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Abstract
Enhancing pre-existing anti-tumor immunity leads to therapeutic benefit for some patients,

but why some tumors are more immunogenic than others remains unresolved. We took a

unique systems approach to relate patient survival to immune gene expression in >3,500

tumor RNAseq profiles from a dozen tumor types. We found significant links between

immune gene expression and patient survival in 8/12 tumor types, with tumors partitioned

by gene expression comprising distinct molecular subtypes. T/NK cell genes were most

clearly survival-related for melanoma, head and neck, and bladder tumors, whereas mye-

loid cell genes were most clearly survival-related with kidney and breast tumors. T/NK or

myeloid cell gene expression was linked to poor prognosis in bladder and kidney tumors,

respectively, suggesting tumor-specific immunosuppressive checkpoints. Our results sug-

gest new biomarkers for existing cancer immunotherapies and identify targets for new

immunotherapies.

Introduction
Recent advances in immunotherapy of cancer have led to durable clinical responses to multiple
immunotherapeutic agents across a range of human cancers [1,2]. One particularly promising
therapeutic approach, termed 'checkpoint blockade' [2,3], utilizes monoclonal antibodies
(mAbs) that block immune-inhibitory pathways switched on by cancer cells. Despite advances,
cancer immunotherapy is not always effective and may be associated with significant safety
issues [4,5], leading to intensive efforts to identify biomarkers for better patient selection [6,7].
It remains unclear why some tumors respond to immunotherapy and why others do not (i.e.,
why some tumors are more “immunogenic” than others).

One predictor of cancer patient prognosis is the presence and location of immune infiltrates
within tumors. Immunohistochemical studies have shown that immune cell infiltrates in
tumors at diagnosis can be linked to favorable clinical outcome [8,9]. Expression profiling has
also provided evidence of immune cell infiltrates and their relationship to patient survival in
cancer. Comparisons of multiple different molecular profiling studies have suggested common
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themes in immune cell infiltrates across different tumor types reviewed in [10,11]. More recent
studies have suggested that a therapeutic response to anti-PD-1 monoclonal antibody (mAb)
requires pre-existing PD-1/PD-L1-regulated T cells within tumors [6,7,12].

Despite abundant evidence linking tumor immune infiltrates with patient prognosis and
response to therapy, most studies have focused on single tumor types and comparisons across
different tumors largely have been based on literature comparisons [10]. Resolving the uncer-
tainties and gaps in our knowledge would benefit from a direct, side-by-side comparison of
immune mechanisms influencing patient survival across different tumor types. The Cancer
Genome Atlas (TCGA) is a comprehensive effort to apply genome analysis technologies to
accelerate understanding of the molecular basis of cancer [13]. In particular, the Pan-Cancer
initiative involving the first 12 tumor types profiled by TCGA has been used to identify com-
monalities and differences across tumor lineages, including survival comparisons of patients
with tumors of different molecular subtypes [13,14] We reasoned that TCGA RNAseq data
from the Pan-Cancer initiative could be used for side-by-side testing to identify immune signa-
tures linked to patient survival, both within and between different tumor types.

We recently described a novel approach, termed module analysis, to analyze melanoma
RNA sequencing expression data (RNAseq) for immune cells and pathways linked to patient
survival [15]. Our studies showed that levels of type I interferon-stimulated genes (ISGs), and
T cell genes in melanomas at the time of diagnosis significantly predicted patient survival. In
the present study, we have used expanded modular gene expression analysis on combined data
from the TCGA Pan-Cancer and melanoma profiling initiatives. We present for the first time a
comparison of immune cells and pathways associated with patient survival across a dozen dif-
ferent tumor types. The results provide a richer look at immune cell infiltrates and patient sur-
vival than has been possible with previous studies focused on individual tumor types.

Results

Different immune processes are associated with patient survival after
tumor detection
We analyzed a combined set of>3,500 RNAseq profiles from the TCGA Pan-Cancer and mel-
anoma profiling initiatives (Experimental Procedures). Tumor biopsies were taken near the
time of diagnosis. The tumor types and numbers of profiles involved are described in Table 1,
along with abbreviations used for tumor types.

Table 1. Characteristics of tumors examined in this study.

tumor abbreviation full name TCGA code number profiles median survival (days)

Bladder Bladder Urothelial Carcinoma BLCA 84 219

Breast Breast invasive carcinoma BRCA 748 578

Colon Colon adenocarcinoma COAD 108 376

Gliobastoma Glioblastoma multiforme GBM 159 285

Head and Neck Head and Neck squamous cell carcinoma HNSC 299 450

Kidney Kidney renal clear cell carcinoma KIRC 425 1097

Lung adenocarcinoma Lung adenocarcinoma LUAD 288 316

Lung squamous cell Lung squamous cell carcinoma LUSC 204 576

Ovarian Ovarian serous cystadenocarcinoma OV 261 882

Rectal Rectum adenocarcinoma READ 42 329

Melanoma Skin Cutaneous Melanoma SKCM 274 1345

Uterine Uterine Corpus Endometrial Carcinoma UCEC 332 553

doi:10.1371/journal.pone.0138726.t001
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We used a strategy described previously [15] to query these tumor datasets for the relation-
ship between levels of immune gene expression and patient survival. Briefly, this involved test-
ing whether levels of immune gene sets (modules) in tumors could predict patient survival.
To minimize biases, we chose not to aggregate clinical data from disparate tumor types, but
instead analyzed each tumor dataset separately, using the procedures that we validated in our
previous studies [15]. For the current studies, we developed a custom set of transcript modules
whose expression was most associated with selected marker genes (immune molecular mod-
ules, S1 and S2 Tables).

We chose to use custom modules rather than previously described transcript modules [16–
18] for several reasons. A major reason was that previously described transcript modules vary
widely in the numbers of genes they comprise [16–18]. This introduces a complicating variable
(set size differences) into survival comparisons of tumor subsets. Using custom modules of
equivalent set size mitigates this problem. The use of custom modules also allowed us to prese-
lect a set of markers to use as queries that are not well represented in previous module sets.
Finally, our custom modules can be organized into groups or clusters by their degree of gene
overlap (Experimental Procedures and [15]). These clusters of overlapping modules permit
greater insight into the scope and depth of transcriptional programs in immune cell infiltrates,
as well as specificity control. Our approach was validated by our previous demonstration of a
strong ISG response in melanomas [15]. For the present studies, we used a more inclusive set
of marker genes and a larger data set to identify modules.

