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Haemophilus influenzae is a Gram-negative bacterium that has no identified natural niche
outside of the human host. It primarily colonizes the nasopharyngeal mucosa in an asymp-
tomatic mode, but has the ability to disseminate to other anatomical sites to cause otitis
media, upper, and lower respiratory tract infections, septicemia, and meningitis. To persist
in diverse environments the bacterium must exploit and utilize the nutrients and other
resources available in these sites for optimal growth/survival. Recent evidence suggests
that regulatory factors that direct such adaptations also control virulence determinants
required to resist and evade immune clearance mechanisms. In this review, we describe the
recent application of whole-genome approaches that together provide insight into distinct
survival mechanisms of H. influenzae in the context of different sites of pathogenesis.
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INTRODUCTION
Haemophilus influenzae’s highly specialized host tropism presents
a challenge in that many aspects of pathogenesis cannot be exper-
imentally addressed in humans, yet there is no animal model
that recapitulates all aspects of human infection. To address this
gap in knowledge, a range of in vivo and in vitro model sys-
tems have been devised to mimic H. influenzae’s interaction with
host components under varied conditions. Animal models are
used to reconstruct interactions within the complex physiological
and immunological environments occurring in different stages of
natural infections including nasopharyngeal colonization (Weiser
et al., 1990, 1998), invasion into the blood (Hood et al., 1996; Her-
bert et al., 2002; Wong et al., 2011), lung infection (Pang et al., 2008;
Gawronski et al., 2009), or spread to the middle ear (Mason et al.,
2003; Figueira et al., 2007). Targeted in vitro models can then be
used to address specific molecular interactions in more precisely
defined contexts. Several studies have applied whole-genome ana-
lytical approaches toward this undertaking (Hood et al., 1996;
Herbert et al., 2002; Qu et al., 2010; Nakamura et al., 2011).
Recently, application of a high-resolution technology for com-
prehensive analysis of fitness of bacterial mutants during infection
has generated results that can be integrated with information from
other genome-scale studies to derive a better understanding of H.
influenzae’s adaptations relevant to its survival within the host
(Gawronski et al., 2009). In this article, we focus on common
themes that have emerged relating to H. influenzae’s lifestyle in
different sites of pathogenesis. The results highlight roles during
infection of bacterial nutrient acquisition, stress defense, cell sur-
face structures mediating immune evasion, and regulatory systems
controlling these adaptations.

SURVIVAL AND PERSISTENCE OF H. INFLUENZAE IN
THE LUNG
Haemophilus influenzae is a prevalent cause of lung infections,
particularly in exacerbation of chronic obstructive pulmonary

disease (COPD; Sethi and Murphy, 2001;Vila-Corcoles et al., 2009;
Doring et al., 2011). It is also a leading cause of community-
acquired pneumonia (De Schutter et al., 2011). In populations
receiving the effective vaccine against strains that produce the
serotype b capsule, the majority of lung infections are caused by
non-encapsulated, non-typeable H. influenzae strains (NTHi).

Several genes of H. influenzae have been implicated in infec-
tion in a murine lung model (Lorenz et al., 2005; Pang et al.,
2008). Until recently, the relative importance of the majority of
this bacterium’s genes in this setting was unknown. A means of
addressing this question was provided by the development of a
methodology termed high-throughput insertion tracking by deep
sequencing (HITS) that utilizes a whole-genome mariner transpo-
son mutant bank in combination with deep sequencing to analyze
genes involved in bacterial pathogenesis (Gawronski et al., 2009).
This approach exploits a negative selection strategy to identify the
genes essential for growth or survival under a condition of interest
in vitro or during infection in a model host. Identification of these
genes is based on measuring the relative decrease in abundance
of transposon insertion mutants deficient in specific genes within
a mutant library subjected to selection in the host in compari-
son to pre-selective growth conditions (i.e., in vitro). Results from
HITS technology provide rapid and comprehensive information
about the selection conditions that the bacterium must negotiate
in order to survive within that site. Application of the HITS proce-
dure with an H. influenzae library comprised of ∼75,000 mutants
to analyze genes required by H. influenzae to resist clearance in a
mouse model of pulmonary infection over a 24 h infection period
identified 135 genes required for optimal growth/survival in the
lungs (Gawronski et al., 2009). This analysis utilized an H. influen-
zae Rd strain with a high level of genetic competence for DNA
uptake to allow high-density transposon mutagenesis. Although
Rd lacks some of the virulence factors present in NTHi isolates, it
exhibits infection properties in animal models similar to those of
clinical isolates and serves as a useful model for many aspect of H.
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influenzae biology and pathogenesis (Weiser et al., 1995; Daines
et al., 2003; Wong et al., 2007; Rosadini et al., 2008). With refine-
ments in understanding natural transformation mechanisms in
H. influenzae or by scaling up mutagenesis procedures, it is likely
that large mutant libraries suitable for the HITS procedure could
be generated in NTHi isolates. Importantly, all of the genes iden-
tified via HITS are conserved in the majority of clinical isolates
that have been characterized. Moreover, independent validation
of HITS results by evaluating defined NTHi mutants in the lung
model has been fully concordant with these data (Gawronski et al.,
2009; Rosadini et al., 2011).

