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Abstract

Marine sponges are important members of coral reef ecosystems. Thus, their responses to
changes in ocean chemistry and environmental conditions, particularly to higher seawater
temperatures, will have potential impacts on the future of these reefs. To better understand
the sponge thermal stress response, we investigated gene expression dynamics in the
shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), sub-
jected to elevated temperature. Using high-throughput transcriptome sequencing, we show
that these conditions result in the activation of various processes that interact to maintain
cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock pro-
teins, antioxidants, and genes involved in signal transduction and innate immunity path-
ways. Prolonged exposure to thermal stress affected the expression of genes involved in
cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to
sublethal temperatures may improve the ability of the sponge to mitigate cellular damage
under more extreme stress conditions. These insights into the potential mechanisms of
adaptation and resilience of sponges contribute to a better understanding of sponge con-
servation status and the prediction of ecosystem trajectories under future climate
conditions.

Introduction

Global mean temperature will continue to rise over the 21° century with the best estimates for
global sea surface temperature (SST) increasing in the range of 1-3°C [1]. This increased SST
may have deleterious impacts on many marine invertebrates. In fact, mass coral bleaching
events triggered by elevated seawater temperatures have resulted in significantly reduced coral
cover throughout the tropics [2]. This decrease in coral cover can result in changes in benthic
reef communities [3], which may allow other species, such as algae and sponges, to increase in
abundance. Sponges are one of the earliest multicellular animal groups [4]. Members of this
phylum display remarkable ecological adaptability, having integrated into diverse marine eco-
systems through the development of complex physiological and chemical properties [5].
Sponges play important roles in the functioning of these ecosystems [6].
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Despite the diversity within the sponge phylum, data on sponge conservation status is still
lacking [7]. Out of the thousands of known sponge species, very few are currently listed as
threatened, suggesting that sponges are highly adaptable to environmental stressors, such as
elevated temperatures, ocean acidification, sedimentation, and microbial pathogens [7]. In fact,
compared to other reef taxa, marine sponges have the potential to be resilient to large-scale
thermal stress events. Recent studies have reported that sponges are more tolerant to increased
SST, with larval dynamics, ecological functions and physiological processes unaffected by
increases in water temperature [8-10]. For example, the growth and survival of several Carri-
bean sponges remained unaffected by exposure to thermal stress [11]. Furthermore, the sponge
assemblage in Bahia, Brazil, did not change between pre- and post-El Nifio Southern Oscilla-
tion (ENSO) years [12]. In contrast, some studies have described the negative effects of elevated
temperature on different sponge species. For example, adult colonies of R. odorabile were
found to be highly sensitive to thermal stress at 32°C [9] while severe sponge die-off due to cya-
nobacterial decay was triggered by elevated temperatures in the Mediterranean sea [13]. There-
fore, it is important to recognize that different sponge species may have variable responses to
environmental perturbations, specifically to thermal stress.

The molecular mechanisms underlying sponge responses to thermal stress are poorly
understood, with most studies focusing on the effect of temperature on the sponge-associated
microbial community. In one example, 454 pyrosequencing of the 16S rRNA metagenome
revealed that exposure to 31°C had no effect on the bacterial biosphere within the Great Barrier
sponge Rhopaloeides odorabile [14]. Likewise, in the Mediterranean Sea sponge Ircinia spp.,
neither thermal stress combined with food shortage nor large fluctuations in temperature and
irradiance disrupted the stability of the sponge-bacteria partnership [15,16]. The importance of
cell-cell signaling genes in the maintenance or breakdown of the sponge-bacteria interaction
during thermal stress events has been explored to some extent [17]. Targeted studies on gene
expression have demonstrated the upregulation of heat shock protein 70 in the Carribean
sponge Xestospongia muta upon exposure to elevated temperature [18]. Expression profiling
by multiplexed reverse-transcription quantitative PCR (mRT-qPCR) showed that R. odorabile
larvae are remarkably able to withstand seawater temperatures up to 9°C above normal [9].
The apparent resilience of some sponge species and the sensitivity of others highlights the need
to understand the genomic basis of sponge responses to environmental stressors and how they
are able to adapt to rapidly changing ocean conditions.