In preliminary experiments, we compared survival of tumor subsets of varying size. In other
experiments, we determined optimal grouping for survival comparisons by subjecting samples
to hierarchical clustering according to module expression. We used this method previously to
show that ISG expression levels were dose-dependent in their ability to predict melanoma
patient survival [15]. In general, we found consistent results using sample subsets of different
sizes, which justified the selection of an arbitrary standard for sample set size. For the experi-
ments reported here, we used expression of module genes to partition each of the tumor data
sets (module partitions) into subsets with greater or less than median expression of module
genes (designated module hi and module lo subsets, respectively) [15].

We then compared survival curves of the two patient subsets using a log-rank test [19]. We
used this procedure to test all immune molecular modules (N = 526) for their ability to predict
survival in each of 12 tumor types (S3 Table). Also shown in S3 Table are the prognostic values
of the immune molecular module signatures for different tumor types, as estimated using an
implementation [19] of the Concordance index [20,21]. The Concordance index is a generali-
zation of an area under the ROC curve measurement that indicates how well a model discrimi-
nates between responses. A Concordance index value = 0.5 implies no predictive ability,
whereas values> 0.5–1.0 imply positive predictive ability. The mean Concordance index value
was 0.59 for immune molecular module signatures passing a stringent p-value cutoff of<1e-3,
indicating positive predictive value.

To control false discovery rates, we randomly used random partitions of both samples and
genes. As described below, we considered random sample partitions to more accurately
describe the null distribution for comparison of gene sets. We partitioned samples from each
tumor type into equal sized groups (random partitions). From 1,000 random partitions of each
tumor samples into equally sized groups, we observed an average of ~1 partition for each
tumor type that predicted patient survival at survdiff p-values<1e-3, and ~4 modules at p-val-
ues<5e-3. For partitions by immune molecular module (N = 526), we therefore expected<~1
and ~2 survival curve differences by chance at p-values<1e-3, and<5e-3, respectively. We
then compared the number of times that module and random partitions predicted significant
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differences in survival for each tumor type. Graphical comparisons of results from module and
random partitions at p-value<5e-3 are shown in S1 Fig and Fig 1A.

We found numerous significant patient survival differences between module hi and module
lo subsets in certain tumor types (S1 Fig and Fig 1A). Few random partitions yielded significant
survival curve differences in any tumor type (S1 Fig). The highest numbers of significant sur-
vival differences were in kidney, melanoma, head and neck, bladder, and breast tumors. Strik-
ingly, kidney, melanoma, head and neck, and bladder tumors are among the tumor types most
treatable with therapies that depend upon engagement of the host immune system (i.e.,
immune-based therapies) [22]. Module partitions yielded fewer significant survival differences
in patients with glioblastoma, colon, uterine, rectal, lung squamous, lung adenocarcinoma, and
ovarian tumors, tumors that generally are not treatable with immune-based therapy.

It was important to exclude trivial technical factors as an explanation for the significant sur-
vival differences seen with module partitions. The number of modules significantly associated
with survival differences was not clearly related to numbers of tumor samples analyzed. For
instance, breast and bladder carcinomas showed similar survival differences, despite great vari-
ation in the numbers of tumor samples tested (Fig 1A and Table 1). It is well known that prog-
nostic value of gene signatures depends on the length of follow-up [23]. Since the survival time
varies for the different tumors in the PANCANCER set (Table 1), we were concerned about the
possibility that differences in follow-up time could have biased our results.

Examination of our data did not reveal a clear relationship to median survival of different
tumor types. For instance, both bladder and glioblastoma tumors were associated with the

Fig 1. Immune gene expression in tumors predicts patient survival in some but not all tumor types. A) Numbers of immune molecular modules
predicting survival varies between tumor types. Tumors were partitioned into equal sized groups by median gene expression of each of 526 immune
molecular modules (Experimental Procedures). Shown are numbers of modules that significantly predicted survival of patients with each of twelve different
tumor types (p-value<5e-3). The numbers of random partitions that yielded significant survival curve differences for each tumor are shown for comparison
(N = 526 permutations). At this p-value, ~2 partitions would be expected to yield significant survival curve differences by chance (vertical lines). B) Qualitative
differences in the spectrum of modules yielding significant survival curve differences in different tumors. The heatmap displays different tumor types on the x
axis versus the identities of molecular modules that gave significant survival curve differences in any tumor type at p-value <5e-3 (N = 229) on the y axis (S3
Table). The green color intensity indicates the significance of differences in survival curves (-log10 (p-value)). The color bar indicates the summary
annotation term for each module on the y axis. Clustering was performed in both the x and y dimensions.

doi:10.1371/journal.pone.0138726.g001
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shortest median survival times (both<300 days) but only bladder carcinoma showed clear sur-
vival differences with module partitions. Moreover, ovarian tumors had among the highest
median survival times (882 days), but did not show any modules associated with significant
survival differences. To examine the effects of different follow-up times more directly, we atten-
uated the differences in follow-up length by truncated the data to a common, somewhat short
follow-up length (<5 years). The truncated data set showed a loss of power expected for
reduced sample numbers, but very similar overall trends in survival differences as the full data
set (S3 Table). Taken together, these findings suggest that differences in follow-up time did not
greatly affect our overall results.

We further investigated the role of technical factors by determining whether the same or dif-
ferent biological processes were associated with modules showing significant survival differ-
ences (Fig 1A). Technical factors affecting the ability to detect survival differences in certain
tumors might be expected to result in similar immune processes linked to survival across mul-
tiple tumors. Alternatively, qualitatively different immune processes related to patient survival
in different tumors would argue that survival differences are biologically based. To distinguish
these possibilities, we performed a global comparison of survival-associated modules across all
tumor types. We selected modules that were associated with significant survival differences in
any tumor type (S3 Table, p-value<5e-3) and compared their performance across all other
tumor types (Fig 1B). This analysis showed qualitatively distinct groups of modules most asso-
ciated with survival differences in each tumor type. For instance, modules associated with Mye-
loid cells were most highly associated with survival of kidney tumor patients, whereas
Interferon response and T/NK cell modules were most effective with melanoma [15]. Breast,
head and neck and bladder tumors also showed distinct patterns, but the remaining tumor
types did not clearly show clusters of modules yielding significant survival advantage, consis-
tent with Fig 1A.

