental spatial transformation
category. Deciding whether objects, hands and alphanumeric
characters were the same or mirrored images triggered M1
activation, possibly because subjects could mentally move the
images in the same way as they would physically do by using
their hands (Kosslyn et al., 2001). For example, (Kosslyn et al.,
2001) showed that the left M1 was selectively activated only when
subjects were explicitly asked to imagine grasping and turning
a 3D object with their own hand (i.e., motor strategy), but not
when they just imagined the object rotating in the visual field (i.e.,
visual strategy).

Furthermore, in the working memory domain, the activation
found in Area 4a during recall of sensory material or of finger
movements sequences after a time delay (Kaas et al., 2007), which
was confirmed by our meta-analysis, has been related to holding
a sensory item or movements on-line. It has been shown that
remembering after a time delay whether a dot still appeared in
the same position as before activated M1 possibly due to the
transformation of visual coordinates into motor coordinates (for
example, performing a saccade or a grasp) and to the retention of
these coordinates during the time delay (Postle, 2006).

In addition, in the auditory processing domain, the activation
found in Area 4a during passive listening of speech (Wilson and
Iacoboni, 2006), which was confirmed by our meta-analysis, has
been related to the generation of an internal model of speech
sound under consideration (Hickok et al., 2011).

Lastly, and complementary to the above view, our meta-
analysis confirmed the role of Areas 4a and 4p in motor
imagery. Motor imagery is defined as the mental rehearsal of a
motor act that occurs in the absence of overt motor input and
the essential component of motor imagery is that the subject
imagines him/herself executing the action from a first-person
perspective without a real movement execution (Ehrsson et al.,
2003). M1 activation has been related to first person perspective-
taking during simulation of bodymovements or to the distinction
between the self and the others (Ruby and Decety, 2001) or to
the level of vividness of mental imagery (Lorey et al., 2011). It
has been proposed that motor imagery could be the body-based
simulator that relies on the sensorimotor system as its essential
substrate (Lorey et al., 2011) in a somatotopic manner, (e.g.,
Ehrsson et al., 2003). Activation inM1 has been confirmed also in
amultivariate fMRI analysis in which an independent component
for motor imagery in area 4 was found. Unfortunately, no
further distinction between area 4p or 4a was done since it was
not appropriate considering these areas as separate due to the
degree of smoothing required by the analysis authors performed
(Sharma and Baron, 2013).
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To sum up, area 4a or area 4p (or both) are found consistently
activated for the analyzed categories. We acknowledge that a
meta-analysis of fMRI and PET data does not account for
the limitation of these techniques to discriminate the temporal
sequence in which activations in area 4a and 4p may occur,
leaving open the possibility that both areas may be activated but
not at the same time. Nevertheless, an ALE meta-analysis grants
(statistically) for the consistency of activation across a large body
of data. However, further studies employing different techniques
such as (MEG/EEG localization studies or TMS) might be able to
disentangle the role of each M1 sector.

Conjunction Analysis
The conjunction analysis investigated whether a sector of M1
was commonly activated by all the six categories. Our analysis
revealed that an area located in the left Area 4a at the MNI
coordinates x, y, z=−35,−25,+62 was conjointly activated by 4
out of 6 categories namely motor imagery and working memory,
social/emotion/empathy, and language. The coordinates are also
very close to those reported in a previous study in which a hand
movement localizer task was used (mean MNI coordinates:−38,
−26, 60, Papeo et al., 2012) and to peak coordinates:−38,−30, 66
(Area 4a of hand M1, Papeo et al., 2012) reported for the greater
activity they showed during a motor vs. a visuospatial imagery
task and to those (−30, −24, 62, Papeo et al., 2012) reported
for the greater activity they showed during a reading action or
state verb reading in the motor context (after performing a motor
strategy based mental rotation) vs. reading in the non-motor
context (after performing a visuospatial strategy-based mental
rotation). All meta-analyses showed activation within area 4a
except for the mental imagery task which also showed activation
in area 4p, and the area commonly activated by all categories was
Area 4a.