High-throughput transcriptome sequencing is a powerful tool that allows sensitive and
high-resolution detection of a wider dynamic range of expression levels in contrast to other
commonly used molecular approaches, such as quantitative PCR, multiplex reverse-transcrip-
tion quantitative PCR, and microarrays [19]. Global transcriptome analysis can reveal how
organisms respond to external stimuli and stressors by detecting changes in gene expression
dynamics. This plasticity of gene expression underlies the ability of organisms to adapt to
changing environmental conditions. In fact, sequencing of the genome of model demosponge,
Amphimedon queenslandica, revealed the presence of a diverse genetic toolkit, or a set of con-
served regulatory genes, that can integrate various signaling pathways and allow the organism
to rapidly respond to its environment [20].

In this study, we performed a transcriptome-wide analysis to elucidate the changes in gene
expression that occur when a sponge is subjected to different levels of thermal stress. In partic-
ular, we focused on the differential expression of genes involved in protein folding, oxidative
stress response, immune response, signal transduction, transcriptional regulation, apoptosis,
and tissue morphogenesis. The findings of this study unveil key processes that underlie sponge
tolerance to thermal stress, which will gain importance as ocean temperatures continue to rise
with the changing climate.
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Results and Discussion

As global warming continues to raise ocean temperatures, marine ecosystems are placed at
risk. However, some marine organisms, including sponges (Porifera), thrive in naturally warm
environments and can tolerate high temperatures. Studies on these organisms will contribute
to our understanding of the mechanisms that confer resilience to thermal stress. Thus, to eluci-
date the transcriptome dynamics underlying the sponge thermal stress response, we focused
our study on the demosponge, Haliclona tubifera, found native to shallow reef flats in Bolinao,
Pangasinan, Philippines. Based on regular monitoring by the Bolinao Marine Laboratory, sea
surface temperatures in this region range from 25°C to 32°C with an annual mean temperature
of 28.8940.90°C. Sponges in this area are of great interest in exploring the determinants of eco-
logical success, particularly in terms of tolerance to a wide range of temperatures.

H. tubifera belongs to order Haplosclerida, which is the largest and most diverse group
within class Demospongiae of phylum Porifera (sponges). This tubular pink sponge is found in
association with branching corals in shallow water reef flats at depths of 1-2 meters (Fig 1A).
Because of its shallow habitat, this sponge species is subjected to widely fluctuating tempera-
tures on a daily basis. The reference transcriptome used in this study was previously assembled
de novo, and contains 50,067 non-redundant transcripts, which translate into 18,000 peptides
[21].

Global expression pattern

Although H. tubifera is regularly exposed to fluctuating temperatures in its shallow water habi-
tat, different levels of thermal stress elicited observable changes in its gene expression profile.
The expression profiles of sponges subjected to acute short-term thermal stress (34°C for 4
hours) showed higher correlation with controls maintained at 29°C while the transcriptome
profiles of sponges subjected to longer thermal exposure (32°C for 12 hours and 34°C for 12
hours) were more similar to each other (Fig 1B). Although some sample replicates showed
larger variability, principal component analysis was still able to differentiate the transcriptome
profiles of sponges subjected to different temperature (Fig A in S1 File). Our results show that
prolonged exposure to temperatures much higher than the average encountered by the sponge
triggers substantial changes in gene expression that may influence cellular characteristics or
behavior.

Differential expression analysis detected a total of 1,584 unique transcripts, referred to here
as genes, exhibiting a significant change in expression across all treatments (Fig 1C). These
results suggest that the sponge can rapidly deploy cellular mechanisms that support tolerance
to increased temperatures. Most of the differentially expressed genes were up or downregulated
by greater than four-fold relative to the controls (Table A in S1 File). The greatest number of
differentially regulated genes were observed between the control (29°C) and samples heated at
34°C for 12 hours (1,010 genes). 294 genes remained differentially regulated in all samples sub-
jected to elevated temperature while 178 differentially expressed genes were shared between
samples exposed to 34°C for 4 hours and at 32°C for 12 hours. Only 32% (505 genes) of differ-
entially expressed genes have homology to proteins in the UniProt database (Table B in S1
File). Of the genes with no UniProt matches, 644 exhibit similarity to sequences in the A.
queenslandica reference genome (Table B in S1 File). Further studies are needed to elucidate
the functions of these unannotated genes, which may include non-coding RNAs expressed
from polyadenylated transcripts [22,23], as well as species-specific genes that are responsive to
thermal stress.