To gain a more in depth view of immune processes associated with patient survival, we
parsed the complete data set (S3 Table) for processes represented by modules associated with
survival differences. Using both stringent and less-stringent p-value cuts (1e-3 and 5e-3,
respectively), we determined numbers of modules yielding survival differences for each tumor
type (Table 2). In order to reduce the impact of tallying modules comprised of very similar
genes (a form of double counting), we also determined the numbers of clusters represented by
significant modules. For comparison, we also present the numbers of random sample and gene
set partitions that yielded significant survival differences. In addition we mined the annotation
terms representing each cluster to draw biological inferences. To minimize false positive detec-
tions, we focused only cases where we saw significant survival differences with multiple mod-
ules from the same cluster, or with modules from different clusters having similar biological
annotation.

A summary of this analysis is presented in Table 2. Consistent with Fig 1A, we observed sig-
nificant survival differences in only a fraction of tumors (5/12 and 9/12 tumors at p-values
<1e-3 and<5e-3, respectively). Kidney, melanoma, head and neck, bladder, and breast tumors
were significantly associated with modules at the more stringent p-value (p<1e-3). Additional
tumors (lung adenocarcinoma, glioblastoma, lung squamous and rectal tumors) were associ-
ated with specific modules at the less stringent p-value (p<5e-3). Survival of ovarian, uterine
and colon patients was not significantly associated with any immunological theme or module
in these tumors. With the random partitions, we generally found that more random gene set
partitions than sample partitions yielded significant differences. Importantly, we did not find
that most random gene sets were significantly associated with outcome as has been seen in
other studies [24,25]. The higher number of positives with random gene partitions suggests
that some genes possess prognostic value irrespective of the identities of other genes they are
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grouped with. We therefore considered using random sample partitions as a more reliable mea-
sure of the true null distribution for gene set comparisons. Irrespective of the method of ran-
dom partitioning, numbers of modules yielding survival differences were higher than random
sets for Kidney, Melanoma, Head and Neck and Bladder tumors. Consistent with Fig 1B, the
patterns of modules associated with survival differences were complex, both within and
between tumor types. Multiple immune processes were associated with survival with several
tumors. For example, with melanoma, Interferon response modules gave the most significant
differences, followed by Myeloid and T/NK cell modules [15]. Across tumor types, we observed
several patterns of modules associated with survival. T/NK cell genes were most prominently
associated with survival in melanoma, head and neck and bladder tumors, and less promi-
nently with kidney, glioblastoma and lung squamous tumors. Myeloid cell genes were most
prominently associated with survival in kidney, bladder, breast, and glioblastoma tumors. The
Interferon response signature was predominantly associated with survival in melanoma, less so
with kidney tumors. Together, these findings suggest that immune processes contributing to
survival differences between tumors are complex, and unique for each tumor type.

The data summarized in Table 2 also show relatively few tumor types where T/NK cell mod-
ules were associated with significant survival differences (most significantly, kidney, mela-
noma, head and neck, and bladder). This finding is in contrast to other studies showing T cell
infiltrates in numerous tumor types [10,11]. One potential explanation for the difference in our
results is limited infiltration and expression of T/NK module genes in certain tumor types. To
test this possibility, we identified four representative T/NK modules that tracked with survival
differences in distinct tumor types (FOXP3.mod, PDCD1.mod, FLT3LG.mod and KLRB1.mod

Table 2. Distinct functional patterns in modules predicting survival in different tumor types.

Tumor No. random
samples

No. random
gene sets

No.
modules

No.
clusters

Selected top modules Top modules annotation

Kidney 0, 1 18, 41 56, 101 11, 14 INSL3.mod, CTSG.mod,
BST2.mod, E2F1.mod

Myeloid cells, Myeloid cells,
Interferon response, T/NK cells

Melanoma 1, 2 4, 14 33, 71 10, 16 STAT2.mod, SEMA3B.mod,
FLT3LG.mod

Interferon response, Myeloid cells,
T/NK cells

Head & neck 1, 6 2, 16 6, 25 4, 9 TNFRSF9.mod, PDCD1.mod Myeloid cells, T/NK cells

Bladder 0, 5 1, 9 3, 7 2, 4 FOXP3.mod, ALCAM.mod T/NK cells, Myeloid cells

Breast 0, 3 8, 20 5, 7 3, 4 CD63.mod, DEFA3.mod Myeloid cells, Myeloid cells

Lung adeno. 2, 3 0, 6 0,5 0, 4 CD19.mod B cells

Glioblastoma 0, 1 4, 11 0, 7 0, 6 NA NA

Colon 1, 3 1, 4 0,0 0,0 NA NA

Uterine 0, 1 0, 3 0,0 0,0 NA NA

Rectal 0, 0 0, 0 0,3 0,2 NA NA

Lung sq. 0, 4 0, 1 0,3 0,3 NA NA

Ovarian 0, 3 2, 5 0,0 0,0 NA NA

Shown is a summary of properties of immune molecular modules whose expression in tumors significantly predicts patient survival. Bold font denotes

modules showing significant splits at p-value <1e-3 (<1 false positive expected by chance); normal font denotes modules associated with survival at p-

value <5e-3 (~1 false positive expected by chance). No. random samples, the number of random sample partitions (N = 526) exceeding the significance

threshold for each tumor; No. random gene sets, number of random gene sets (N = 526) exceeding significance threshold; No. modules, total number of

modules exceeding significance threshold; No. clusters, number of clusters of modules with overlapping genes (>25% overlap); selected top module,

representative top module from a cluster comprising at least two modules with overlapping genes or similar annotation; top module annotation,

representative annotation term associated with module (S2 Table);NA, not applicable. The modules reaching significance with Rectal tumors did not share

gene overlap or annotation and were therefore considered “NA”.

doi:10.1371/journal.pone.0138726.t002
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for bladder, head and neck, kidney and melanoma, respectively (Table 2)). We then plotted
median expression levels of genes in these modules across all individual tumor samples (S2
Fig). This analysis showed relatively consistent levels of module gene expression across all
tumor types (S2 Fig). The range of median module gene expression within tumor types was
greater than between tumor types (S2 Fig and data not shown). These findings suggest that
overall levels of T/NK cell infiltrates and T/NK gene expression across different tumors are
more similar than levels between individuals with the same tumor type. Thus, variation in total
expression level of module genes between tumor types does not explain the relatively low num-
ber of tumors where T/NK cell module genes were associated with significant survival
differences.

