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Abstract: The fall armyworm, Spodoptera frugiperda, a moth originating from tropical and subtropical
America, has recently become a serious pest of cereals in sub-Saharan Africa. Biological control offers
an economically and environmentally safer alternative to synthetic insecticides that are being used for
the management of this pest. Consequently, various biological control options are being considered,
including the introduction of Telenomus remus, the main egg parasitoid of S. frugiperda in the Americas,
where it is already used in augmentative biological control programmes. During surveys in South,
West, and East Africa, parasitized egg masses of S. frugiperda were collected, and the emerged
parasitoids were identified through morphological observations and molecular analyses as T. remus.
The presence of T. remus in Africa in at least five countries provides a great opportunity to develop
augmentative biological control methods and register the parasitoid against S. frugiperda. Surveys
should be carried out throughout Africa to assess the present distribution of T. remus on the continent,
and the parasitoid could be re-distributed in the regions where it is absent, following national and
international regulations. Classical biological control should focus on the importation of larval
parasitoids from the Americas.

Keywords: biological control; egg parasitism; fall armyworm; invasive species; maize; Spodoptera
frugiperda; Telenomus remus

1. Introduction

The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) is a highly
destructive pest of cereals, and is a native of the tropical and sub-tropical regions of North, Central,
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and South America [1]. First detected on the African continent in January 2016 in Nigeria [2],
S. frugiperda has now been reported in almost all of sub-Saharan Africa [3]. Recently published
pest distribution and climatic suitability models have indicated that the environmental requirements
for this pest to establish itself permanently are present through large parts of Africa and Asia and
some parts of Europe [4,5]. The pest’s distribution has reached the southern fringes of the Sahara,
and it has most recently been reported from several states in India [6,7], as well as Yemen, Myanmar,
Thailand, and Sri Lanka [8]. Indeed, it is likely that it will spread further north to Europe and other
countries in Asia. The invasion of S. frugiperda threatens the food security of more than 200 million
people in Africa whose main staple crop is maize. Based on preliminary estimates in 12 African
maize-producing countries, in the absence of proper control methods, S. frugiperda has the potential to
cause maize yield losses of 8.3 to 20.6 million tonnes per annum. The value of these losses is estimated
at between US$ 2.5 to 6.2 billion, with over US$ 13 billion worth of crops at risk [9]. In addition,
the pest, known to be highly polyphagous, is likely to jeopardize the trade and export of other crops
from the invaded regions.

Following the invasion of S. frugiperda into Africa, emergency responses have been geared towards
the use of chemical insecticides [10]. The frequent application of different classes of insecticides is
unsustainable in the long-run because it leads to the development of insecticide resistance, increases
production costs, and causes biodiversity and environmental impacts as well as health risks to the
growers and consumers [11,12]. It also disrupts IPM measures, such as biological control, targeted
at other cereal pests [9,13]. Therefore, it is important to minimize the use of insecticides, especially
the highly hazardous and broad-spectrum ones, and to develop, promote, and deploy proven and
sustainable IPM technologies against S. frugiperda.

Biological control, i.e., the use of natural enemies to control a pest, is central to the development
of IPM systems. Three different biological control strategies can be envisaged against S. frugiperda in
Africa [14]. Firstly, natural enemies could be imported from the native area of the pest for release and
permanent establishment in Africa (classical biological control). Secondly, natural enemies could be
mass produced for regular releases and temporary control (augmentative biological control). Thirdly,
the action of natural enemies already present in the crops could be enhanced by the application of
various cultural practices including the use of selective insecticides (conservation biological control).