An overall theme from the results of this experiment is that
during infection of the lung H. influenzae encounters an oxida-
tively stressful environment in which certain nutrients are limiting.
Under aerobic growth conditions bacteria need to cope with oxy-
gen toxicity that results from the formation of reactive intermedi-
ates such as hydrogen peroxide, superoxide, and hydroxyl radicals,
all by-products of aerobic metabolism which can damage proteins,
nucleic acids, and cell membranes (Storz and Imlay, 1999; Imlay,
2003). In addition to coping with natural by-products of aerobic
metabolism, pathogenic bacteria also face additional challenges
from exogenous oxidants produced by phagocytes as part of the
host’s innate immune response. From the HITS data, DNA recom-
bination and repair genes including recC, recR, xerD, xerC, ruvB,
ruvA, and ruvC were needed for survival in the lung (Table 1),
of which several have been shown to be protective specifically
against oxidative stress caused by hydrogen peroxide in another
mucosal pathogen of humans, Neisseria gonorrhoeae (Stohl and
Seifert, 2006). Also implicated in bacterial survival in the lung
was the pgdX gene encoding a hybrid peroxiredoxin/thioredoxin
glutathione-dependent peroxidase (Pauwels et al., 2003). Perox-
iredoxin and thioredoxin are ubiquitous anti-oxidant enzymes
present in all known organisms and have been implicated in
defense against reactive oxygen species in bacteria (Zeller and Klug,
2006) and in mammalian airways (Rahman et al., 2006; Lehtonen
et al., 2008).

Bacterial nutrient scavenging was implicated during lung
infection as genes in several amino acid biosynthetic pathways
were needed such as those for phenylalanine (pheA), trypto-
phan (located in probable operons trpEGDC, trpBA), tyrosine
(tyrA), methionine (metB, metC, metE, metX), serine (serA, serB),
asparagine (asnA), aspartate (aspC), and branched amino acids
(ilvE). The lung environment appears to be limiting for purines
and pyrimidines as genes in these respective biosynthetic pathways
were also needed (e.g., purA, purB, purE, pyrG) as well as those for
purine salvage (deoD, apaH ). In addition, essential trace minerals
may be sequestered from bacteria in the lung. Transport genes for
iron (yfeB) and zinc (znuC, znuB, znuA) were needed as well as
two hypothetical transport genes, HI1249 and HI1248. Targeted
studies of the latter two genes, now designated zevA and zevB,
in a clinical NTHi isolate indicated that they encode components
of a high-affinity zinc binding system required for growth under
severe zinc restriction, and NTHi deletion mutants lacking either
zevA or zevB were verified to be attenuated in the mouse lung
model (Rosadini et al., 2011).

Some of the physiological adaptations required by H. influen-
zae in the lung appear to be analogously required by other

respiratory pathogens. For example, three large-scale studies utiliz-
ing a hybridization-based method termed signature tagged muta-
genesis (STM; Hensel et al., 1995) identified genes needed for lung
colonization by Streptococcus pneumoniae, a Gram-positive bacte-
rial pathogen that inhabits a niche similar to that of H. influenzae
in the human respiratory tract (Polissi et al., 1998; Lau et al., 2001;
Hava and Camilli, 2002). Together these experiments identified
several hundred candidate virulence genes of S. pneumoniae, how-
ever the sets identified exhibited limited overlap between studies,
probably because the mutant libraries used were not large enough
to fully represent all of the genes in the genome. Of note, many
of the genes detected encode components of pathways similar to
those needed for survival of H. influenzae in the lungs, includ-
ing purine metabolism, metal ion transport (zinc and iron), and
amino acid synthesis (e.g., tryptophan, branched chain, and aro-
matic amino acids). Although H. influenzae and S. pneumoniae
differ extensively at the genetic and phenotypic level and utilize
numerous species-specific virulence factors, it appears that they
exhibit certain core survival requirements in this niche. Overall,
however, the genetic and phenotypic diversity in virulence factors
used by the two pathogens in the lung appears to be very high, and
a direct comparison is challenging in this context, compounded
by the differences in HITS versus STM methodologies. Recently,
a method similar to HITS, termed Tn-Seq (van Opijnen et al.,
2009), was employed to study the fitness of mutants of S. pneu-
moniae libraries in vitro, and application of such an approach to
S. pneumoniae in the lung infection model would greatly facili-
tate a comprehensive comparison to the H. influenzae HITS data.
Moreover, as the STM studies revealed similarities and differences
in the genes required in S. pneumoniae lung infection versus a
model of bloodstream infection, it would be of particular interest
to compare its genetic requirements for pathogenesis to those of
H. influenzae in both sites.

The HITS data also indicated that perturbation of outer mem-
brane lipid asymmetry was damaging for H. influenzae in the lung.
Genes in this category that were required in the lung were asso-
ciated with trafficking of phospholipids between the leaflets of
the cell envelope such as vacJ and a set of genes that are putative
orthologs of an ABC transport system of Escherichia coli encoded
by the mlaA and mlaBCDEF loci (currently termed yrb loci in H.
influenzae; Malinverni and Silhavy, 2009). The vacJ and yrb genes
were also implicated in Shigella flexneri pathogenesis (Suzuki et al.,
1994; Hong et al., 1998). More recently, Nakamura et al. (2011)
screened a transposon bank of 6912 mutants in the NTHi R2866
strain background for sensitivity to killing by human serum. The
yrb/mla genes were identified in this screen, and appear to influ-
ence the spatial arrangement of the cell surface lipooligosaccharide
(LOS) leading to increased antibody binding to this structure
(Nakamura et al., 2011). The potential role of complement in
defense against H. influenzae in the lung is not fully understood,
and it will be of interest to determine whether the attenuation of
these mutants in the lung model reflects their complement sensi-
tivity, greater recognition by antibodies, or other virulence defects
associated with perturbation of the cell surface.

Lipooligosaccharide glycoforms are well established virulence
factors of H. influenzae (Moxon and Maskell, 1992). The H.
influenzae LOS glycolipid is similar to LPS of other Gram-negative
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Table 1 | Haemophilus influenzae genes involved in pathogenesis.