Distinct genetic alterations are associated with tumors having similar
immune infiltrates but different prognoses
Another factor that may influence how T/NK cell infiltrates influence patient survival is differ-
ences in microenvironment induced by genetic alterations in the tumor itself [26]. Our previ-
ous studies showed that poor prognosis melanomas with reduced ISG and immune gene levels
were associated with specific copy number loss of the interferon gene cluster located at chro-
mosome 9p21.3 [15]. It was important to determine whether immune gene copy number varia-
tion was associated with prognosis in tumors partitioned by module gene expression
differences. We focused on tumors where T/NK cell gene expression most clearly predicted
survival (melanoma, head and neck, and bladder tumors, Table 2). We used Wilcoxon p-values
to determine significance of copy number differences for each gene in module hi and lo sam-
ples from melanoma, head and neck, and bladder tumors (S4 Table). For each tumor type, we
plotted the significance of differences in copy number (p-values) for each gene versus its chro-
mosomal start site (Fig 2A–2C). For comparison, we plotted significance of differences in copy
number for randomly partitioned samples.

Melanoma samples with differing levels of expression of the T/NK cell module FLT3LG.
mod showed highly significant copy number differences of multiple genes mapping to chromo-
some 9p2 when compared with randomly partitioned tumors (Fig 2A). This was consistent
with our previous findings [15] showing copy number differences associated with loss of the
interferon gene cluster in this region in a subset of melanomas [15]. Likewise, head and neck
tumor samples differing in expression of the T/NK cell module PDCD1.mod showed highly
significant copy number differences of genes at chromosome 3p2 (Fig 2B). FOXP3.mod hi and
FOXP3.mod lo bladder carcinoma samples showed less pronounced copy number differences
than the other tumor types, but still had an excess of significant genes at chromosome 17q1
when compared with randomly partitioned tumors (Fig 2C). Thus, at a group level, samples
selected for differential expression of T cell genes exhibited distinct genetic alterations in differ-
ent tumor types, and therefore comprised different molecular subtypes.

To explore in greater detail the extent of genetic alteration in melanoma samples selected
for expression of FLT3LG.mod genes, we plotted p-values versus chromosomal location for all
genes on chromosome 9p2 (Fig 2D). We found more extensive alterations in this region when
compared with our previous studies on loss of the 9p21.3 locus in tumors expressing low ISG
levels [15]. With FLT3LG.mod partitioned tumor samples, there were several peaks of signifi-
cance on chromosome 9p2, comprising ~90 genes (Fig 2D, S4 Table). Examination of these
genes revealed the interferon gene cluster at 9p21.3, as well as additional immune modulatory
genes, including CD274 (PD1-L1) and PDCD1LG2 (PD1-L2), ligands for the T cell inhibitory
receptor, PDCD1 (PD-1) (Fig 2D). Anti-PD1-L1 mAbs have shown clinical activity as thera-
peutics for multiple tumor types including melanoma [7,27].
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Fig 2. T cell infiltrates are associated with distinct genetic alterations in different tumor types. The significance (Wilcoxon p-value) of copy number
differences between groups of T/NK module module hi and module lo tumors were determined for all genes in the genome. Shown are Manhattan plots for p-
values (y axis) for all genes, arranged in ascending order (left to right) by chromosomal start position (x axis). Horizontal dashed lines denote significance cut-
off of p-value = 1e-3. Arrows indicate regions of highest significance. Red, samples partitioned by module expression; teal, samples partitioned randomly. A)
Melanomas partitioned by expression of T/NK cell module, FLD3LG.mod, showed significant copy number differences at chromosome 9p21. B) Head and
neck tumors partitioned by expression of T cell module, PDCD1.mod, showed significant copy number differences at chromosome 3p22. C) Bladder tumors
partitioned by expression of T/NK cell module, FOXP3.mod, showed significant copy number differences at chromosome 17q21. D) Significance of copy
number differences between FLT3LG.mod hi and FLT3LG.mod lo tumors in melanoma across a large region of chromosome 9p2. Shown is an enlarged view
of the significance of copy number difference in genes on chromosome 9p2. Dashed vertical lines indicate positions of IFNB1 and PD1-L1/PD2-L2 gene loci.
For reference, the IFNB1 gene begins at chromosome 9 nucleotide 21,077,104, and PD-L2 at nucleotide 5,510,545. E) Copy number loss at 9p2 in FLT3LG.
mod lo versus FLT3LG.mod hi melanomas. Shown is an enlarged view of median copy number change for genes on chromosome 9p2 in melanoma. Blue,
FLT3LG.mod lo tumors (poor prognosis); Red, FLT3LG.mod hi tumors (good prognosis). F) Significance of copy number differences between PDCD1.mod lo
and PDCD1.mod hi head and neck tumors across a region of chromosome 3p. Dashed vertical lines indicate the location of a cluster of chemokine receptor
genes. G) Copy number loss at 3p2 in head and neck tumors. Blue, PDCD1.mod lo tumors (poor prognosis); Red, PDCD1.mod hi tumors (good prognosis).

doi:10.1371/journal.pone.0138726.g002
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Median copy number changes for each gene in the region were consistent with the p-value
differences (Fig 2E). FLT3LG mod lo samples had reduced copy numbers for all genes in the
region, compared with FLT3LG.mod hi samples, including PD-L1 and PD-L2 loci, in addition
to IFN genes. In agreement with their reduced copy number, transcript levels for PD-L1 and
PD-L2 were reduced in FLT3LG.mod lo tumors (S3 Fig).