By comparing the log2 fold change of genes that are commonly differentially expressed
under the various treatments, we were able to determine the number that show a greater
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Fig 1. Global transcriptome profile of adult colonies of H. tubifera exposed to thermal stress. (A) H.
tubiferais a soft, pink or brownish, tubular sponge found in association with coral skeletons in shallow water
reef flats. (B) Correlation of overall gene expression profiles for duplicate samples of sponges exposed to
different thermal regimes (Pearson correlation coefficient, r). The correlation is based on counts per million
(CPM) of reads mapping to each transcript. Only transcripts with CPM >10 in at least 2 samples were
included. (C) The number of differentially expressed genes specific to or common between different
treatments. Differential expression analysis was conducted on duplicate samples for each experimental
treatment. Genes were considered differentially expressed if they were up or downregulated by greater than
4-fold relative to the controls with an adjusted p-value <1x10°°. Scatter plots of the log2 fold changes in
expression relative to controls at 29°C for differentially expressed genes that are common between (D) 34°C
4hrvs 34°C 12hr, (E) 34°C 4hrvs 32°C 12hr, and (F) 34°C 12hr vs 32°C 12hr samples. Points in the upper
right quadrant are upregulated transcripts while points in the lower left quadrant are downregulated
transcripts. Red dots above the diagonal represent transcripts with a greater magnitude of change in the
sample on the y-axis while blue dots are transcripts exhibiting a greater magnitude of change in the sample
on the x-axis. Enrichment of genes with particular distributions between treatment pairs was estimated using
Fisher's exact test (p-values shown).

doi:10.1371/journal.pone.0165368.9001

magnitude of change in expression under certain temperature regimes. Pairwise comparisons
revealed that between the samples subjected to 34°C, more genes exhibited a greater magnitude
of upregulation at 4 hours compared to 12 hours of exposure (142 vs. 104 genes), whereas
more genes were downregulated in samples maintained at 34°C for 12 hours than for 4 hours
(116 vs. 85 genes) (Fig 1D). Between samples exposed to different degrees of thermal stress,
more genes were either up or downregulated in the samples exposed to 34°C for 4 or 12 hours
relative to the samples maintained at 32°C for 12 hours (Fig 1E and 1F). This indicates that
acute thermal stress at 34°C, regardless of duration, results in a greater change in gene expres-
sion levels compared to sublethal exposure at 32°C, which is still within the temperature range
of the sponge habitat.

Downregulated sequences represent genes that are normally maintained at high levels in the
sponge, which may include transcripts encoding proteins that form the first line of defense or
transcripts with housekeeping functions that are generally energy intensive. Upregulated
sequences are mostly stress-induced genes. Interestingly, thermal stress in H. tubifera resulted
in more downregulation than upregulation of genes (Table A in S1 File). This finding is consis-
tent with transcriptome-wide studies in other organisms, suggesting that widespread downre-
gulation is a conserved phenomenon under stressful conditions [24-26]. This may be an
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adaptive mechanism that reflects the redirection of energy and resources towards the mainte-
nance and repair of cellular machinery.

Enriched functional groups

Gene ontology (GO) enrichment analysis revealed that exposure of H. tubifera to elevated tem-
peratures resulted in the differential expression of genes involved in the organismal stress
response (Fig 2). Protective mechanisms that are enriched under acute short-term stress
include antioxidant activity, toll-like receptor (TLR) signaling pathway, and innate immune
response activation. Signaling mechanisms that are enriched include calcium-mediated signal-
ing, cellular ion homeostasis, messenger-mediated pathways, transporter activity, and microtu-
bule-based movement. This suggests that the sponge responds immediately to stress exposure
by inducing signaling cascades that initiate various pathways involved in the cellular stress
response and by producing transcripts that encode proteins that protect the cell from damage.