Parasitoids are natural enemies most commonly used against insect pests [15]. Over 150 parasitoid
species have been reported to attack S. frugiperda in its native range in the Americas [13,16,17].
Among these, Telenomus remus Nixon (Hymenoptera: Platygastridae) is an egg parasitoid of various
Lepidoptera species, originating from peninsular Malaysia (but see the discussion section, under
“Taxonomy of Telenomus remus”). It was introduced against Spodoptera spp. to various parts of the
world, including India, Pakistan, Australia, New Zealand, the Caribbean, Colombia and Venezuela.
The parasitoid is now found in most of the distribution range of S. frugiperda in the Americas [18].
In Africa, it was also released in the Cape Verde Islands in the early 1980s, but its establishment has not
been confirmed [19]. In the Americas, parasitism due to natural populations of T. remus is moderate
but it is used successfully as an augmentative biological control agent in several countries [20–22].
T. remus can be produced under laboratory conditions on S. frugiperda or other hosts and released
in the field [10,20,23]. A female produces an average of 270 eggs during her lifespan, usually laid
individually in each host egg, avoiding superparasitism [20]. They are also able to parasitize the
whole egg mass, whereas other egg parasitoids such as Trichogramma spp. tend to parasitize only the
external layer [24]. Augmentative releases of T. remus in maize fields can result in 80–100% parasitism,
providing full control of S. frugiperda [20–22,25]. The main challenge for a wider utilisation of T. remus
is the difficulty to mass produce its natural hosts, and the need for developing rearing systems on
factitious hosts [23,26]. Nevertheless, T. remus is considered for introduction into Africa as part of the
response to S. frugiperda [10].
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In this paper, we report on the observation that T. remus is already present in Africa, speculate how
it might have arrived on the continent, and assess the potential for its use in augmentative biological
control in Africa. This is the first report of an egg parasitoid of S. frugiperda in the open field in Africa.

2. Materials and Methods

2.1. Field Sampling

Parasitized eggs of S. frugiperda were obtained from eight sites in five countries: Benin (2 sites),
Côte d’Ivoire (1), Kenya (1), Niger (2), and South Africa (2), in 2017 and 2018 (Table 1). These collections
were made as part of different, unrelated projects, during S. frugiperda population surveys or for
sampling egg masses for laboratory rearing. Quantitative data on parasitism were not collected, as it
was not the primary objective of these surveys. Sampling and rearing techniques varied between
sampling sites, but in all cases egg masses of S. frugiperda were brought to the laboratory and held in
small containers. Egg parasitoids that emerged from egg masses were removed from the containers
and killed by immersion in 70–96% alcohol. Larvae from the non-parasitized eggs in the same egg
mass were reared until adult emergence to confirm the identity of the hosts.

Table 1. Details of the sampling sites, numbers, and accession numbers of specimens sequenced.

Country Locality
(Province) Coordinates Collection

Date Host Plant No.
Barcoded Code (as in Figure 1)

South Africa
Mbombela

(Mpumalanga)
25.442149◦S
30.992122◦E 20.04.18 Maize 4

DAS 160-18-01
DAS 161-18-01
DAS 163-18-01
DAS-248-18-01

Malelane
(Mpumalanga)

25.595231◦S
31.665183◦E 20.04.18 Maize 2 DAS-159-18-01

248-248-18-02

Côte d’Ivoire Yamoussoukro
(Kami)

6.875833◦N
5.363333◦W 25.05.18 Maize 1 AP-NHM-DNA1422

Niger
Maradi

(Djiratawa)
13.2360◦N
7.0760◦E 15.08.17 Maize 0 1455 (NHM)

Tilabéri (Sadoré) 13.2454◦N
2.3047◦E 18.09.18 Sorghum 3

TR 263-18-01
TR 263-18-02
TR 263-18-03

Benin
Abomey Calavi

(Atlantique)
6.4375◦N
2.3283◦E 04.07.18 Maize 1 DAS 252-18-05a

Abomey Calavi
(Atlantique)

6.43064◦N
2.29544◦E 01.10.18 Maize 1 DAS 252-18-6a

Kenya Kilifi (Kilifi) 3.51.06◦S
39.9092◦E 01.10.18 Maize 1 03-FET

Samples of the egg parasitoids were sent to the Centre for Agriculture and Bioscience International
(CABI) and the Natural History Museum, London, UK (NHMUK) for morphological and molecular
analyses. Voucher specimens of egg parasitoids from all localities are deposited permanently in
NHMUK, the North-West University, Potchefstroom, South Africa; and CABI, Delémont, Switzerland.