Similar analyses for PDCD1.mod hi and lo tumors showed highly significant copy number
differences between genes on chromosome 3p2 (Fig 2F). This analysis showed a peak of signifi-
cance on chromosome 3p2, comprising ~500 genes (Fig 3F, S4 Table). Included in this region
were members of the chemokine receptor gene cluster at 3p22.3 [28]. PDCD1.mod lo samples,
when compared with PDCD1.mod hi samples, had reduced median copy numbers for all genes
in the region, including a locus encoding multiple chemokine receptors (Fig 2G). In agreement
with reduced their copy number, transcript levels for chemokine receptors CCR1, CCR2,
CCR3, CCR5, CCR9, CCRL2, CXCR6 and XCR1 were reduced in PDCD1.mod lo tumors, rela-
tive to PDCD1.mod hi tumors (S4 Fig). Our studies are in alignment with previous studies
showing that many cancers express a complex chemokine network that influences immune-
cell infiltration, as well as tumor growth and invasion properties [29]. Taken together, these
findings indicate that tumors stratified by expression of lymphocyte genes represent genetically
distinct tumor subsets. Differences in gene expression accompanying chromosomal rearrange-
ments may influence levels of immune modulatory molecules in the tumor microenvironment
and contribute to better or worse patient survival prognosis.

Similar immune processes may affect patient survival either positively or
negatively depending on tumor type
Data shown in Table 2 indicate that T/NK module gene expression is associated with survival
differences in different tumors. However, these data do not provide insight into whether high
or low module gene expression is associated with better prognosis. To test these associations in
different tumor types, we selected three T/NK cell modules (FLT3LG.mod, PDCD1.mod and
FOXP3.mod that were associated with patient survival (in melanoma, head and neck and blad-
der tumors, respectively). We then plotted Kaplan-Meier (KM) curves for survival of T/NK
module hi and module lo tumors. (Fig 3).

Consistent with our previous studies [15], FLT3LG.mod hi melanoma patients had better
prognosis than patients with FLT3LG.mod lo tumors (Fig 3A). To better understand the nature
of the genes associated with this survival difference, we projected FLT3LG.mod genes onto a
protein-protein interaction (PPI) network graph (Fig 3B). These genes formed an interconnec-
ted network of genes expressed in a wide variety of T cell types (Fig 3B). Likewise, head and
neck tumors with elevated levels of PDCD1.mod genes were associated with better patient sur-
vival (Fig 3C). Projection of PDCD1.mod genes onto a PPI also revealed an interconnected net-
work of pan-T cell genes (Fig 3D), overlapping with the FLT3.mod network (Fig 3B). In
contrast, FOXP3.mod hi bladder tumors were associated with worse patient survival (Fig 3E).
Projection of FOXP3.mod genes on to a PPI revealed an interconnected network that con-
tained several genes in common with FLT3LG.mod and PDCD1.mod networks (CD5, CD6,
CD28, IL7R, etc., Fig 2F). In addition, however, the FOXP3.mod network contained several
genes important for the development and function of regulatory T cells (Treg): FOXP3 (fork-
head box P3); IL2RA (IL2 receptor alpha subunit); and CTLA-4 (Cytotoxic T lymphocyte-aso-
ciated-4). These findings demonstrate that high levels of Treg genes, relative to genes found in
other types of T cells, are associated with poor patient prognosis in bladder carcinoma. Tregs
would be expected to reduce inflammation and potentially inactivate cytoxic T cells, preventing
immune-mediated tumor destruction. The presence of Tregs within bladder tumors has been
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Fig 3. Expression of T/NKmodule genesmay be oppositely associated with patient survival. A) Overexpression of FLT3LG.mod genes is positively
associated with survival of melanoma patients. Shown is a KM plot depicting survival of melanoma patients stratified by expression of FL3LG.mod. FLT3LG
mod hi, tumors having greater than median expression of module genes; FLT3LG.mod lo, tumors having less than or equal to than median expression of
module. B). Network graph of FLT3LG.mod genes from a protein-protein interaction network shows interconnected T cell genes. C) Overexpression of
PDCD1.mod genes is positively associated with survival of head and neck tumor patients. Shown is a KM plot depicting survival of head and neck tumor
patients stratified by expression of PDCD1.mod. D). Network graph of PDCD1.mod genes shows interconnected T cell genes. E) Overexpression of FOXP3.
mod genes is negatively associated with survival of bladder tumor patients. Shown is a KM plot depicting survival of bladder tumor patients stratified by
expression of FOXP3.mod. F) Network graph of FOXP3.mod genes shows interconnected T cell genes, including Treg genes FOXP3, IL2RA and CTLA4.
G-I) Tumors partitioned by levels of T/NK cell transcripts also show differences in levels of T cell protein, LCK. LCK expression was measured by RPPA. G)
LCK protein levels in FLT3LG.mod hi versus FLT3LG.mod lo melanomas. H) LCK protein levels in PDCD1.mod hi versus PDCD1.mod lo head and neck
tumors. I) LCK protein levels in FOXP3.mod hi versus FOXP3.mod lo bladder tumors.

doi:10.1371/journal.pone.0138726.g003
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associated with poor patient prognosis [30]. In the other tumor types having reduced ratios of
Treg genes to other T cell genes (i.e., melanoma and head and neck tumors), the presence of a
T/NK signature is associated with improved prognosis. Taken together, our results indicate
that elevated levels of T cell genes may be associated with either better or worse patient survival
in different tumor types, depending upon the type of T cell infiltrate.

We also observed either better or worse patient survival, depending on tumor type, in
patients having tumors with high levels of Myeloid cell gene expression. For example, neutro-
phil module CTSG.mod hi kidney tumors were associated with poor patient survival (S5A Fig).
CTSG (Cathepsin G) is associated with a network of genes (S5B Fig) involved in neutrophil
function, including: ELANE (neutrophil elastase); AZU1 (Azurocidin 1); DEFA4 (defensin,
alpha 4); LTF (lactotransferrin); and MPO (myeloperoxidase). However, in breast tumors,
DEFA3.mod hi tumors were associated with better patient survival (S5C Fig). DEFA3.mod
genes form an interconnected network involving (S5C Fig) many of the same genes as in
CTSG.mod (S5B Fig).

