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A novel population of memory CD8+ T cells called resident memory T cells (TRM) has 
been identified based on their phenotype (CD103, CD69) and on their local tissue resi-
dency without recirculating in the blood. These cells have been implicated in protective 
immune response against pathogens in both animal models and humans. Their role in 
cancer is just emerging as a key player in tumor immunosurveillance. Many properties of 
these cells suggest that they could control tumor growth: (i) they respond much faster 
to reexposure to cognate antigen than circulating memory cells, (ii) they express high 
levels of cytotoxic molecules, and (iii) they are enriched in tumor-specific T cells in close 
contact with tumor cells. TRM are present in many human cancers and are associated 
with a good clinical outcome independently of the infiltration of CD8+ T cells. It has been 
recently shown that the efficacy of cancer vaccines depends on their ability to elicit TRM. 
In adoptive cell therapy, the transfer of cells with the ability to establish TRM at the tumor 
site correlates with the potency of this approach. Interestingly, TRM express immune 
checkpoint molecules and preliminary data showed that they could expand early during 
anti-PD-1 treatment, and thus be considered as a surrogate marker of response to 
immunotherapy. Some cues to better expand these cells in vivo and improve the suc-
cess of cancer immunotherapy include using mucosal routes of immunization, targeting 
subpopulations of dendritic cells as well as local signal at the mucosal site to recruit them 
in mucosal tissue.

Keywords: resident memory T cells, cancer vaccine, immune checkpoint molecule, mucosal route of vaccination, 
immunotherapy

inTRODUCTiOn

After studying herpes simplex virus infection and lymphocytic choriomeningitis virus infection, two 
groups reported that memory T cells remain in dorsal root ganglia and small intestines, respectively, 
without recirculating through the blood (1, 2). These cells were called tissue-resident memory T cells 
(TRM). These TRM cells may persist for a long time and represent one of the main lymphocyte popula-
tions in adults (3, 4).

TRM cells originate from a common KLRGneg memory precursor cell that also gives rise to circulating 
central and effector memory CD8 T cell populations (5). These cells share TCR repertoires (6).

TRM cells from different tissues were transcriptionally related (5) with a core marker (CD69, CD103, 
and CD49a) both in mice and humans. However, subpopulations of TRM differing by the expression 
of these markers and exhibiting additional markers also exist. For example, CD49a is expressed by 
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only 15% of T cells from the human skin. The chemokine receptor 
CCR8 and the CD8αα homodimer are expressed only in skin TRM 
cells, while the aryl hydrocarbon receptor (AHR) is expressed 
in gut and skin TRM, but not in lung TRM (5, 7). This phenotypic 
heterogeneity extends to functional heterogeneity even within a 
same organ. For example, it has been shown that the airway TRM 
has a poor in vivo proliferative and cytolytic ability, when they 
were compared with lung TRM, while IFNγ are produced faster by 
CD8 TRM compared to systemic effector CD8+ T cells (8). In addi-
tion, TRM in the airway has a short half-life (less than 1 month) 
whereas TRM in lung parenchyma may persist for several months 
or years (9).

TRM cells express high levels of protein associated with tis-
sue retention, such as RGS-1 and RGS-2, both known as G 
protein-coupled inhibitors. By contrast, they display low levels 
of sphingosine-1-phosphate receptor 1 (S1PR1) and CCR7 (5, 
10), which are indispensable for tissue exit. Various molecules 
expressed by TRM may explain their long survival in tissue. Indeed, 
anti-apoptotic factors such as Bcl-2 could be detected in TRM (5). In 
the presence of exogenous free fatty acids (FFAs), CD8+ TRM cells 
exhibited high levels of mitochondrial oxidative metabolism. This 
feature was not observed in central memory CD8+ T cells. Fabp4 
and Fabp5 (Fabp4/Fabp5) proteins favor FFA uptake by CD8+ TRM 
cells. Their specific deficiency on T cells decreased the survival of 
TRM in vivo (11).

Downregulation of T-bet, likely induced by TGF-β and T-box 
proteins Eomesodermin, is required for TRM differentiation, but 
residual levels of T-bet for maintaining IL-15R are crucial for 
long-term TRM function and survival in the skin, kidney, and 
salivary gland (12). However, IL-15 is not required for their 
maintenance in the small intestine or female reproductive tract 
(FRT) (5).