2.2. Morphological Analysis

Identifying Telenomus species is particularly difficult among other minute parasitoids. Females
tend to appear very similar between species, with only very few useful morphological characters.
Male genitalia, however, provide fairly reliable characters for species identification. Specimen
preparation and dissection and mounting of genitalia are relatively straightforward [27], and can
be done successfully on specimens from which DNA has already been extracted [28]. Several male
specimens (> 3) from each locality were dissected and examined.
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2.3. Molecular Analyses

Thirteen specimens, obtained from all but one site (Maradi, Niger), were analysed (Table 1).
To obtain barcodes (around 600 bp of the mitochondrial gene (mtDNA) cytochrome oxidase c subunit
1 (COI)) from the samples, we followed the protocols described in [29]. These included the isolation
of DNA from fragments of the abdomen of each specimen, by adding 20 µL of microLYSIS®-PLUS
(MLP; Microzone Ltd., Haywards Heath, UK) to the material. The suspension was macerated with
a sterile micropestle (VWR International Ltd., UK) to facilitate the disruption of the exoskeleton
and tissues of the samples. DNA was then liberated into the MLP by placing the sample tubes in a
thermal cycler and subjecting them to the heat profile recommended by the manufacturer for difficult
samples. PCR reactions were carried out using a Hybaid PCR Express thermal cycler in heated-lid
mode. Amplifications were carried out in 0.5 ml microcentrifuge tubes in 20 µL reactions containing:
1 µL MLP DNA extract; primers LCO1490 and HCO2198 (5’-GGTCAACAAATCATAAAGATATTGG-3’
and 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’, respectively; [30]), each at 150 nM; and 10 µL of
MegaMix-Royal (Microzone Ltd, Haywards Heath, UK) mastermix solution, containing optimized
mixture of Taq polymerase in 2 × enhancing buffer (6 mM MgCl2), with 400 µM dNTPs and blue
MiZN loading dye. Reactions were made up to a final volume of 20 µL with sterile molecular grade
H2O. PCR reactions were preincubated for 5 min at 95 ◦C followed by 39 cycles of 30s at 94 ◦C, 30s
at 51 ◦C, and 75s at 72 ◦C. Samples were finally incubated for 10 min at 72 ◦C followed by chilling
at 10 ◦C. A second round of amplification (i.e., “reamplification”) was undertaken as follows: 1 µL
of each of the above PCR products was used as a template. The reaction was carried out under the
same conditions, with the exception of the number of cycles, which were reduced to 30. PCR products
were visualized with gel electrophoresis, purified by microCLEAN (Microzone Ltd., Haywards Heath,
UK), and resuspended in 15µL sterile molecular grade H2O. After sequencing reactions, excess
unincorporated dye terminators were removed by means of DyeEx 2.0 (Qiagen, UK) gel filtration
columns, according to the manufacturer’s instructions. Eluted samples were resuspended in 16 µL
highly deionized formamide (HiDi™; ThermoFisher Scientific, Gloucester, UK). Sanger sequencing was
carried out on an ABI 3130 Genetic Analyzer (ThermoFisher Scientific, Gloucester, UK) in accordance
with the manufacturer’s instructions.

Sequences were aligned using the multiple sequence alignment plug-in CLUSTALW in
MEGA7 [31]. Sequences obtained in this study were compared with authenticated sequences available
from the Barcoding of Life Data system [32] and additional sequences from the GenBank® data base [33]
and trimmed to size. The evolutionary history was inferred by using the maximum likelihood method
based on the Tamura–Nei model [34]. Initial tree(s) for the heuristic search were obtained automatically
by applying Neighbor–Join and BioNJ algorithms to a matrix of pairwise distances estimated using the
maximum composite likelihood (MCL) approach, and then selecting the topology with superior log
likelihood value. Codon positions included were 1st+2nd+3rd+noncoding. All positions containing
gaps and missing data were eliminated. Trees were drawn to scale, with branch lengths measured
in the number of substitutions per site. The bootstrap consensus tree inferred from 1000 replicates
is taken to represent the evolutionary history of the taxa analysed [35]. Branches corresponding to
partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate
trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown
next to the branches [35]. Evolutionary analyses were conducted in MEGA7 [31].