In a recent review on the agranular structure of M1 it is
restated that the functions of M1 are due to the lack of a major
pathway ascending through area 4 to area 6, to the absence of
layer 4 and a thinner layer 3. In particular, the connections are
possible from area 6 to area 4. This connection is responsible
for a modulatory effect exerted by area 6 on area 4. In addition,
the connections from the somatosensory cortex are important
for feeding M1 with a kinesthetic information in order to select
the appropriate effectors (Shipp, 2005). It has been shown that
M1 is divided in two areas 4a and 4p on the basis of anatomy,
neurochemistry, and function (Geyer et al., 1996). From a
neurochemical point of view, areas 4p and 4a significantly differ.
Geyer et al. (1996) showed that laminar density of neurons in area
4p and 4a significantly differ as well as receptors is concerned.
In addition authors (Geyer et al., 1996) found that area 4a has
larger pyramidal cells in layer III and more densely packed as
compared to area 4p. The two sectors of M1 present also different
connectivity patterns. It has been suggested that while area 4p
is more similar to the primary sensory cortex, area 4a more
similar to the premotor cortex. Evidence for this view came
from fMRI studies. In one study, a roughness discrimination task
between two cylinders with different roughness performed by
using the right thumb and index activated area 4pmore than self-
generated movements without object interaction (Geyer et al.,

1996; Geyer, 2004). Geyer (2004) argued that a voluntary motor
act that is modulated by somatosensory feedback (roughness
discrimination task) stronger activates area 4p. In another study,
activation in the same area 4p has been found to be modulated
by attention to action, while activation in area 4a was not
(Binkofski et al., 2002). Similarly, other authors (Johansen-Berg
and Matthews, 2002) showed that a concurring distraction task
i.e., counting backwards, performed while subjects attended
to movements, reduced activation in area 4p. The functional
dissociation we described in the present study might well-
complement the functional differences reported above. Indeed,
we found that several cognitive tasks, likely triggering an implicit
motor imagery, activated the other sector of M1, that is area
4a. This result is consistent with an fMRI study addressing
motor imagery of different body parts (Ehrsson et al., 2003)
showing that imagery of hands and feet movements (flexion-
extension) preferentially activated area 4a. In another fMRI study
however, motor imagery of finger movements activated both
areas 4a and 4p, and the latter was more activated than area
4p similar to the levels of activation found in real execution of
movements (Sharma et al., 2008). Our results complements this
pattern adding further evidence that area 4a could be involved in
cognitive tasks. It has been shown that while the posterior Area
4p is connected with the primary sensory cortex, the anterior
area 4a is connected with the premotor cortex (Stepniewska et al.,
1993). This connectivity patterns is in line with the view that area
6 exerts his influence on area 4a activation during motor imagery
(Passingham, 1997).

One view is that a simply stronger connection between
premotor and motor cortex exists due to just handedness. In
our dataset only studies involving right handed participants were
included, thus an additional meta-analysis on studies that used
or left handed subjects (and left hand responses in right handed
subjects) is missing and could be the topic of a further study.

There is evidence, for instance, in the motor imagery domain,
that during the mental simulation of hand actions a left
lateralized activation in areas involved in motor planning and
execution was found in right handed participants, whereas a
right lateralization in the same areas was found in left-handed
participants (Willems et al., 2010).

Another view is that the left lateralization is due to
hemispheric specialization, and in this view, results are likely
to reflect the LH dominance for action and goal-directed motor
behavior (and apraxia).

CONCLUSION

Results showed that there is a functional topography of M1
activation in studies where it has been found activated in
higher cognitive tasks. For all the categories M1 activation could
be related to mental simulation as strategy used by subjects
(implicitly or explicitly) to solve the task. A commonly activated
sector shared by all the categories found in Area 4a could
be considered as a hub for the cognitive role of the motor
cortex area. Few studies support an active role of Area 4a
in cognitive processing. However, the low number of studies
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reporting M1 activations during cognitive tasks is also imputable
to methodological reasons. For instance, if cytoarchitectonically
defined maximum probability maps (MPMs) in the standard
anatomical space are not used, it is not possible to define the
border between M1 and the posterior part of Area 6. Further
studies are necessary to confirm these activations. Thus, our
meta-analysis supports the notion that area 4a function can go
beyond simple motor output.
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