Aryl hydrocarbon receptor and Notch activity are also 
required for the maintenance of CD103+ TRM cells (13, 14). Recent 
studies by Milner et al. identified the transcription factor Runx3 
as a master regulator for inducing and maintaining CD8+ TRM by 
reducing TRM apoptosis (15).

In addition, in some tissue localizations (e.g., brain or lung), 
the presence of antigen is required for TRM establishment (16, 17).  
By contrast, local inflammatory signal without antigenic stimula-
tion may favor systemic CD8+ T cells to adopt TRM-like characteri-
stics in skin, nasal tissue, and FRT (18).

TRM have all the features of memory CD8+ T cells (CD45RA− 
CD62L−CD28−CD27−CCR7−) (19, 20). It has been clearly esta-
blished that, at least in some tissues, TRM cells might persist 
without the secondary recruitment of systemic effector memory  
T cells (21).

PROPeRTieS OF TRM THAT MAY eXPLAin 
THeiR ROLe in A TUMOR COnTeXT

Various studies have shown that TRM cells respond much faster 
to reexposure to cognate antigen than circulating memory cells 
[either TEM (effector memory T cells) or TCM (central memory 
T  cells)] (22, 23). In addition, TRM underwent in  situ division 
after local antigen challenge, triggered the recruitment of innate 

immune cells and recirculating memory T cells and thus regu-
lated local immunosurveillance (22–24).

TRM cells in non-small cell lung cancer (NSCLC) are preloaded 
with preformed mRNA encoding inflammatory cytokines (gran-
zyme B, IFN-γ, and TNF) and with cytotoxic molecules (13). In 
ovarian cancer, CD103+ tumor-infiltrating lymphocytes (TILs) 
uniformly express TIA-1, a marker of potential cytotoxicity (25). 
In liver cancer, TRM express high levels of perforin (26). CD49a 
expression has been demonstrated to characterize TRM cells 
poised with cytotoxic function in the human epidermis (27).

In some tissues such as the brain or the lung, local antigen 
presentation is required to drive TRM cell formation (17). In addi-
tion, CD103+ TILs express high levels of PD-1 (25), which has 
been reported to be a marker of antitumor TILs in melanoma 
(28). Indeed, after their sorting based on their expression of PD-1, 
CD8+ T cells that expressed this inhibitory receptor in melanoma 
patients identified those that preferentially recognized tumor 
cells (28, 29). From these results, it thus appears that in many 
localizations, TRM may represent antitumor-specific T cells.

In healthy tissues such as the lungs, the skin, the reproductive 
tract, and the gut, TRM cells localize within the epithelial layer. 
CD103+ TILs were preferentially localized in epithelial regions of 
tumors in close contact with tumor cells, likely due to the natural 
interaction between CD103, and its ligand, E-cadherin, expressed 
by tumor cells, may explain that CD103+ TIL were rather found 
in close contact with the tumor cells rather than in the stroma 
(25, 30).

Finally, it has been shown that TRM represent an effective in situ 
first line of defense to tissue-specific infections and are implicated 
in protective immune responses against many pathogens in both 
animal models and humans. It is thus tempting to extrapolate 
their role from infectious models to cancer (31).

TRM in THe nATURAL COURSe OF 
TUMOR

TRM are present in many human cancers (NSCLC, ovarian cancer, 
bladder cancer, endometrial cancer, melanoma, etc.).

Overall, they are associated with a good clinical outcome (19, 32).  
Interestingly, the impact of TRM on survival was independent of 
the infiltration of CD8+ T cells. Indeed, we have shown in a mul-
tivariate analysis (33) that intratumoral CD103+CD8+ T cells cor-
relate with a better survival in NSCLC patient (33). Confirming 
our results, a greater number of intratumoral TRM cells correlated 
with a better survival in lung cancer, cervical cancer, and 
melanoma, independently of that conferred by total CD8+ T cells  
(34–36).

Finally, intratumoral CD8+ T  cells not expressing CD103 
were associated with poor prognosis, as observed in tumors not 
infiltrated by CD8+ T cells (25).