Longer exposure to elevated temperature (34°C for 12 hours) resulted in the differential
expression of genes related to the constitutive photomorphogenesis 9 (COP9) signalosome
(CSN), protein refolding, tissue development, and proteolysis. The CSN is a protease complex
with a key role in the DNA-damage response, cell-cycle control, apoptosis, and gene expression
[27,28]. The activation of these functions indicate that sponge cells may have already sustained
damage under these conditions.

Genes related to tissue morphogenesis, extracellular matrix, cell cycle and cell adhesion
were enriched only in samples maintained at 32°C for 12 hours (Fig 2). Interestingly, stress
response-related genes, such as glutathione transferase (GST) and the chaperones heat shock
protein 90 (Hsp90) and Bcl2-Associated Athanogene 3 (BAG3), were also upregulated at 32°C
(Fig B in S1 File). This data suggests that exposure to the sublethal temperature of 32°C may be
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Fig 2. Gene ontology (GO) analysis for gene groups that are up or downregulated by greater than
4-fold under various temperature regimes. Enrichment p-values for selected terms are shown. Only GO
terms with a p-value <0.05 (Fisher’s exact test) were considered significantly enriched.

doi:10.1371/journal.pone.0165368.9002
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promoting tissue growth while, at the same time, activating the expression of protein folding
chaperones that prepare the sponge for further encounters with environmental stressors. Effec-
tive acclimatization to sublethal temperature may increase the ability of the sponge to mitigate
cellular damage upon exposure to a more extreme temperature.

Transcriptome-wide analysis in H. tubifera reveals insights into the mechanisms that are
regulated in response to variable intensity and duration of thermal stress. This analysis showed
that stress triggers a series of processes that function to maintain cellular homeostasis at all
stages of stress exposure. Immediate responses, which are apparent in sponges subjected to
short-term stress, involve modulating the oxidative response, immune response, and intracel-
lular signaling. These responses are designed to prevent or minimize cellular damage at the
onset of thermal stress. Under prolonged exposure, where the sponge may have already sus-
tained some tissue damage, genes that are activated include those associated with protein
refolding, tissue growth, cellular repair, and apoptosis. Induction of such functions may reflect
sponge health, the ability to tolerate higher temperatures, and the potential for recovery and
survival under continued stress conditions. It is interesting to note that exposure to sublethal
temperature activates the expression of protein folding chaperones that provide sponge cells
with some protection against extended or intensified stress conditions.

Network responses to stress

As is evident from the results of gene ontology enrichment, the cellular stress response involves
the coordination of multiple pathways that are linked through protein-protein interactions.
The sponge possesses homologs of many of the genes in these pathways but it is not known
whether they also function in the same manner as their homologs in other organisms. Thus, to
determine if these genes potentially retain similar functions in the sponge stress response, the
sponge gene expression data was overlaid upon a protein interaction network based on well-
curated annotations for human genes (Fig 3 and Table C in S1 File). Only the samples exposed
to 34°C for 4 hours and 12 hours were included in this analysis as more robust responses were
observed at this temperature than at the sublethal temperature of 32°C. This analysis enables
the visualization of coordinated control or co-regulation, an indicator of conservation of
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Fig 3. Relative expression of sponge homologs of genes in the stress response-related protein network at (A) 4 hours and at (B) 12 hours of
exposure to 34°C. The network shown is based on the curated human protein interaction network. Relative expression is shown as the sum of the
average fragments per kilobase per million (FPKM, log2 transformed) in each treatment relative to the control at 29°C for all genes with a best blastx hit
matching the human gene in the network (blue, low; red, high; gray, no match in H. tubifera). Node size corresponds to the number of genes with the
same UniProt annotation.

doi:10.1371/journal.pone.0165368.9003
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function for gene homologs and of co-functionality for interacting genes [29-31]. In general,
we observed that sponge homologs of genes within the stress response-related network, includ-
ing genes that function in oxidative response, protein folding, immune response, and apopto-
sis, exhibit coordinated expression patterns that are consistent with known functions of their
human homologs and that are indicative of their cooperative function in the sponge thermal
stress response. Whether the sponge stress response-related interaction network also includes
sponge-specific proteins different from those in the human network remains to be determined.