Homologous

locus in Rd

Locus Function Attenuated

in vivo/serum

Gene/protein induced

in vivo/sputum

AMINO ACID METABOLISM

HI1145 pheA Chorismate mutase/prephenate dehydratase a

HI1387 trpE Anthranilate synthase component I a

HI1388 trpG Anthranilate synthase component II a

HI1389 trpD Anthranilate phosphoribosyltransferase a

HI1389.1 trpC Bifunctional indole-3-glycerol phosphate synthase/

phosphoribosylanthranilate isomerase

a

HI1431 trpB Tryptophan synthase subunit beta a

HI1432 trpA Tryptophan synthase subunit alpha a

HI1290 tyrA Bifunctional chorismate mutase/prephenate dehydrogenase a

HI0086 metB Cystathionine gamma-synthase a, d

HI0122 metC Cystathionine beta-lyase a

HI1702 metE 5-Methyltetrahydropteroyltriglutamate – homocysteine methyltransferase a

HI1263 metX Homoserine O-acetyltransferase a

HI0465 serA D-3-phosphoglycerate dehydrogenase a

HI1033 serB Phosphoserine phosphatase a

HI0564 asnA Asparagine synthetase a

HI1617 aspC Aromatic amino acid aminotransferase a

HI1193 ilvE Branched chain amino acid aminotransferase a

HI0596 argF Ornithine carbamoyltransferase e

LOS BIOSYNTHESIS

HI1114 rfaD ADP-l-glycero-d-mannoheptose-6-epimerase a

HI1181 gmhA Phosphoheptose isomerase a

HI0621.1 gmhB D,D-heptose 1,7-bisphosphate phosphatase a

HI0261 opsX Heptosyltransferase I a, c

HI0351 galE UDP-glucose 4-epimerase a, b

HI0523 orfH Heptosyltransferase-like protein a, b, c

HI0653 lgtF Beta-1,4-glucosyltransferase a, b

HI0765 lpsA Glycosyl transferase a, b, c

HI0812 galU Glucosephosphate uridylyltransferase a, b, c

HI1105 rfaF ADP-heptose-LPS heptosyltransferase II a, c

HI0740 pgmB Phosphomannomutase a, b, c

HI0550 lic2A Glycosyl transferase b

HI0258 lgtC Glycosyl transferase b, c

HI0872 rfbP Undecaprenyl-phosphate galactosephosphotransferase c

HI0873 rfbB dTDP-glucose 4,6-dehydratase c

Not present

in Rd

lex2B Beta-1,4-glucosyltransferase b

HI1537 licA Choline kinase d

HI1540 licD Choline phosphotransferase f

HI0260.1 orfZ 3-Deoxy-d-manno-octulosonic acid kinase c

CELL SURFACE

HI0718 vacJ Lipoprotein a, b

HI1083 yrbB Putative NTP binding protein, contains STAS domain b

HI1084 yrbC ABC transporter a

HI1085 yrbD ABC transporter periplasmic protein a, b

HI1086 yrbE ABC transporter permease a, b

HI1087 yrbF ABC transporter ATPase a

HI1732 hia Adhesin d

ANTI-OXIDANT/STRESS DEFENSE

HI0572 pdgX Hybrid peroxiredoxin/thioredoxin glutathione-dependent peroxidase a f

(Continued)
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Table 1 | Continued

Homologous

locus in Rd

Locus Function Attenuated

in vivo/serum

Gene/protein induced

in vivo/sputum

HI1434.1 cspD Cold shock-like protein e

HI0713 tig Trigger factor (peptidyl-prolyl isomerase), ribosome-associated chaperone a

HI0084 trxA Thioredoxin f

HI1349 dps DNA-binding ferritin-like protein f

HI1426 uspE Universal stress protein f

HI1238 dnaJ Molecular chaperone f

HI0543 groEL Chaperonin f

HI0542 groES Co-chaperonin f

DNA RECOMBINATION/REPAIR

HI0309 xerD Site-specific tyrosine recombinase a

HI0312 ruvB Holliday junction DNA helicase B a

HI0313 ruvA Holliday junction DNA helicase motor protein a

HI0314 ruvC Holliday junction resolvase a

HI0676 xerC Site-specific tyrosine recombinase a

HI0942 recC Exodeoxyribonuclease V gamma chain a

HI0443 recR Recombination protein a

UREA METABOLISM

HI0535 ureH Urease accessory protein a e

NUCLEOTIDE METABOLISM

HI1633 purA Adenylosuccinate synthetase a

HI0639 purB Adenylosuccinate lyase a

HI1615 purE Phosphoribosylaminoimidazole carboxylase catalytic subunit a e

HI1077 pyrG CTP synthetase a

HI0518 deoD Purine nucleoside phosphorylase a

HI0551 apaH Diadenosine tetraphosphatase a

COFACTOR/VITAMIN SYNTHESIS

HI0764 ribB 3,4-Dihydroxy-2-butanone 4-phosphate synthase e

HI1647 pdxS Pyridoxine biosynthesis protein a e

NUTRIENT ACQUISITION ZINC

HI0119 znuA High-affinity zinc transporter periplasmic component a f

HI0407 znuB Zinc transport system permease protein a

HI0408 znuC Zinc transport system ATP-binding protein a

HI1249 zevA ABC transporter periplasmic component (zinc binding system) a

HI1248 zevB ABC transporter permease (zinc binding system) a

IRON

HI0362 yfeA Iron-chelated ABC transporter periplasmic-binding protein f

HI0361 yfeB Iron (chelated) transporter ATP-binding protein a

HI0097 hitA ABC transporter, iron-utilization periplasmic protein f

HI0129 afuB Ferric transport system permease-like protein d

HEME

HI0263 hxuB Heme/hemopexin-binding protein B f

RIBOSE

HI0503 ribsC Ribose ABC transporter permease e

TRANSPORTERS

HI0561 – Putative oligopeptide transporter (OPT) family d

HI1218 lctP l-lactate permease d

HI0898 emrA Multidrug resistance protein A d

METABOLIC PROCESSES/ELECTRONTRANSPORT

HI1245 – Bifunctional malic enzyme oxidoreductase/phosphotransacetylase d

HI1170 – Similar to para-aminobenzoate synthetase required for folate biosynthesis d

