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Abstract: Nowadays, swarm intelligence algorithms are becoming increasingly popular for solving
many optimization problems. The Wolf Search Algorithm (WSA) is a contemporary semi-swarm
intelligence algorithm designed to solve complex optimization problems and demonstrated its
capability especially for large-scale problems. However, it still inherits a common weakness for other
swarm intelligence algorithms: that its performance is heavily dependent on the chosen values of
the control parameters. In 2016, we published the Self-Adaptive Wolf Search Algorithm (SAWSA),
which offers a simple solution to the adaption problem. As a very simple schema, the original
SAWSA adaption is based on random guesses, which is unstable and naive. In this paper, based on
the SAWSA, we investigate the WSA search behaviour more deeply. A new parameter-guided
updater, the Gaussian-guided parameter control mechanism based on information entropy theory,
is proposed as an enhancement of the SAWSA. The heuristic updating function is improved.
Simulation experiments for the new method denoted as the Gaussian-Guided Self-Adaptive Wolf
Search Algorithm (GSAWSA) validate the increased performance of the improved version of WSA in
comparison to its standard version and other prevalent swarm algorithms.

Keywords: swarm intelligence algorithms; wolf search algorithm; self-adaptation; entropy-guided
parameter control

1. Introduction

In computer science, efficient algorithms for optimizing applications ranging from robot
control [1], logistics applications [2] to healthcare management [3] have always evoked great interest.
The general aim of an optimization problem is to obtain a solution with a maximum or minimum
value to solve the problem. The solution often can be measured as a fitness from a function f (x) where
the search space is too huge for a deterministic algorithm to come up with a best solution within
a given amount of time [4]. The optimization algorithms are usually either deterministic, of which
there are many in operation research, or non-deterministic, which iteratively and stochastically refine
a solution using heuristics. For example, in data mining, heuristics-based search algorithms optimize
the data clustering efficiency [5] and improve the classification accuracy by feature selection [6]. In the
clustering case, different candidate formations of clusters are tried until one is found to be most
ideal in terms of the highest similarity among the data in the same cluster. In the classification case,
the best feature subset that is most relevant to the prediction target is selected using heuristic means.
What these two cases have in common is that the optimization problem is a combinatorial search in
nature. The possibilities of choosing a solution in a search space are too huge, which contributes to
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the NP-hardness of the problem. The search algorithms that are guided by stochastic heuristics
are known as meta-heuristics, which literately means a tier of logics controlling the heuristics
functions. In this paper, we focus on devising a new meta-heuristic that is parameter-free, based on the
semi-swarming type of search algorithms. The swarming kind of search algorithms are contemporary
population-based algorithms where search agents form a swarm that moves according to some
nature-inspired or biologically-inspired social behavioural patterns. For example, Particle Swarm
Optimization (PSO) is the most developed population-based metaheuristic algorithm by which the
search agents swarm as a single group during the search operation. Each search particle in PSO
has its own velocity, thereby influencing each another; collectively, the agents, which are known
as particles, move as one whole large swarm. There are other types of metaheuristics that mimic
animal or insect behaviours such as the ant colony algorithm [7] and the firefly algorithm [8] and
some new and nature-inspired methods like the water wave algorithm. These algorithms do not
always have the agents glued together, moving as one swarm. Instead, the agents move independently,
and sometimes, they are scattered. In contrast, these algorithms are known as loosely-packed or
semi-swarm bio-inspired algorithms. They have certain advantages in some optimization scenarios.
Some well-known semi-swarm algorithms are the Bat Algorithm (BA) [9], the polar bear algorithm
[10], the ant lion algorithm, as well as the wolf search algorithm. These algorithms usually embrace
search methods that explore the search space both in breath and in depth and mimic swarm movement
patterns of animals, insects or even plants found in nature. Their performance in heuristic optimization
has been proven to be on par with that of many classical methods including those tight swarm or full
swarm algorithms.

However, as optimization problems can be very different from case to case, it is imperative for
nature-inspired swarm intelligence algorithms to be adaptive to different situations. The traditional
way to solve this kind of problem is to adjust the control parameters manually. This may involve
massive trial-and-error to adapt the model behaviour to changing patterns. Once the situation changes,
the model may need to be reconfigured for optimal performance. That is why self-adaptive approaches
have become more and more attractive for many researchers in recent years.