Not surprisingly, we found that the relative expression of heat shock protein 70 (Hsp70) and
other protein folding genes was strongly upregulated in thermally stressed H. tubifera (Fig 3
and Fig B in S1 File). Hsp70 proteins are one of the most highly conserved groups of heat
shock proteins [32]. They ensure the coordinated regulation of protein translocation processes,
limit cellular damage by preventing aggregation of denatured proteins [33], and refold stress-
denatured proteins [34]. We also found that Hsp90 and ubiquitin were upregulated (Fig B in S1
File). This is in contrast to observations in adults of the Great Barrier Reef sponge, R. odorabile,
where both Hsp90 and ubiquitin expression were downregulated under thermal stress [9]. This
difference in response may indicate that R. odorabile has greater sensitivity to thermal stress, as
the decrease in expression may be due to widespread inhibition of gene transcription accompa-
nying extensive cellular damage.

Exposure to thermal stress can induce the generation of reactive oxygen species, which can
cause damage to tissues [35]. To counteract this, the organism produces genes that encode proteins
with antioxidant activity. In H. tubifera, oxidative response genes such as thioredoxin (TXN),
superoxide dismutase 1 (SOD1), and peroxiredoxin (PRDX) exhibited an increase in relative
expression at higher temperatures (Fig 3 and Fig B in S1 File). Oxidative stress response genes have
also been identified as differentially expressed in corals subjected to thermal stress [36,37]. The
rapid response of antioxidant mechanisms in H. tubifera suggests that the sponge is able to cope
with tissue damage that may be caused by oxidative stress associated with elevated temperatures.

Increased expression of heat shock proteins triggered by thermal stress can activate immune
response-related genes, including toll-like receptors [38]. The toll-like receptor 1 (TLRI) and
the mediator of TLR signaling, myeloid differentiation primary response gene 88 (Myd88),
exhibited increased relative expression under prolonged exposure to 34°C (Fig 3). TLRs initiate
signal transduction pathways, which then induce the innate immune response and are impor-
tant in the recognition of invading microbial pathogens [38]. These members of the innate
immunity pathway, in turn, interact with genes in the intrinsic and extrinsic apoptosis path-
ways. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), which serves as an inhibitor
of TLR responses and apoptosis [39], was upregulated under stress. Similarly, the tumor necro-
sis factor receptor-associated factors (TRAFs), which act as adaptor proteins for a variety of
receptors that regulate cell death and responses to stress [40], increased in expression upon
exposure to 34°C. We also observed upregulation of the apoptotic protease activating factor 1
(APAF1), which activates initiator caspases. Of the initiator caspases [41], only CASP2 was
upregulated, whereas CASP8 and CASP9 were downregulated. Initiator caspases cleave and
activate executioner caspases, such as CASP3 and CASP7, both of which were upregulated in
the sponge. Executioner caspases degrade cellular components [41]. Induction of caspase-like
activity was similarly observed during the early stages of thermal treatment in the sea anemone,
Anemonia viridis [42]. Interestingly, inhibitors of apoptosis, such as X-linked inhibitor of apo-
ptosis protein (XIAP) and B-cell lymphoma 2 (Bcl2), as well as the anti-apoptotic BAG3 chap-
erone, were upregulated upon exposure to 34°C at 12 hours. Despite the increase in expression
of APAFI and executioner caspases, the downregulation of some initiator caspases, as well as
the upregulation of known apoptosis inhibitors, suggests that the induction of cell death is
tightly regulated in H. tubifera under stressful conditions.
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Thermal stress effects on regulatory pathways

Shifts in gene expression patterns can be attributed to changes in transcriptional activity. This
is partly controlled by the abundance of different transcription factors that regulate the expres-
sion of specific genes in response to stimuli. We found that specific transcription factor groups
exhibit distinct patterns of expression during thermal stress exposure, suggesting that these
groups of factors play central roles in controlling the expression of genes commonly required
to deal with the effects of increased temperatures. The most obvious trend observed for tran-
scription factor families is an increase in expression at higher temperature with greater upregu-
lation under prolonged exposure, as is evident for the bZIP, Tbox, ETS, bHLH, and forkhead
families (Fig 4). In contrast, most HMGbox and homeobox family transcription factors were
not responsive to thermal stimuli. While the specific gene targets of these transcription factor
families remains to be determined, the increase in their expression during stress correlates with
the upregulation of stress-related genes in the sponge. This suggests that while the responses
observed upon acute exposure at 4 hours may be mainly due to rapid cellular responses involv-
ing mRNA turnover and protein translation or modification, longer term stress can influence
global changes in the transcriptome through shifts in regulatory factor concentrations.