HI0406 accA Acetyl-CoA carboxylase carboxyltransferase subunit alpha d

(Continued)
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Table 1 | Continued

Homologous

locus in Rd

Locus Function Attenuated

in vivo/serum

Gene/protein induced

in vivo/sputum

HI0432 nudC NADH pyrophosphatase d

HI0527 fdx-2 Ferredoxin d

HI0936 – Cytochrome C-type biogenesis d

TRANSCRIPTION/DNA PROCESSING

HI0700 – Hypothetical protein d

HI0814 alaS Alanyl-tRNA synthetase d

HI1056 – Type III restriction-modification system methyltransferase-like protein d

HI1459 – RNA polymerase sigma-70 factor d

HI1528 parE DNA topoisomerase IV subunit B d

PROTEIN MODIFICATION

HI0428 dsbB Disulfide bond formation protein B a, d e

HI1152 pmbA Peptidase protein d

HI1368 – Putative zinc protease d

HYPOTHETICAL PROTEIN/OTHER

HI0364 pbpG Penicillin-binding protein 7 d

HI1018 Insertion sequence IS1016 group transposase d

HI1598 – Hypothetical protein d

HI0877 obgE GTPase d

HI0094 – Hypothetical protein HI0094 e

a, H. influenzae Rd genes required in mouse lung (Gawronski et al., 2009).

b, NTHi strain R2866 genes needed for resistance to normal human serum (Nakamura et al., 2011).

c, H. influenzae type b (Eagan) genes needed for survival in infant rat blood (Hood et al., 1996).

d, Rd (b+) (strain containing type b capsule locus) genes needed for survival in infant rat blood (Herbert et al., 2002).

e, NTHi strain 86-028NP genes induced in chinchilla middle ear effusions (Mason et al., 2003).

f, NTHi strain 11P6H proteins induced in human sputum (Qu et al., 2010).

bacteria except that it lacks extended O antigen structures, but
consist of Lipid A, an inner core comprised of several sugars
including a single 3-deoxyc-d-manno-octulosonic acid linked to
three conserved heptose residues, and a variable outer core con-
taining a heteropolymer of glucose and galactose modified with
various substituents such as sialic acid, N -acetylgalactosamine,
and phosphorylcholine (Hood et al., 1999; Risberg et al., 1999;
Figure 1). The HITS data indicate the importance of the LOS
structure for survival in the lung, as numerous LOS biosynthesis
genes were required. The genes needed in the steps to generate the
nucleotide-activated heptose precursor of the inner core (rfaD,
gmhA, gmhB) and for extension from the heptose residues of the
inner core (opsX, rfaF, and orfH ) were most important in vivo in
the lung with estimated degrees of attenuation ranging from ∼80-
to 300-fold. Also critical are genes required for precursor produc-
tion for LOS outer core hexose extensions (galU, pgmB, and galE)
which were ∼90-, ∼70-, and 40-fold attenuated in vivo, respec-
tively. GalU converts glucose-1-phosphate to uridine diphosphate
glucose (UDP-glucose), the substrate for glucose residue addition
to the LOS. Based on mass spectrometry data, a galU mutant of
H. influenzae does not contain hexose in the outer core consis-
tent with studies of mutants deficient in this enzyme in other
species (Choudhury et al., 2005; Wong and Akerley unpublished
data). The pgmB (or yhxB) encoded enzyme is a phosphohexose
mutase that putatively functions in the conversion of glucose-6-
phosphate to glucose-1-phosphate, a metabolic substrate for GalU.

GalE converts UDP-glucose to UDP-galactose, and therefore the
LOS of galE mutants is predicted to contain decreased levels of
galactose containing structures (Figure 1; Maskell et al., 1992).

Genes in which mutations result in less dramatic truncations of
the LOS outer core were less important for survival as determined
via HITS. For example, lgtF, which mediates hexose extension from
the first heptose, and lpsA, which is required for hexose extension
from the terminal heptose (Hood et al., 2001, 2004) were ∼7-
and 4-fold attenuated in vivo, respectively. Single strain infections
with a defined lpsA mutant of non-typeable H. influenzae verified
that this gene was non-essential for infection in the lung, as the
mutant only exhibited an ∼1.5-fold trend of attenuation that did
not attain statistical significance. Distal extensions and modifica-
tions of the LOS outer core mediated by genes lic2A, lgtC, lgtD,
lic3A, and genes of the lic1 locus, respectively (Figure 1) appeared
to be non-essential in the lungs at 24 h. Of note, a lic1D gene
encoding the transferase required for phosphorylcholine addition
to the LOS was previously examined in the murine lung model
and exhibited only a modest, strain specific attenuation at 24 h
with more consistent attenuation at 48 h (Pang et al., 2008), sug-
gesting that distal modifications of the LOS may become more
critical at a later stage of infection when immune responses are
likely to be more fully engaged. Taken together, the results indicate
that truncation of the LOS inner core or inability to extend hexose
residues from the inner core results in varying degrees of enhanced
clearance of H. influenzae from the lung.
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FIGURE 1 | Schematic diagram of H. influenzae LOS. Composite models
based on structural studies are shown for H. influenzae Rd (Risberg et al.,
1999; Hood et al., 2001), Hib (Masoud et al., 1997, 2003; Schweda et al.,
2000; Griffin et al., 2003; Hood et al., 2004; Twelkmeyer et al., 2011), and
non-typeable strain NT127 (Wong et al., 2011). The conserved inner core
(boxed with dashed lines on the Rd diagram) is present in most strains as
three heptose sugars designated HepI (proximal to Kdo), HepII (center),

HepIII (the terminal inner core structure). Extending from these heptose
residues are the outer core structures (in brackets) dependent on galU for
LOS hexose precursor production. Arrows indicate linkages added to the
structure by the designated genes. Abbreviations: Glc, glucose; Gal,
galactose; Hep, heptose; Kdo, 2-keto-3-deoxyoctulosonic acid; PPEtn,
pyrophosphoethanolamine; PEtn, phosphoethanolamine; GalNac,
N -acetylgalactosamine; Neu5Ac, sialic acid; PC, phosphorylcholine.