To provide evidence for the relevance of our findings at the protein level, we analyzed
tumor protein expression by RPPA. Proteins measured by the TCGA group included the
kinase LCK; LCK is an integral component of T cell receptor signaling, a T cell marker, and a
node in the sub-network shown in Fig 2D. Melanoma, head and neck, and bladder tumors
expressing high levels of FLT3LG.mod, PDCD1.mod and FOXP3.mod transcripts, respectively,
also expressed significantly higher levels of LCK protein (Fig 2E–2G). This finding demon-
strates that all three module hi tumor sets contain higher levels of T cell infiltrate than their
corresponding module lo sets. The difference in prognosis between melanoma and head and
neck versus bladder module hi tumors therefore likely reflects differences in functional proper-
ties of the T cells in their respective infiltrates. Treg cells in bladder tumors may contribute to
an immunosuppressive state that leads to tumor escape rather than elimination by the immune
system [31].

Discussion
We have used a non-biased and data driven systems approach to identify transcript modules
that represent specific immune cells or processes associated with patient survival in a dozen
different tumor types. Numerous studies have shown that infiltrates of selected immune cell
types are associated with survival of patients with individual tumor types (reviewed in [10,11]).
However, our study is unique in our association of many immune cell processes with survival
of patients across multiple tumor types.

Our studies show that expression of immune genes is associated with patient survival across
some, but not all tumor types. Using a stringent cut-off to minimize false positive detections,
we identified immune gene modules whose expression was associated with patient survival
only in kidney, melanoma, head and neck, bladder, and breast tumors. In contrast, we did not
find immune gene module expression associated with patient survival in 4/12 tumor types
tested (rectal, colon, uterine and ovarian tumors). We could not attribute these differences to
technical factors like sample size, or to survival characteristics of the particular cohorts used.
Our data therefore suggest that specific tumor types may be more or less susceptible to control
by the immune system.

Anecdotal evidence has long supported the notion that certain tumor types are inherently
more responsive to immune therapy (i.e., “immunogenic”) than others. For instance, immuno-
therapy is most often effective against melanomas [1], which may regress spontaneously [32]
or in response to therapy [33] concomitant with autoimmune symptoms. Moreover, current
FDA approved “active” immunotherapies for solid tumors [22] are limited to only a few tumor
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types (e.g., melanoma, bladder, kidney, etc.). Our data shows that these “immunogenic” tumors
tend to be those where we most clearly identified immune gene expression associated with
patient prognosis. This suggests that tumors with more active basal levels of immune processes
are more amenable to immune-based therapy.

We observed distinct patterns of modules associated with survival in different tumors. Sur-
vival of kidney and breast tumor patients was most related to levels of innate cells (neutrophils
and myeloid cells), whereas for melanoma, head and neck, and bladder tumors, survival was
most related to levels of adaptive immune response genes (T/NK cells). Surprisingly, we identi-
fied predominant T cell effects on survival in only a few tumor types (most significantly mela-
noma, head and neck carcinoma, and bladder tumors). This contrasts with the variety of
tumor types where T cell infiltrates have been associated with favorable prognosis in the litera-
ture [10,11]. This difference may result from the patient cohorts studied, or from methodolo-
gies used to assess significance. Importantly, since we relied on a population measure for gene
expression (median), our results do not rule out roles for T cells in regulating survival of small
subsets of the tumor types that scored negatively in our tests. Also, our methods are unlikely to
detect differences in intra-tumoral localization of immune cells which can affect patient sur-
vival [8]. Nonetheless, our side-by-side testing strongly suggests relative differences in the
extent to which T cells are associated with patient survival across tumor types.

Because of the unique scope and clinical characteristics of the TCGA tumor sets, they are an
invaluable resource for molecular characterization of tumors [13,34,35]. For characterization
of a particular tumor type, it is important to consider how TCGA data are replicated in inde-
pendent test sets. We previously confirmed in an independent study that ISG and T cell gene
sets were associated with melanoma patients’ survival, just as they were with TCGA samples
[15]. For the present studies, we have been unable to locate profile sets of adequate size or com-
parable clinical characteristics to validate our findings with bladder and kidney tumors. How-
ever, in agreement with our results, previous studies have found elevated neutrophil levels in
later stage renal cell carcinomas [36]. Poor prognosis has also been associated with a high pre-
treatment neutrophil-lymphocyte ratio in kidney tumors [37]. Also in agreement with our
results, FOXP3+ infiltrates have been observed in bladder carcinomas [30], although these
have not yet been associated with poor prognosis.

We have shown that tumor subgroups selected on the basis of immune cell gene expression
often show distinct genetic alterations. Long-range chromosomal alterations may disrupt pro-
duction of entire families of immune modulators, which frequently are encoded in gene clus-
ters. Chromosomal instability was demonstrated to be a mechanism of modulating local
cytokine expression in colorectal tumors [26]. Likewise, our previous studies showed that
reduced expression of ISGs in melanomas was associated with poor patient prognosis, and
with copy number loss of the interferon gene cluster located at chromosome 9p21.3 [15]. In the
present study, we show that a subset of melanoma patients associated with reduced T cell infil-
trate may lose chromosomal sequences at 9p2. This new locus is many megabases away from
the interferon gene cluster we previously linked to reduced interferon gene expression and
poor prognosis. These additional sequences encode the PD-L1 and PD-L2 immune modulatory
genes, which negatively regulate T cell proliferation and are targets of immunotherapeutic
mAbs [7,27].

We also show that a cluster of chemokine receptor genes at chromosome 3p2 is lost in head
and neck tumor patients selected for reduced expression of PDCD1-linked T cell genes. Cancer
cells oftentimes subvert the chemokine system, such that chemokines and their receptors
become important regulators of cell movement into and out of the tumor microenvironment
[38]. Several members of the chemokine receptor gene cluster at 3p22.3 (CCR1, CCR3. CCR5,
CCRL2, XCR1) are receptors for T cell chemokines, including CCL5 (RANTES), XCL1
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(lymphotactin) and RARRES2 (chemerin) [28]. This suggests a possible relationship between T
cells expressing a network of PDCD1 associated genes and the chemokine receptor cluster at
3p2 in head and neck tumors. Overall, therefore, our findings contribute to emerging evidence
that genomic rearrangements within tumors can modulate the tumor microenvironment and
influence anti-tumor immunity.