The interaction between an organism and its environment is mediated by transmembrane
receptors. G-protein coupled receptors (GPCRs) and scavenger receptors form two of the larg-
est gene families in sponges and are thought to provide the organism with a highly sophisti-
cated repertoire of sensors to monitor its surroundings [20,43]. Upregulation of a subset of
rhodopsin GPCRs at 12 hours of exposure at either 34°C or 32°C (Fig 4) suggests a link
between thermal and light stress, which can be expected because intense solar irradiation typi-
cally correlates with increased sea surface temperatures. As such, the sponge may be able to
trigger early protective responses in anticipation of seawater warming when it senses a rise in
light intensity. Some specific glutamate GPCRs were upregulated upon exposure to 34°C. Glu-
tamate GPCRs, such as the GABA-like and GRM-like receptors, may be involved in controlling
the contraction of sponge canal system to regulate seawater filtration rate in response to envi-
ronmental stimuli [44]. GABA receptors can either trigger canal contraction like in the demos-
ponge, Tethya wilhelma, or they can be inhibitory, as in the freshwater sponge, Ephydatia

Transcription factors G-protein coupled receptors (GPCR) Scavenger
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Fig 4. Relative expression of regulatory genes in H. tubifera during thermal stress exposure. Relative
expression of genes encoding transcription factors (bZIP, T-box, ETS, homeobox, and forkhead), G-protein
coupled receptors (rhodopsin, glutamate, and secretin GPCRs), and scavenger receptors. Relative
expression was computed as the log2-transformed average FPKM value for each gene under each
treatment normalized to the average of expression across treatments (blue, low; red, high). Each column
represents one treatment (A, 29°C; B, 34°C, 4hr; C, 34°C, 12hr; D, 32°C, 12hr). Enrichment of genes under
particular treatments was estimated using Fisher’s exact test (p-values shown).

doi:10.1371/journal.pone.0165368.9004
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muelleri [44,45]. Secretin GPCRs were downregulated at 4 hours of exposure to 34°C but
increased in expression after 12 hours. These GPCRs are closely related to the adhesion GPCR
family and their upregulation may be an adaptation that allows for better cell adhesion and the
maintenance of sponge tissue integrity.

Changes in environmental conditions, such as a rise in temperature, may lead to the prolif-
eration of opportunistic microorganisms and pathogens whose growth and virulence is favored
by warmer temperatures [46,47]. In general, we found that scavenger receptors, which may be
important for the discrimination between symbiotic and food bacteria [48], were downregu-
lated under acute thermal stress (Fig 4). Animal lectins, which function in host defense by pro-
moting aggregation of microbial cells for efficient phagocytosis [49], were also downregulated
(Fig B in S1 File). Similarly, strong non-self recognition challenges, such as the selection of
algal and bacterial endosymbionts, has been reported to cause a drop in the expression levels of
lectins in corals during post-settlement [50]. In H. tubifera, changes in the population of cell
surface receptors may serve to protect the sponge during thermal stress by aiding in the recog-
nition and clearance of potential pathogens. However, despite the downregulation of these
receptors, further exposure to stress and an increase in the abundance and virulence of patho-
gens may override the sponge immune system, eventually resulting in pathogen invasion. It is
important to note that environmental perturbations that cause shifts in the sponge microbial
assemblage or loss of groups of bacteria with critical metabolic functions will have a negative
impact on the overall health of the sponge holobiont [17].