INVASIVE INFECTION AND BACTEREMIA
Encapsulated strains, and most frequently H. influenzae type b
(Hib) expressing the type b capsule, cause invasive infections
including meningitis, pneumonia, and septicemia. Despite the
implementation of an effective vaccine against Hib, which has
dramatically reduced the incidence of type b disease in developed
countries, Hib remains prevalent in the developing world (Pel-
tola, 2000; Agrawal and Murphy, 2011). In populations receiving
the Hib vaccine, NTHi strains have replaced type b as the most
common bloodstream isolate (Agrawal and Murphy, 2011). NTHi
predominantly cause respiratory tract infections and otitis media,
but in rare cases can invade the bloodstream leading to meningi-
tis. This disease profile raises the possibility that genes promoting
intravascular invasion could be present among NTHi strains. The
molecular basis for the invasive properties of H. influenzae that
promote transmission from the nasopharynx to the bloodstream
or middle ear are not fully understood. NTHi lack capsular poly-
saccharide, a major virulence factor of Hib promoting survival
in the bloodstream, however they share a number of virulence
determinants that are also required for Hib bacteremia. Moreover,
it is possible that factors involved in adaptation of H. influenzae
to interstitial invasion in the nasopharynx, a property that may
enhance persistent asymptomatic or subclinical persistence, also
promote bacteremia. Therefore, comparisons between Hib and
non-encapsulated strains in models of bloodstream infection will
likely provide insight into both persistence and disease.

In one of the earliest demonstrations of the utility of com-
plete genomic DNA sequencing information, Hood et al. (1996)

utilized the sequence of H. influenzae Rd to identify putative LOS
biosynthetic genes for virulence screening in mice. Mutants of the
Hib strain deficient in these candidate LOS genes were examined in
an infant rat model of infection to identify LOS structures required
for intravascular dissemination. The Hib LOS genes reported to be
required for bacteremia in the rat model are opsX, rfaF, pgmB, galU,
rfbB, orfZ, orfH, lgtC, lpsA, and rfbP (Figure 1; Table 1). Similarly,
galU and lpsA mutants of the non-encapsulated H. influenzae Rd
strain were evaluated in a mouse model of bacteremia and also
exhibit persistence defects (Wong et al., 2007). Of note, the Hib
mutants that produced the most severely truncated LOS structures
(opsX, rfaF, pgmB, galU, orfH ) and were the most attenuated in the
rat bacteremia model (Hood et al., 1996) were also markedly atten-
uated for survival in the lung as indicated by HITS data (Gawronski
et al., 2009). In contrast to their more severe effects on blood-
stream infection, mutations in LOS genes of the outer core that
produced less dramatic truncations conferred either partial atten-
uation (lgtF, lpsA) or no appreciable effect on survival (lic2A, lgtC)
in the lung (Gawronski et al., 2009). In summary, LOS structures
are critical for adaptation to both the lung and bloodstream envi-
ronments, yet the bacterium’s requirement for specific structures
varies between these sites.

Also using an infant rat model of systemic infection, Her-
bert et al. (2002) screened a random transposon insertion library
of 1632 H. influenzae mutants using the STM method (Hensel
et al., 1995) to identify 25 genes essential for bacteremia. This
experiment utilized an Rd-b+ strain in which the locus encoding
the capsule of the type b strain was introduced into strain Rd,
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thereby conferring enhanced virulence and permitting efficient
intravascular infection. Eleven of the genes detected were involved
in metabolic processes and in nutrient/cofactor acquisition, five
were involved in transcription or DNA processing, three are
involved in protein modification, four have putative roles in well
established virulence phenotypes, and two encode hypothetical
proteins (Table 1). Mutants containing deletions of afuB (ferric
transport system permease), accA (fatty acid metabolism), nudC
(NADH pyrophosphatase), lctP (l-lactate permease), HI1245
(malic enzyme or malate dehydrogenase), and HI0700 (hypothet-
ical protein) were used to verify the requirement for these genes in
bacterial survival in the infant rat bloodstream. Thus the results
confirm the requirement for genes mediating nutrient utilization
and metabolism by H. influenzae for survival in the blood. The
requirement for l-lactate permease is of interest as the presence
of lactate in vitro induces resistance to complement-mediated
bacterial killing, potentially involving increased production of
LOS (Kuratana and Anderson, 1991). Interestingly, acquisition of
iron and lactate is also important for bloodstream colonization
by another respiratory tract pathogen that can become invasive,
Neisseria meningitidis, as a transferrin-binding deficient mutant
(TbpB) and a lctP mutant in this organism were more deficient
for survival ex vivo in whole human blood (Echenique-Rivera et al.,
2011).