The localization of TRM inside the tumor may be a parameter 
to take into account to assess their impact on the control of 
the tumor. Indeed, intraepithelial CD103 but not intra-stromal 
CD103 correlated with better overall survival and absence of 
relapse in a basal-like subtype of breast cancers (30). In many of 
these studies, the CD103 marker was analyzed and not really TRM 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Blanc et al. Resident Memory T Cells and Immunotherapy

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1722

(CD103+CD8+ T cells). Since CD103 is also expressed by CD4+ 
T cells, innate lymphoid cells, NK cells, and dendritic cells (DCs), 
it could introduce a bias in the interpretation of the results.

Interestingly, the genetic variability of TCRs from resident 
memory T  cells between different metastatic lesions from the 
same patient was greater than the variance in mutational or 
neoepitope load in tumor cells (37). This absence of equilibration 
between tissue-resident TCR within individual metastases may 
affect the clinical results of immunotherapy at the various sites 
and explain mixed clinical response.

ROLe OF TRM in THe eFFiCACY OF 
CAnCeR vACCine

Using a model of orthotopic head and neck or lung cancer, we 
showed that only the intranasal route of immunization elicited 
local TRM. By means of parabiosis experiment or the use of the 
FTY720 inhibitor, which downregulates the S1PR1 receptor 
and blocks the recruitment of circulating memory T  cells in 
the tissue, we demonstrated that the TRM alone could partially 
control the growth of the tumor (33, 38). It was also reported 
that an intravaginal boost with an HPV vaccine after a systemic 
(intramuscular) prime was more efficient at eliciting local cervi-
cal TRM cells, which led to a better overall mouse survival after 
a tumor challenge than that observed with an intramuscular 
boost (39).

In melanoma patients vaccinated with a mixture of Melan-A 
peptide combined with Montanide and CpG, the ability to elicit 
anti-Melan A CD8+ T cells expressing VLA-1, a surrogate marker 
of TRM, was correlated with better survival (40).

Treatment of breast DCs with β-glucan—a ligand of dectin-1 
reprogrammed DC with an upregulation of ITGB8, an integrin 
which binds the latent domain (LAP) of TGF-β, and which after 
its cleavage constitutes the main mechanism of TGF-β activation 
in vivo. Administration of DC treated with β-glucan curdlan or 
its direct intratumoral delivery induced intratumoral antitumor 
CD8+ T cells expressing CD103, which inhibit tumor progression 
in a humanized mouse model of breast cancer (41).

While these examples strongly suggest the role of TRM in the 
protection generated by cancer vaccine, it has to be kept in mind 
that FTY720 experiments showed that the recruitment of circu-
lating effector memory T cells increased the efficacy of TRM after 
mucosal vaccine (33). Conversely, Dr. Sancho’s group reported 
that, while both TRM cells and circulating memory T  cells play 
a role in tumor immunosurveillance, the presence of TRM cells 
improves vaccine efficacy (42).

ROLe OF TRM in ADOPTive T CeLL 
THeRAPY

Mucosal CD103+CD8+ T cells elicited by reprogrammed DC with 
β-glucan curdlan can reject an established tumor and this effect is 
inhibited by the blockade of CD103 (41).

The establishment of TRM cell populations in various normal 
tissues and in cancer required the expression of Runx3 (15). In a 
preclinical model of melanoma, CD8+ TIL not expressing Runx-3 

did not accumulate in tumor microenvironment, resulting in 
uncontrolled tumor growth and low survival. By contrast, when 
antitumor CD8+ T cells that overexpress Runx3 were transferred 
in vivo, tumor growth was inhibited, and mice survival improved 
(15). Thus, the adoptive T cell therapy of TRM seems a promising 
strategy.

ROLe OF TRM in CAnCeR 
iMMUnOTHeRAPY BASeD On THe 
BLOCKADe OF iMMUne CHeCKPOinT 
MOLeCULeS

TRM from healthy organs (brain, gut, lung, and skin) or localized 
in tumors (NSCLC, melanoma, etc.) express higher amounts of 
inhibitory receptors (PD-1, Tim-3, CTLA-4, NKG2A, BTLA, 
LAG-3, SPRY1, adenosine receptor A2AR, CD39, CD101, and 
2B4) and costimulatory molecules (CD27, ICOS, SIRPG, and 
CD137) than peripheral memory CD8+ T cells or CD8+CD103neg 
TIL (5, 13, 20, 34, 37).