Conclusions

Predicting the impact of climate change on important marine organisms, such as sponges,
necessitates the elucidation of the cellular and molecular processes that contribute to their
responses to elevated temperatures. This study represents the first transcriptome-wide survey
of the sponge response to thermal stress. Using a high-throughput sequencing approach, we
identified the potential mechanisms enabling H. tubifera to survive conditions of thermal stress
and observed the different responses that are triggered at different stages of exposure. In H.
tubifera, immediate stress response includes induction of heat shock proteins, antioxidants,
and genes involved in signal transduction and innate immunity pathways while prolonged
exposure to thermal stress affects expression patterns of genes involved in cellular damage
repair, apoptosis, signaling and transcription. Differential deployment of a diverse repertoire of
genes may allow the sponge to fine-tune its response to local conditions in the environment
that they typically encounter. Thus, H. tubifera, which is normally located in shallow reef flats
and is exposed to variable temperatures, may have a more robust response to temperature fluc-
tuations compared to sponges found at deeper depths with colder and more stable tempera-
tures. A similar phenomenon has been reported for several coral species, where individuals
living in habitats that experience highly variable conditions exhibit greater expression of pro-
tective and metabolic genes [51,52].

For a more comprehensive understanding of sponge tolerance to climate change-related
stressors, further comparative studies should be conducted on diverse species of marine
sponges. The diversity within the sponge phylum and the relative plasticity of sponge cellular
elements represent a treasure trove of gene innovations that may provide insights into the vari-
ous pathways that have evolved to contribute to animal resilience [53]. It is likely that differ-
ences in ecological and physiological features of different sponges, and even their different life
stages, will reflect variations in thermal tolerance and resilience that may have downstream
effects on populations in areas where seawater temperatures begin to exceed tolerable tempera-
tures. As sponges perform diverse roles in the marine ecosystem, changes in sponge
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distribution and abundance will have implications on reef functions. Thus, knowledge of gene
expression responses in relation to organism physiology and health will support better assess-
ment of sponge conservation status and contribute to the ability to predict reef trajectories
under future climate conditions. Given the overwhelming evidence of coral decline due to cli-
mate-associated stressors, only those remarkably resistant taxa, such as sponges, are likely to
survive the increasingly stressful marine environment.

Materials and Methods
Sample collection and thermal stress experiment

Sponges were collected by scuba diving in Malilnep Channel, Bolinao, Pangasinan
(16.43530°N 119.94062°E) in September 2013 at depth of 1-3 meters. Collections were con-
ducted with permission from the Philippines Department of Agriculture Bureau of Fisheries
and Aquatic Resources (DA BFAR GP-0075-14). Sponge colonies were transported to the Boli-
nao Marine Laboratory outdoor seawater facility and were acclimated at 29°C, approximately
the yearly average temperature at the reef site. Acclimation and thermal stress experiments
were carried out in a shaded area receiving approximately 68 umoles/m®/s to avoid light stress.
Thermal stress experiments were conducted in independently aerated 20 liter glass tanks (20.5
cm in depth) containing 5um-filtered seawater with additional flow provided by 600 liter/hour
submersible pumps. Experimental tanks were heated to 32°C or 34°C using 300 Watt submers-
ible heaters. Water temperature in the tanks was monitored using underwater temperature log-
gers (HOBO PRO V2) set to record the temperature every 5 minutes. After a five-day
acclimation period, sponges were exposed to thermal shock by immediate transfer to tanks
with elevated temperatures (32°C and 34°C) or maintained at ambient temperature (29°C).
One aquarium was used for each treatment. The sponges in the experiment represent two dif-
ferent individuals that were divided up into smaller pieces. One piece from each individual was
included in every treatment. Tissues were collected after 12 hours for the control and all heated
treatments, with an additional collection at 4 hours from 34°C. All tissues were stored in RNA-
later (Ambion) and kept at 4°C for four hours then at -20°C for 12 hours. Samples were then
transferred to liquid nitrogen for transport from Bolinao, Pangasinan to the Marine Science
Institute, University of the Philippines, and stored at -80°C prior to molecular analyses.

RNA extraction, quantity and quality assessment

Total RNA was extracted using Trizol Reagent (Invitrogen) following the manufacturer’s pro-
tocol with minor modifications, such as overnight precipitation at -80°C to obtain greater RNA
yield. Contaminating genomic DNA was removed using the DNAfree kit (Ambion). Nucleic
acid concentrations and ratios of absorbance at 260/280nm and 260/230nm were obtained
using a BioSpec Nanodrop spectrophotometer (Shimadzu). The integrity of RNA samples was
determined by electrophoresis on a native agarose gel with denaturing loading dye. RNA qual-
ity was further assessed using the mRNA Pico Series II assay on the Agilent Bioanalyzer 2100
System (Agilent Technologies) (Table D in S1 File).