Our findings suggest new potential biomarkers for patient selection that could improve the
successful use of cancer immunotherapies. PD-L1 and PD-L2 expression were reduced in
tumors having copy number loss at chromosome 9q2. PD-L1 expression was the factor most
closely correlated with therapeutic response to anti-PDCD1 monoclonal antibody (mAb) [12].
Other studies have suggested that anti-PD-L1 immunotherapy is most effective in patients
where existing PD-L1/PDCD1 interactions are available for reversal by anti-PD-L1 mAbs [7].
Our findings therefore suggest that melanoma patients with high copy number at 9q2 may be
better candidates for anti-PD-L1 therapy than patients with reduced copy number and expres-
sion of PD-L1 and PD-L2. Likewise, our demonstration of improved survival in a subset of
head and neck tumor patients with elevated levels of PDCD1-linked gene expression and alter-
ations at chromosome 3p2 suggests that this is a population of head and neck tumor patients
who may benefit from anti-PDCD1/PD-L1 therapy.

Our results also suggest that immunosuppressive environments involving either T/NK or
Myeloid cells, depending on tumor context, may influence the ability of the immune system to
control tumor growth. We showed that high levels of a gene network including the T regulatory
(Treg) gene FOXP3 are associated with poor survival of bladder tumor patients. Likewise, we
showed that high levels of a neutrophil gene network including CTSG (Cathepsin G, a compo-
nent of the azurophilic granules of neutrophils) are associated with poor survival of kidney
tumor patients. Both Tregs [39] and azurophilic granules [40] have previously been associated
with immune suppressive function in tumors. Our findings, therefore, support the seemingly
contradictory notion that the immune system may have both host-protective and tumor-pro-
moting effects on developing tumors [31]. Moreover, our findings suggest a framework for
molecular categorization of these effects, which will enable finer control of immunotherapy.

Finally, our results suggest that T regulatory cells (Tregs) might be important therapeutic tar-
gets in certain tumor types. Animal studies have clearly shown the inhibitory effects of Tregs on
anti-tumor immunity [39]. This suggests that strategies to deplete tumor-associated Tregs might
enhance anti-tumor immunity and cause tumor shrinkage in humans. However, efforts to thera-
peutically target Tregs have met with mixed success [41]. Indeed, Tregs are not currently por-
trayed as a major target for cancer immunotherapy [1]. Here we show evidence for significant
negative association of FOXP3-linked genes and patient survival in only 1/12 tumors tested
(bladder tumors). This suggests that identifying suitable patients and tumor types may be a
major limitation for Treg-directed therapies. Our finding that FOXP3-linked genes are associated
with poor prognosis in a subset of bladder tumor patients suggests a specific patient subset pre-
dicted to benefit from therapeutic reduction of FOXP3+ Tregs. Taken together, these findings
suggest that personalized approaches towards selection of specific patient subsets within and
between tumor types will aid in optimizing cancer immunotherapies.

Experimental Procedures

The Cancer Genome Atlas (TCGA) Data
TCGA data designated as available without restrictions were obtained from public repositories.
Data and sample annotation for the SKCM (melanoma) set were obtained from the Broad
Institute GDAC Firehose (https://confluence.broadinstitute.org/display/GDAC/Home). RNA-
seq profiles and sample annotation from the PANCANCER12 set comprising RNAseq profiles
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from 11 different tumor types were obtained from Synapse (www.synapse.org). Tumors were
stratified into groups by expression of immune molecular module genes [15]. We used median
expression of genes in each module to divide each tumor data set into two groups, one with
higher and one with lower than median gene expression. Survival analysis was performed on
the two groups using the date of last visit for each subject.

RNAseq profiles each comprised ~20 million reads normalized by the RSEM procedure
[42]. Expression values for RNAseq data are reported as log2 (Reads per million (RPM)+1).
GISTIC2 copy number variation (CNV) and Reverse phase protein array data (RPPA) data
were obtained from the GDAC Firehose as level 4 Standard Data.

Derivation of transcript modules
Immune molecule modules were derived as described previously [15], but using increased sam-
ple numbers and additional marker genes. Modules were derived from coexpression matrices
between levels of marker genes and all other genes across a dataset of RNAseq profiles. Marker
genes included all known CD antigens and cytokines, as well as transcription factors found in
human hematopoietic cells [43]. The dataset comprised profiles from 336 samples of whole
blood and/or purified cells (CD4+ T cells, CD8+ T cells, NK cells, B cells, neutrophils, and
monocytes) from healthy controls and individuals with autoimmune or infectious diseases. We
calculated Pearson correlation coefficients between levels of marker gene transcripts and levels
of transcripts matching 50,045 ENSEMBL gene models, across all samples. We arbitrarily
chose the top 100 transcripts most positively correlated with each marker (Pearson correlation
coefficients, 0.228–1.00, median = 0.831) and designated these gene sets as immune molecular
modules (S1 Table). In general, correlation coefficients were weaker for transcripts negatively
correlated with markers; these transcripts were not considered further. Many transcripts in
immune molecular modules also were also positively correlated with markers across the com-
bined melanoma/PANCANCER data sets (top quartile and median correlation coefficients,
0.14 and 0.036, one-tailed p-values = 0.0160 and<1e-8, respectively). The 526 modules com-
prised ~9,070 named genes. For random gene set controls, we randomly selected N = 526 sets
of 100 genes with substitution.

Clustering and annotation of transcript modules
Our procedure for creating transcript modules results in groups (clusters) of modules with
many overlapping genes [15]. This is to be expected because of the highly similar distributions
of marker genes (e.g., CD19 and CD20 for B cells). To systematically identify clusters of related
immune molecular modules, we calculated the fraction of pairwise gene overlap between all
526 different immune molecule modules. We then clustered the resulting overlap table using
the hclust function in R (Ward D method). We determined the optimal number of clusters
(N~18) using themclust package in R. The grouping of immune molecular modules into clus-
ters is presented in S2 Table.