However, depending on the tumor localization, the profile 
of immune checkpoint molecules detected on TRM may vary. 
For example, TRM derived from NSCLC and melanoma did not 
express membrane CTLA-4 (19, 35), and in ovarian cancer, 
PD-1+CD103+CD8+ T cells exhibited a weak expression of other 
exhaustion-associated markers, such as CTLA-4, LAG-3, and 
TIM-3 (32).

TCGA analysis of cervical cancer data shows that CD103 
(ITGAE) expression correlates with the usual T cell genes such 
as CD8A, but more interestingly also with T  cell activation 
and exhaustion markers such as CTLA-4, CD137, PD-1, and 
PD-L1 (36).

Transcriptomic analysis of TRM also reported the expression 
of genes with well-recognized inhibitory functions in T  cells, 
such as the dual specificity phosphatase DUSP6, which turns off 
MAP kinase signaling, as well as IL-10 (20). However, despite 
high expression of checkpoint inhibitors, several arguments show 
that TRM cells from infected organs or tumors are not terminally 
exhausted. Indeed, TRM in the hepatitis B virus-infected human 
liver co-express PD-1 and CD39 at high levels, but they readily 
produce IFN-γ, TNFα, and IL-2 after in vitro stimulation (26).

In addition, when TRM cells sorted from lung carcinomas were 
co-cultured with autologous tumor cells, their cytotoxic activity 
was enhanced in the presence of anti-PD-1 mAb (19).

In a preclinical model, administration of anti-PD-1 antibody 
concomitantly with Tcm transfer (which converts to TRM) in a 
tumor therapy setting inhibited the growth of s.c. MC38-OVA 
tumor and i.d. B16-OVA tumor when compared with the adoptive 
T cell therapy with Tcm cells only. Interestingly, after anti-PD-1 
therapy, the number and frequency of TIL with a TRM phenotype 
were increased more than 10-fold within the CD45+ cells in both 
tumor settings (42).

In humans, tumor-resident CD8+ T cells significantly expanded 
early during anti-PD-1 treatment (35). There was a significant 
difference in their numbers (TRM) early during treatment between 
those who responded to the treatment and those who did not 
respond (35). In line with these results, Wei et  al. showed that 
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T cell clones that expanded during anti-PD-1 treatment expressed 
high levels of CD69, PD-1, LAG-3, and CD45RO, an identical 
phenotype to the tumor-resident CD8+ T cell population (43).

CUeS TO eLiCiT TRM TO iMPROve 
CAnCeR iMMUnOTHeRAPY

From these results, it is clear that TRM are involved in the efficacy 
of different cancer immunotherapy strategies. A field of future 
investigation will rely on the development of new strategies to 
induce and amplify TRM (Figure 1).

Route of immunization
Compelling experiments demonstrate the crucial role of the route 
of vaccination to elicit tissue-resident memory T cells both dur-
ing natural infection and after vaccine administration.

Indeed, various vaccine studies showed that intravaginal immu-
nization or a systemic prime followed by a mucosal vaginal boost 
maximized the induction of genital TRM (31). Intranasal vaccina-
tion with a recombinant cytomegalovirus vector encoding the 
respiratory syncytial virus (RSV) matrix (M) or with BCG protein 
also generated robust and durable tissue-resident effectors that 
were undetectable after intraperitoneal or subcutaneous vaccina-
tion (44, 45).

Local Signal to Favor the Recruitment  
of TRM
In mice, cancer vaccine synergizes with local radiation to favor 
the recruitment of intratumoral antitumor CD8+ T cells, some of 
them exhibiting a TRM phenotype (36, 46).