The majority of genes detected by STM in the bacteremia model
were not required according to HITS in the lung. This observation
may relate to differences in Rd versus the Rd-b+ strain, but also
likely reflects that very different survival strategies are required at
these sites. Both experiments detected a requirement for methion-
ine synthesis (metB) suggesting that this amino acid is unavailable
at multiple sites in the host. Methionine is an essential dietary
amino acid not synthesized by humans, and is also an important
host-signaling molecule, and therefore its abundance in the extra-
cellular milieu is likely tightly controlled. Preliminary analysis of
HITS data recently obtained with a bank of ∼34,000 mutants of
H. influenzae Rd recovered from the bacteremia model (Wong
and Akerley, unpublished) has yielded concordant results with all
of the genes implicated as most critical for bacteremia by Hood
et al. (1996) and several of the genes identified via STM by Her-
bert et al. (2002; e.g., licA, lctP, dsbB, afuB, HI0936). We anticipate
that re-evaluating H. influenzae growth and survival in the con-
text of bacteremia with a more comprehensive library of mutants
via the HITS methodology will provide additional insight into the
physiological and immunological selection pressures H. influenzae
experiences in different sites of infection.

CHINCHILLA MODEL OF OTITIS MEDIA
Non-typeable H. influenzae is a predominant bacterial isolate
in chronic otitis media with effusion (Klein, 1997). To identify
candidate genes that may be important in causing otitis media,
Mason et al. (2003) used a green fluorescent protein (GFP) pro-
moter trap system with a differential fluorescence induction strat-
egy combined with fluorescence-activated cell sorting to identify
H. influenzae genes potentially induced in the chinchilla middle
ear relative to in vitro growth on rich medium. NTHi strain 86-
028NP containing a GFP promoter trap library was inoculated
into the middle ear of chinchillas and clones containing promoter

elements induced in vivo were enriched following recovery from
middle ear effusions. The screen revealed 52 genes of which 26 were
confirmed by RT-qPCR conducted on RNA isolated from NTHi
recovered from the chinchilla middle ear. Five genes expressed at
≥5-fold levels higher in the middle ear are involved with mem-
brane transport (the ribose transporter rbsC), purine synthesis
(purE), biosynthetic/metabolic functions (ribB, which functions
in riboflavin synthesis and argF which functions in arginine degra-
dation), and a hypothetical gene, HI0094. The authors suggest that
induction of these genes implies the middle ear contains ribose,
whereas the levels of purines and riboflavin may be low in this envi-
ronment and therefore synthesis would be required. Five genes of
the 26 on this list were also implicated in survival in the mouse lung
model,uxuA,dsbB,ureH,purE, and pdxS (Table 1; Gawronski et al.,
2009). While expression analysis and studies with specific mutants
have provided insight into adaptations at this site, the complete set
of genes involved in middle ear infection has not been identified.
Application of the HITS methodology would therefore represent
an attractive opportunity to address this important question at a
genomic scale in animal models of otitis media.

EXPRESSION OF NTHi GENES DURING GROWTH IN HUMAN
SPUTUM
Proteomic expression studies of NTHi grown in human sputum by
Qu et al. (2010) can complement studies of genes that are required
in infection models. This type of approach can identify poten-
tially “redundant” factors as well as minor contributors that, when
combined, mediate enhanced virulence. In addition, it can help
describe physiological responses and identify genes that are essen-
tial for growth in vitro that may need to be upregulated in vivo.
This study aimed to simulate conditions in the lower respiratory
tract that occur during COPD, which predisposes individuals to
exacerbations involving lung colonization by NTHi.

The expression profile of NTHi 11P6H strain grown in human
sputum from COPD patients identified 1402 unique proteins from
1759 predicted coding regions. Thirty-one proteins were present
in greater abundance by more than 1.5-fold during growth in spu-
tum versus in chemically defined media. These include proteins
involved in anti-oxidant/stress response such as PdgX, thioredoxin
(TrxA), the DNA-binding ferritin-like protein Dps, universal stress
protein UspE, and molecular chaperones DnaJ, GroEL, and GroES.
Other proteins induced in the sputum include those required for
uptake of minerals such as iron (HitA, YfeA) and zinc (ZnuA;
Table 1).

This protein expression profile is consistent with the view that
the human respiratory tract presents NTHi with an oxidatively
stressful environment that is relatively deficient of nutrients and
trace metals such as zinc, similar to the profile of genes impli-
cated in survival in the mouse lung model (Gawronski et al.,
2009). Both PdgX and ZnuA were implicated in survival in the
mouse lungs with mutants exhibiting ∼13- and 10-fold attenu-
ation, respectively, as estimated by HITS. Despite potential zinc
limitation in sputum, the ZevA/ZevB zinc uptake system, which
is required in the mouse lung, was not detected as being more
highly expressed in sputum in vitro. This result may reflect that
expression of zevAB does not respond to zinc levels but rather is
activated under aerobic conditions and repressed in low oxygen
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by the anaerobic regulator, FNR (Rosadini et al., 2011). Therefore
differential expression of ZevAB in vivo likely involves transitions
between aerobic and anaerobic environments, in contrast to the
comparison between two different aerobic conditions in the study
by Qu et al. (2010). Overall, expression analysis in this in vitro
model shows many correlations to the genetic requirements for
growth in the murine lung model, and can provide insight into
the nutrients and other host factors influencing H. influenzae’s
adaptation to life at the mucosal surface.

ENVIRONMENTAL SENSING AND SIGNAL TRANSDUCTION
IN ADAPTATION TO SITES OF INFECTION
The ability to sense and adapt to environmental conditions is an
important survival strategy for many bacterial pathogens, how-
ever the role of signaling by H. influenzae during infection is
not well understood. Comparison of the genetic requirements for
H. influenzae at different infection sites, combined with expres-
sion studies under conditions reflective of these environments,
can provide insight into the ways that this bacterium may sense
and respond to its environment in vivo, and ultimately how such
responses may influence pathogenesis.