To associate functional terms with immune modules, we compared them with gene sets in
reference databases, including: current MSigDB gene sets (http://www.broadinstitute.org/gsea/
downloads.jsp); gene sets selective for different hematopoietic cells [17]; and blood transcrip-
tional modules (BTM) [18]. We determined the significance of gene overlap for all pairwise
combinations of modules and annotated gene sets using the hypergeometric distribution. We
corrected p-values for multiple testing using the Benjamini–Hochberg procedure in R, and
considered a false discovery rate (FDR<0.05 as a significance cut-off for annotation terms.
The top (most significant) annotation terms associated with individual immune molecular
modules from each of three reference databases are presented in S2 Table. Each cluster of
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immune molecular modules was manually assigned a Summary annotation term consistent
with the terms associated each module in the cluster (S2 Table).

Analysis procedures
For network viewing, we projected gene lists onto the STRING 9.1 [44] Network of Known and
Predicted Protein-Protein Interactions (http://string-db.org/). Nodes having�2 edges were
then exported into Cytoscape [45] (http://www.cytoscape.org/) for manipulation and visualiza-
tion. Network functional enrichment with GO Biological process terms was verified with
STRING 9.1 or GeneMANIA [46] (http://www.genemania.org). We considered a False Discov-
ery Rate (FDR) of<0.05 as significant for term enrichment.

Other analyses were performed using the R language and core packages [47], as well as addi-
tional packages: ggplot2 [48]; reshape2 [49]; and survival [19,50]. Concordance index values
were calculated using the survival package. The ggkm function in R was used for plotting
enhanced KM plots [51]

Type I error correction and statistical significance
For survival curve difference (survdiff) p-values, we used permutation testing to correct for type I
error and to estimate statistical significance directly from the data [15]. From 1,000 random parti-
tions of samples from each tumor into equally sized groups, we observed an average of ~1 partition
for each tumor type that predicted patient survival at survdiff p-values<1e-3, and ~4 modules at
p-values<5e-3. Our cut-off p-values of 1e-3 and 5e-3 corresponded to median Benjamini-Hoch-
berg false discovery rates (FDR) across different tumor types of 2e-3 and 8e-3, respectively.

Supporting Information
S1 Fig. Expression of immune module genes in tumors predicts patient survival in some
but not all tumor types. Tumors were partitioned into equal sized groups by median gene
expression of immune molecular modules (S3 Table). Shown is a boxplot representation of–
log10 p-values for survival curve differences between module hi and module lo subsets for all
tumor types partitioned by each module. For comparison, p-values for random partitions are
shown. The horizontal line indicates a p-value = 5e-3. At this p-value, we expected ~2 parti-
tions to result in significant survival curve differences by chance. Modules, significance of sur-
vival curve differences after partitioning by modules (N = 526); random, significance of
survival curve differences after partitioning at random (N = 526 permutations).
(TIF)

S2 Fig. Expression of T/NK gene modules is similar across different tumor types. Shown
are plots of median expression of genes in T/NK modules FOXP3.mod, PDCD1.mod,
FLT3LG.mod and KLRB1.mod for all tumor samples. These modules yielded significant sur-
vival curve differences in bladder, head and neck, melanoma and kidney tumors, respectively. x
axis, arbitrary sample number; y axis, median module gene expression (log2 (RPM+1)); hori-
zontal dotted lines demark boundaries of samples from different tumor types.
(TIF)

S3 Fig. Different molecular subtypes of melanoma selectively express PD-1 ligands.
Reduced expression of PD1 ligands, PD1-L1 and PD1-L2 in FLT3LG.mod lo versus FLT3LG.
mod hi melanoma tumors. Shown are log2 values of normalized transcript counts (RPM +1) for
the indicated genes. Differences between both module sets were significant (p-values<1.2e-9,
Wilcoxon test).
(TIF)
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S4 Fig. Different molecular subtypes of head and neck tumors selectively express chemo-
kine receptors. Reduced expression of chemokine receptor genes in PDCD1.mod lo versus
PDCD1.mod hi tumors in head and neck tumors. Shown are log2 values of normalized tran-
script counts (RPM +1) for the indicated genes. All differences between module sets were sig-
nificant (p-values<2.2e-7, Wilcoxon test).
(TIF)

S5 Fig. Expression of Neutrophil module transcripts is oppositely associated with patient
survival in different tumor types. A) KM plot showing poor survival of neutrophil module
CTSG.mod hi kidney tumor patients. B). Protein-protein interaction network [44] of GTSG.mod
genes shows an interconnected network of neutrophil genes. C) KM plot showing enhanced sur-
vival of neutrophil module DEFA3.mod hi breast tumor patients. D) Protein-protein interaction
network of DEFA3.mod genes shows an interconnected network of neutrophil genes.
(TIF)

S1 Table. Genes in immune molecular modules. Sheet 1, shown are the top 100 genes best
correlated in expression levels with marker genes across row 1 (Experimental Procedures).
Sheet 2, random sets of 100 genes.
(XLSX)

S2 Table. Clustering and functional annotation of immune molecular modules. Shown are
immune molecular modules from S1 Table organized as clusters by the extent of gene overlap
between clusters. Also shown are Msig, hematopoietic cell and BTM terms most highly
enriched in each module, as well as a manually assigned Summary annotation term. NS, not
significant (FDR>0.05); Not determined, summary annotation not clearly identified. See
Experimental Procedures for details.
(TXT)

S3 Table. Prediction of patient prognosis by immune molecular modules. Immune molecu-
lar modules were scored for their ability to predict survival of different tumor types. Full_set,
sheet showing p-values for survival curve differences for all tumor types partitioned by all mod-
ules;<5_year_survival, sheet showing survival curve differences for the subset of data
showing< 5 years survival; Concordance, sheet showing Concordance index, a measure of
prognostic value of signature scores [20,21] and p-values for survival curve differences for all
tumor types partitioned by all modules.
(XLSX)

S4 Table. Copy number differences between T cell module hi and T cell module lo tumors.
Shown are median copy numbers for each gene in FLT3LG.mod, PDCD1.mod and FOXP3.
mod hi and lo samples, in melanoma, head and neck carcinoma and bladder carcinoma
tumors, respectively. Also shown are Wilcoxon p-values for differences in gene copy number
between the groups. Since adjacent genes subject to copy number variation at the chromosomal
scale were unlikely to vary independently, we did not use multiple testing corrections for this
analysis. Instead, we used random partitions of the data to assess false positives (Fig 2A–2C).
(XLS)
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