Local injection of Toll-like receptor agonists or of selected 
chemokines via the modification of the expression of selectins, 
integrins, and chemokines could also enhance the recruitment 
of CD8+ T cells in the tissue and at local tumor site. This concept 
has been assessed in vivo by the “prime and pull” strategy, which 
comprises two steps: conventional systemic immunization to 
induce T-cell responses in the blood (prime), followed by second-
ary recruitment of effector T cells by means of local chemokine 
injection into the mucosal genital tract (pull). This prime-pull 
strategy succeeded in establishing a long-term residency and 
thus favored protective immunity. In mice, this prime and 
pull strategy was shown to decrease the diffusion of infectious 
herpes simplex virus 2 (HSV-2) into the sensory neurons and 
to be efficient to control clinical disease (18). In line with these 
results, after systemic administration of a vaccine, an intravesical 
administration of Ty21, a live bacterium used against typhoid 
fever or an intravaginal administration of CpG resulted in the 
accumulation of local specific CD8+ T  cells and led to tumor 
regression (47, 48).
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This prime-pull strategy is thus an attractive strategy, but 
the phenotype of these intratissular-recruited CD8+ T cells has 
not been fully established. In addition, it has not been reported 
whether these cells represent bona fide TRM.

Targeting DCs to elicit TRM
Optimal generation of TRM cells requires CD103+ DCs in non-
lymphoid tissues, which are dependent on the transcription fac-
tor BATF3 for their development, as well as mouse CD8α+ DCs 
in lymphoid organs (49). CLEC9A (DNGR-1) and DEC-205 are 
highly expressed by CD103+ DC and CD8αDC. Intranasal deliv-
ery of targeting antibodies (DEC-205 or CLEC9A) proved highly 
protective against lethal influenza challenge (50). This protection 
is based on both the initiation of T-cell priming in the lung and 
the enhancement of local presentation and differentiation of TRM 
cell (50).

CD301b+ DCs also promote CD8+ T cells with a TRM pheno-
type which control genital HSV-2 infection (51).

In humans, lung-resident CD1c+ DCs drove CD103 expres-
sion on effector CD8+ T  cells by displaying membrane-bound 
TGF-β1 (52).

immunomodulators
Intranasal delivery of 4-1BBL in combination with an adeno-
virus encoding an influenza nucleoprotein to naïve mice elicits 
systemic effector memory CD8+ T-cell expressing IL-7Rα, as 
well as an intraparenchymal lung CD69+CD8 TRM population, 
which comprised both CD103+ and CD103neg cells. Moreover, 
physiologically, during primary influenza infection, T cells defi-
cient for 4-1BB do not differentiate into lung-resident TRM 
population (53).

Formalin inactivated RSV plus CpG plus L685,458, an inhibi-
tor of Notch signaling, promoted protective CD8+ lung tissue-
resident memory T cells (54).

IL-15 complexes delivered locally to mucosal tissues without 
reinfection are an effective strategy to enhance establishment of 
tissue-resident memory CD8 T cells within mucosal tissues (55).

Our group showed that cancer vaccine administered by the 
intranasal route in combination with an anti-TGFβ decreased the 

number of TRM without having any impact on T effector cells, and 
partially inhibited the protective effect of the vaccination (33).

Repeated Antigenic Stimulation
We and other showed that the density of TRM in tissues and tumors 
progressively increased after each immunization (33). Prime boost 
immunization with recombinant adenovirus expressing HPV16 
E7 protein via a homologous (intravaginal) or heterologous 
(intramuscular followed by intravaginal) route of immunization 
elicited more TRM in the cervicovaginal mucosa than did a single 
priming by the intravaginal route (56). Multiple infections also 
result in more widespread or global TRM dissemination (21).

COnCLUSiOn

In the recent past, TRM have been emerging as having an important 
role in cancer immunotherapy based on cancer vaccine, adoptive 
cell therapy, and the blocking of the interaction of immune check-
point molecules with their ligands. In the next few years, it will be 
necessary to better distinguish subpopulations of TRM in different 
tissues with different phenotypes and functions. The vast majority 
of studies focus(ed) on CD8+ TRM. Further analysis of CD4+ TRM 
with phenotype and function that may be different from CD8+ 
TRM should be performed. Optimization of immunotherapy 
strategies to induce these TRM is already the subject of ongoing 
work. Their role as a biomarker of responses to immunotherapy 
is also being evaluated based on preliminary encouraging results.
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