3. Results

Morphological analysis of several male specimens from each of the eight collection localities
suggested identical species with almost no variation. Specimens were compared with a series of
T. remus from many localities in Asia and the Americas, and found to be conspecific. A single specimen
of T. remus in the NHMUK collection from Kenya, reared from eggs of Spodoptera triturata (Walker),
was identified as T. remus by the last author in 1988 [36]. Records of T. remus from Serbia (Europe) in
the Hymenoptera online database [37] are actually from Venezuela. The specimen data read as follows:
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“Ex. huevo de Spodoptera spp.; Cria masiva Lab. Serbio; (Barquisimeto, Venezuela-Lara-m.) (30.VIII.1990)”.
“Serbio” is clearly the source of the error.

The thirteen barcode sequences derived from this study gave 100% match to each other and were
identified by comparison with those available from the BOLD database. The sequences were deposited
in GenBank with accession numbers MH681660-3 and MK533746-7; MK533750-4; MK533757-8.
Over 99% of the pairs of bases were identical to a series of 31 specimens in BOLD identified as
Telenomus remus. Matches varied from 99.05% to 99.63%, with 27 specimens from Bangladesh, and were
99.62%, 99.56%, 99.56%, and 99.34% with single specimens from Pakistan, Ecuador, USA (Florida),
and Honduras, respectively, but only 96.3% with a T. remus specimen from India (Kerala). The samples
from Honduras, Ecuador, and Florida are those described in detail in Hay-Roe et al. [38]. The most
closely-related Telenomus species, for which barcodes are publicly available, is Telenomus goniopis, which
overlaps with our specimens at 91.17–91.33% (Figure 1). There is a strong probability that the “T. remus”
sequence from India is based on a misidentification.
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Figure 1. Molecular Phylogenetic analysis of Telenomus remus and related species by maximum
likelihood method. The tree with the highest log likelihood (-1910.13) is shown. The percentage of trees
in which the associated taxa clustered together is shown next to the branches. The analysis involved
27 nucleotide sequences. There were a total of 382 positions in the final dataset. The 13 specimens
analysed in this study are indicated as “New for this study”, and their codes are indicated in Table 1.
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4. Discussion

4.1. Presence of T. remus in Africa

This study shows that a species identified from both morphology and DNA sequences as T. remus
has been attacking S. frugiperda eggs in at least five countries in West, East, and Southern Africa,
and eggs of the lawn worm, S. triturata, in Kenya. The genetic distance between the specimens from
Africa and the numerous Asian and American T. remus specimens available in the barcode datasets is
sufficiently small (< 1%) to conclude that it is the same species as the one that was released previously
in South Asia and the Americas. Even though differences between intra- and interspecific divergence
strongly vary between taxonomic groups, and genetic distances have to be used with caution to define
species, Virgilio et al. [39] observed that 95% of mean interspecific congeneric distances in insects were
found in the interval 2.47–21.00%. In an unpublished thesis, Bowers [40] suggested that, in Telenomus
spp., intra-specific barcode divergences were below 1.6% whereas interspecific divergences were
greater than 5.6%.

It is not known when and how T. remus arrived in Africa, but it certainly arrived before S. frugiperda
since a specimen was collected in Kenya in 1988. This species parasitizes several Spodoptera spp. and
some other Noctuidae [41], and could have remained unnoticed on other hosts for a long time
because the adults of Telenomus spp. are extremely small and difficult to distinguish and identify on a
morphological basis [38].

4.2. Implications for the Biological Control of S. frugiperda

No matter the pathway of introduction, the presence of T. remus has important implications for the
biological control of S. frugiperda in Africa. Firstly, it shows that the parasitoid complex of S. frugiperda
in Africa should be studied in detail before the introduction of exotic parasitoids. Prior to this report,
the only published record of field parasitism of S. frugiperda in Africa was by Sisay et al. [42] in East
Africa, but they did not report T. remus or any other egg parasitoid, with the exception of the egg-larval
parasitoid Chelonus curvimaculatus Cameron, found at two locations. There are efforts underway for
importing parasitoids from the native range of S. frugiperda for releases in Africa, either for permanent
establishment and control or for augmentative biological control. Telenomus remus is high on the list of
priority species to introduce, because it is the main egg parasitoid of S. frugiperda in its native range
and, especially, because it is already successfully used in augmentative biological control programs
and therefore can easily be adapted to the African situation. Our finding that T. remus is already extant
in Africa suggests that importation efforts should focus on larval or pupal parasitoids, since the other
known egg parasitoids of S. frugiperda in America (mostly Trichogramma spp.) are too polyphagous to
be considered for introduction into Africa and not as effective.