Accumulating evidence indicates that modulation of gene
expression in response to varying oxygen levels in diverse environ-
ments is needed by H. influenzae to evade and resist host defenses
for efficient colonization and pathogenesis. H. influenzae contains
two global transcriptional regulatory systems, ArcAB and FNR,
which are similar to their respective homologs in E. coli (Shaw
et al., 1983; Lynch and Lin, 1996b), and modulate the expression
of the genes needed for adaptation to changes in oxygen availabil-
ity. The H. influenzae ArcB can phosphorylate E. coli ArcA in vitro,
and complementation experiments have demonstrated that the H.
influenzae ArcB and ArcA can interact with the appropriate E. coli
Arc components in vivo to control E. coli ArcAB regulated genes
with a similar response to varied reduction/oxidation (redox) con-
ditions of growth (Manukhov et al., 2000; Georgellis et al., 2001b).
Under low oxygen conditions, the transmembrane sensor compo-
nent ArcB responds to the redox status of the quinone pool and
autophosphorylates, leading to activation of the ArcA response
regulator by phosphoryl transfer (Georgellis et al., 2001a; Malpica
et al., 2004; Bekker et al., 2010). Phosphorylated ArcA transcrip-
tionally activates or represses diverse target genes including genes
of the tricarboxylic acid cycle and genes involved in other aspects of
respiratory or fermentative metabolism (Lynch and Lin, 1996a,b;
De Souza-Hart et al., 2003; Wong et al., 2007). Under high oxygen
conditions ArcB activity is abrogated by interaction with oxidized
quinone (Malpica et al., 2004).

Unlike the ArcAB system, which indirectly senses oxygen avail-
ability via the redox state of the quinone electron carrier, FNR of
E. coli is considered to be a direct oxygen sensor by virtue of its
iron–sulfur center, which is required for maintaining an active
conformation that promotes dimerization and DNA-binding
(Lazazzera et al., 1996). Upon oxidation, the iron–sulfur center
undergoes a transition leading to conversion of FNR to its inactive
monomeric form (Crack et al., 2004; Dibden and Green, 2005).
The biochemical properties of FNR in H. influenzae have not been
studied, however its predicted amino acid sequence is 79% iden-
tical to that of E. coli and it regulates target genes containing a

similar FNR binding motif in their promoter regions under low
oxygen conditions consistent with a similar function (Stewart and
Bledsoe, 2005; Harrington et al., 2009). Despite functional simi-
larities of these regulators to those of E. coli, there are important
differences in the sets of genes these two factors control in H.
influenzae, and these differences have been linked to mechanisms
of pathogenesis (Wong et al., 2007, 2011; Harrington et al., 2009).

In H. influenzae, ArcAB appears to protect the bacterium from
oxidative stress in a pre-emptive manner during transition from
low to high oxygen conditions (Wong et al., 2007), a condition
that likely exists in the bloodstream upon sudden exposure to
the oxidative defenses of phagocytic cells. This anti-oxidant effect
involves ArcA mediated activation of expression of the ferritin-like
protein Dps, which in E. coli has been shown to sequester iron in
the presence of hydrogen peroxide by converting Fe(II) to a ferric
oxide mineral core within the Dps complex, preventing Fenton
reactions that would create toxic hydroxide radicals. Regulation of
Dps by ArcA has not been demonstrated in E. coli or other species,
and therefore this pre-emptive anti-oxidant defense may relate to
unique adaptations of H. influenzae to its niche within the human
host.

FNR is needed by H. influenzae for defense against nitrosative
stress under anaerobic conditions (Harrington et al., 2009). Dur-
ing immune responses to bacteria, host cells produce the free
radical gas, nitric oxide (NO) via metabolism of l-arginine by
inducible nitric oxide synthase (iNOS or NOS2; for reviews see
MacMicking et al., 1997; Bogdan et al., 2000). Additional reac-
tions with NO generate other reactive nitrogen species (RNS)
such as S-nitrosothiols, which are thought to exceed the cytotoxi-
city of NO, leading to diverse antimicrobial effects (Brunelli et al.,
1995; Fang, 2004). Production of nitric oxide by macrophages and
epithelial cells is significant in human sinuses and resistance to
RNS is also likely to be an important adaptation for H. influen-
zae in specific locations within the nasopharynx (Lundberg et al.,
1995; Lundberg, 2008). Alcohol dehydrogenase (adhC) has been
implicated in defense of H. influenzae against one type of RNS, S-
nitrosoglutathione, under normoxic conditions (Kidd et al., 2007).
Under low oxygen conditions and positively controlled by FNR,
resistance to RNS requires the ytfE gene, predicted to encode a
di-iron protein similar to a family of iron–sulfur repair proteins
involved in RNS and ROS resistance in E. coli and a diverse group
of additional bacterial species (Overton et al., 2008). Genes similar
to ytfE in other species are controlled by other regulatory factors
or, in the case of E. coli, negatively controlled by FNR (Justino
et al., 2006). Therefore, analogous to H. influenzae specific aspects
of the Arc regulon, FNR mediated activation of ytfE appears to be
a distinctive property of H. influenzae.

In some cases, it is possible to relate the regulatory profiles of
specific virulence factors to the requirements for these factors in
sites of infection. For example, FNR was shown to negatively reg-
ulate expression of the zevA promoter of the zevAB zinc binding
system,which was required for NTHi survival in the lung (Rosadini
et al., 2011). The promoter activity of zevA is therefore higher in
aerobic versus anaerobic growth, consistent with the requirement
for zevAB in the lung. H. influenzae may encounter zinc limita-
tion in the respiratory tract as genes of the znu locus encoding
a high-affinity zinc transport system were required in the lung
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as indicated by HITS, and ZnuA expression was induced during
growth in human sputum as determined by proteomic expression
analysis (Qu et al., 2010). It’s not clear why zevAB is controlled by
aerobiosis rather than zinc levels. It is possible that high levels of
oxygen may be utilized by H. influenzae to sense that it is growing
at the mucosal surface, and initiate a program of gene expression
that includes increased scavenging of zinc along with other oxygen
regulated adaptations.