RNA sequencing and RNA quality control

Total RNA from duplicate samples from each experimental treatment were sent to Beijing
Genomic Institute Tech Solutions (Hong Kong) Co., Limited. mRNA enrichment and prepara-
tion of barcoded cDNA libraries was done using the Illumina TruSeq RNA Sample Prep Kit
protocol. Sequencing was conducted on the Illumina HiSeq 2000 platform with 100bp paired-
end reads. After sequencing, the raw reads were filtered for adapter sequences and low-quality
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reads. Quality of the RNA-seq reads was visualized using FastQC 0.10.1 (Babraham Bioinfor-
matics). Read quality control was performed using Trimmomatic 0.32 [54], which included
discarding poor-quality bases (quality score below 3) at leading and trailing bases, scanning the
read with a 4-base sliding window, cutting when the average quality per base drops below 30,
dropping reads below 36 bases long, and trimming 18 bases from the start of the reads. Tran-
script abundance estimation was performed by mapping individual paired-end reads back to
the H. tubifera non-redundant reference transcriptome assembly [21] using RNASeq by Expec-
tation Maximization (RSEM) [55] with the Bowtie alignment method [56] included in the
Trinity package suite [57]. Raw sequence reads were deposited in the NCBI Short Read Archive
database (PRJNA274004). The reference transcriptome assembly is available on the Compagen
site (compagen.org) [58]. This Transcriptome Shotgun Assembly project has been deposited at
DDBJ/ENA/GenBank under the accession GFAV00000000. The version described in this
paper is the first version, GFAV01000000.

Differential gene expression analysis

Analysis of differentially expressed genes was conducted using duplicate samples from each
experimental treatment. Analysis was done using the edgeR [59] package in R with expected
counts obtained from transcript abundance estimation by RSEM. Expected counts from RSEM
were converted to counts per million (CPM) and only genes with greater than 10 CPM in at
least two samples were included in the analysis (S2 File). Genes that were up or downregulated
by greater than 4-fold relative to the controls with an adjusted p-value <1x10" (Benjamini-
Hochberg) were considered differentially expressed (S3 File). Control samples (29°C) from
each species were compared to samples subjected to i) acute short-term stress (34°C at 4
hours), ii) acute long-term stress (34°C at 12 hours), and iii) intermediate long-term stress
(32°C at 12 hours).

Functional enrichment analysis

The H. tubifera transcriptome assembly was previously annotated by alignment to the UniProt
database at an e-value cutoff of 1x10°. The top blastx hit for each gene was used as input into
Blast2GO [60] to retrieve gene ontology terms. Enrichment analysis for differentially expressed
genes was performed using the topGO package in R [61]. Only the GO terms with a p-value
<0.05 were considered significantly enriched.

Protein network analysis

Protein-protein interactions for selected genes with known functions in the organismal stress
response and that are represented by homologs in H. tubifera were retrieved from the STRING
v10 functional protein interaction database [62]. Interactions were based on the well-curated
human protein network. Relative expression of sponge gene homologs, computed as the sum
of the average FPKM (log2 transformed) in each treatment relative to the control at 29°C, was
overlaid on the interaction network and visualized in Cytoscape 3.1.1 [63]. FPKM values were
obtained from RSEM output.

Supporting Information

S$1 File. Combined supplementary information.
(PDF)

S$2 File. Count matrix used for differential expression analysis. Transcript abundance esti-
mation was performed by mapping paired-end reads back to the H. tubifera non-redundant
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(XLSX)

S$3 File. Differentially expressed genes in Haliclona tubifera subjected to different tempera-
ture treatments. Analysis of differentially expressed genes was conducted with edgeR using
expected counts obtained from the transcript abundance estimation. Only genes with greater
than 10 counts per million in at least two samples were included in the analysis. Genes that
were up or downregulated by greater than 4-fold relative to the controls with an adjusted p-
value <1x10" (Benjamini-Hochberg) were considered differentially expressed.
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