A specific research programme should be developed for T. remus in Africa. Surveys for
egg parasitoids should be carried out to determine how widespread T. remus is in Africa,
and parasitism rates should be properly assessed to evaluate its impact on S. frugiperda populations.
A phylogeographic study using molecular tools, such as in [43], would help in clarifying the history
of T. remus in Africa. These surveys should also determine which other African Lepidoptera species
served as host for T. remus prior to the arrival of S. frugiperda. For instance, the single record of T. remus
on S. triturata needs to be followed up closely. Knowing its host range in African agroecosystems
may also support the development of measures to enhance the parasitoid in a conservation biological
control programme. Surveys for egg parasitism in Africa may also reveal that other Telenomus spp.
have adopted S. frugiperda, in which case their interactions with T. remus should be investigated.
In Africa, at least 10 Telenomus species have been found on cereal stem borers and have been well
studied [27,44]. In contrast, those attacking Spodoptera spp. are largely unknown.

If the distribution range of T. remus in Africa does not fully overlap that of S. frugiperda, the egg
parasitoid could be redistributed in the regions where it is absent, following national and international
regulations for introduction of natural enemies. Climate modelling, similar to [4] for S. frugiperda,
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should determine whether all areas in Africa are suitable for its establishment. Several studies have
assessed its climatic requirements, e.g., [26,45–47], which should allow for the development of such
models. Methods to use T. remus in augmentative biological control programmes should be developed
based upon those used in the Americas [10,20,23,25,26], and T. remus should be registered as biological
control agent against S. frugiperda. However, local specificities need to be considered, e.g., the fact
that, in the Americas, maize is often planted in large monocultures while most of the maize in Africa
is cultivated by smallholder farmers in mixed systems. Challenges may also be encountered in the
mass production of the parasitoid due to the inherent difficulty of rearing T. remus on its natural
host and the need of a factitious host for mass production [23,26,48]. Since the T. remus populations
established in Africa may have never encountered S. frugiperda until recently, and because it might
have become adapted to completing development in yet unknown hosts, it may be less efficient on this
host than populations from the Americas that have evolved with S. frugiperda during, at least, the past
40 years. Therefore, it would be interesting to compare T. remus populations of African and American
origins regarding their performance on S. frugiperda in quarantine. If American populations appear
significantly more efficient than the African populations, the introduction of American populations
could be considered.

4.3. Taxonomy of Telenomus remus

Telenomus remus was described from Ulu Gombak, just NE of Kuala Lumpur, Malyasia [49]. In the
original description, Nixon states: ‘’This species is probably Telenomus spodopterae Dodd, which was
described from four females labelled “from eggs of a moth Spodoptera sp. on sugar beet, Krebet,
Java, 23.7.1913”. Nixon was reluctant to use Dodd’s name, as he considered the original description
inadequate and thought there might be an important difference in the fore wing proportions. At least
two more Telenomus species appear morphologically indistinguishable from T. remus (including male
genitalia): Telenomus nawai Ashmead was described from Gifu, Japan [50]; and T. soudanensis (Risbec)
was described from West Africa (probably Mali) [51]. There is some likelihood that all of these named
species are conspecific [44]. Further research to establish the identities and possible conspecificity of the
three described species would focus on DNA sequencing of specimens collected recently from the three
type localities. Two independent studies have found mating incompatibility between two apparent
species: Raveendranath [52] found a population from Hawaii was reproductively incompatible with
one from Barbados, and Arakaki et al. [53] found an isolated population of T. nawai in Japan that is
thelytokous due to Wolbachia infection. Further research is needed to clarify the status of these species.

5. Conclusions

This study showed that T. remus, the main egg parasitoid of Spodoptera frugiperda in the Americas
that is considered for introduction into Africa, has now been found in East, South, and West Africa.
This finding has important implications for the development of augmentative biological control and
IPM programmes against S. frugiperda in Africa.
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