Data from HITS analysis of mutants in the lung model and
NTHi protein expression in human sputum support the concept
that H. influenzae encounters an aerobically stressful environment
in the lung. It is not surprising then that the anaerobic regulators
ArcA and FNR were not implicated in survival in the lung, yet a
role for the oxidative stress responsive regulator OxyR was detected
(Gawronski et al., 2009). The H. influenzae OxyR regulon includes
genes that are upregulated in response to hydrogen peroxide expo-
sure (Harrison et al., 2007) and have known or probable roles in
detoxifying reactive oxygen species such as the peroxidase gene,
pgdX (Pauwels et al., 2003).

In contrast to the aerobic environment in the lung, results from
animal models of bacteremia support the view that bloodstream
colonization by H. influenzae requires microaerobic adaptations.
While ArcA was not required in the mouse lung, it was required
in mouse models of bacteremia (De Souza-Hart et al., 2003; Wong
et al., 2007). Moreover, the OxyR regulated pgdX gene in H.
influenzae was not required in an infant rat model of bacteremia
(Vergauwen et al., 2006). Similarly, H. influenzae sodA encod-
ing superoxide dismutase participates in oxidative stress defense
in vitro and was implicated in colonization of the nasopharynx, but
not in the bloodstream in infant rats (D’Mello et al., 1997). These
observations highlight the concept that survival of H. influen-
zae at mucosal surfaces such as lung or nasopharynx versus the
bloodstream requires different stress defense and nutrient acquisi-
tion strategies in each environment, and that responses to oxygen
levels play an important role in controlling expression of these
adaptations.

Haemophilus influenzae not only responds to aeration condi-
tions in defense against oxidative stress, but also to control genes
involved in immune evasion during infection such as the LOS
structure. Modification of the H. influenzae LOS with phospho-
rylcholine was found to decrease under high oxygen and increase
in microaerobic conditions (Wong and Akerley, 2005). Microar-
ray analysis suggested a model in which this regulatory profile was
mediated by changes in expression of UDP-glucose pyrophospho-
rylase encoded by galU. Moreover, expression of galU from a con-
stitutive promoter resulted in equal levels of phosphorylcholine
display during growth in both high and low oxygen as deter-
mined via western immunoblotting with anti-phosphorylcholine
monoclonal antibody, TEPC 15 (Wong and Akerley, unpublished).
These results suggest that aeration conditions influence the struc-
ture of the entire outer core, which is dependent on UDP-glucose
for hexose addition to the LOS. Consistent with this concept, a
LOS epitope in NTHi was reported to show reduced expression
during aerobic growth on an agar plate and higher levels dur-
ing biofilm growth in broth medium, a condition that is likely to
restrict oxygen availability (Murphy and Kirkham, 2002). More
recently, the lic2B glycosyltransferase was demonstrated to be

activated by ArcA under low oxygen conditions. The lic2B gene
is required for addition of a galactose residue to the LOS outer
core (Figure 1), and is required for both survival in the blood-
stream and resistance to serum complement in NTHi (Wong et al.,
2011). H. influenzae LOS is essential for pathogenesis in animal
models of middle ear and bloodstream infection by contributing
to evasion of complement and antimicrobial peptides (Lysenko
et al., 2000; Figueira et al., 2007; Ho et al., 2007). However, LOS
structures are also targets for components of innate and acquired
immunity (Leon and Young, 1971; Weiser et al., 1998; Shaw et al.,
2000), and downregulation of these structures may be beneficial
in sites of infection in which they are not essential for bacterial
survival.

The differential requirement for specific LOS biosynthesis genes
in models of lung infection versus bacteremia is consistent with
the hypothesis that they are differentially regulated in response to
environmental signals at these locations. While some LOS struc-
tures are required in both models, distal modifications of the LOS
outer core mediated by genes such as lic3A, which adds sialic acid,
or the licABCD locus responsible for phosphorylcholine display,
appeared to be non-essential in the lung by HITS, yet are required
for bloodstream colonization (Weiser et al., 1990; Hood et al.,
1996; Herbert et al., 2002). Taken together, the expression profile
of LOS modifications in response to aeration conditions (Wong
and Akerley, 2005) seems consistent with the in vivo importance
of the genes responsible for generating those LOS structures dur-
ing infection in niches predicted to differ in oxygen levels. This
provides insight into the factors influencing H. influenzae’s transi-
tion between diverse infection sites in pathogenesis while it evades
the host immune system.

CONCLUDING REMARKS
Integration of genome-scale data from expression profiling studies
and mutagenesis experiments is providing a much more compre-
hensive view of the factors that are likely to be critical for human
infection and disease. An emerging theme is that H. influenzae
expresses adaptations that allow it to survive in different envi-
ronmental niches as it transits between the relatively high oxygen
levels of the airway surface to sites that may be lower in oxygen as
it disseminates to the middle ear, or enter the bloodstream. Under-
standing differential requirements for specific virulence factors in
these sites is likely to provide new candidate bacterial targets for
development of strategies to specifically block disease progression.
Overall, we are only in the early stages of exploiting highly effec-
tive,“next generation” genome-scale approaches to understanding
H. influenzae, and more extensive application of these technolo-
gies promises to provide unprecedented insight into this bac-
terium’s mechanisms of pathogenesis and strategies for persistent
colonization.
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