Inspired by the preying behaviour of a wolf pack, a contemporary heuristic optimization called
the Wolf Search Algorithm (WSA) [11] was proposed. In the wolf swarm, each wolf can not only search
for food individually, but they can also merge with their peers when the latter are in a better situation.
By this action model, the search can become more efficient as compared to the other single-leader
swarms. By mimicking the hunting patterns of a wolf pack, the wolf in WSA as a search agent can find
solutions independently, as well as merge with its peers within its visual range. Sometimes, wolves in
WSA are simulated to encounter human hunters from whom they will escape to a position far beyond
their current one. The human hunters always pose a natural threat to wolves. In the optimization
process, this enemy of wolves triggers the search to stay out of local optima and tries out other parts of
the search space in the hope of finding better solutions by the algorithm design. As shown in Figure 1,
wi is the current search agent (the wolf) and wj is its peer in its visual range γ. ∆ and δ are locations in
the search agent’s visual range; S is the step size of its movement, and Γ is the search space for the
objective function. The basic movement of an individual search agent is guided by Brownian motion.
In this figure, In most of the metaheuristic algorithms, two of the most popular search methods are
Levy search and Brownian search. Levy search is good for exploration [12], and Brownian is efficient
for exploiting the optimal solution [13]. In WSA, both search methods were considered. The Brownian
motion is used as the basic movement, and the Levy search is for pack movement.

As a typical swarm intelligence heuristic optimization algorithm, WSA shares a common structure
and also a common drawback with other algorithms, involving heavy dependence of the efficacy
of the algorithm on the chosen parameter values. It is hardly possible to guess the most suitable
parameter values for the best algorithm performance. These values are either taken from some
suggested defaults or they are manually adjusted. In Figure 1 [14], the parameters’ values remain
unchanged during the search operation in the original version of WSA. Quite often, the performance
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and efficacy of the algorithms for different problems, applications or experimentations would differ
greatly, when different parameter values are used. Since there is no golden rule on how the model
parameters should be set and the models are sensitive to the parameter values used, users may only
guess the values or find the parameter values by trial-and-error. In summary, given that the nature of
the swarm search is dynamic, the parameters should be made self-adaptive to the dynamic nature of
the problem. Some parameters’ values may be the best at yielding the maximum performance at one
time, while other values may be shown to be better in the next moment.

Figure 1. Movement patterns of wolf preying and the algorithm parameters.

In order to solve this problem, the Self-Adaptive Wolf Search Algorithm (SAWSA) is modified
with a combination of techniques, such as a random selection method and a core-guided (or global
best-guided) method integrated with the Differential Evolution (DE) crossover function as the
parameter-updating mechanism [14]. This SAWSA is based on a randomization, which clearly is
not the best option for the rule-based WSA. Compared with the other swarm intelligence algorithms,
the most valuable advantage of the original WSA is the stability. However, even though the average
results of the published SAWSA are better than those of the WSA, the stability is weakened. To generate
a better schema of the algorithm, the implicit relations between the parameters and the performance
should be studied. In this paper, we try to find a way to stabilise the performance and generate a
self-adaption-guided part for the algorithm. Furthermore, the coding structure is modified. The new
algorithm is denoted as the Gaussian-Guided Self-Adaptive Wolf Search Algorithm (GSAWSA).

The contributions of this paper are summarized as follows. Firstly, the self-adaptive parameter
range for WSA is carefully improved. Secondly, the parameter updater is not embedded in the main
algorithm any longer, and it evolves as an independent updater in this new version. These two
changes essentially show different and better optimization performance from the previous version
of SAWSA [14]. To verify the performances of the new model once the changes have been made,
the experiments are redesigned with settings that enhance the clarity of the result display. The novelty
in this paper is the Gaussian-guided parameter updater method. It is a method based on information
entropy theory. To improve the performance of SAWSA further, we proposed this novel idea by
treating the search agent behaviour as chaotic behaviour, so the algorithm can be perceived as a chaotic
system. Using the chaotic stability theory, we can use chaotic maps to guide the operation of the
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system. Additionally, the entropy value can be used as a measurement of the stability and the inner
information communication. In our paper, the feasibility of this new method is analysed, and a suitable
map for WSA is found to be a Gaussian map. The advantage of using a Gaussian map as a new method
is observed via an extensive simulation experiment.

We verify the efficacy of the considered methods with fourteen typical benchmark functions and
compare the performance of GSAWSA with the original WSA, the original bat algorithm and the
Hybrid Self-Adaptive Bat Algorithm (HSABA) [15]. The self-adaptiveness is powered by Differential
Equations (DE) in SABA. The concept is based on Particle Swarm Optimization (PSO), which moves in
some sort of mixed random order and swarming patterns. PSO is one of the classical swarm search
algorithms that often shows superior performance with standard benchmark functions. From our
investigations, it is supposed that the parameter control by some entropy function in GSAWSA would
possibly offer further improvement. The self-adaptive method is a totally hands-free approach that lets
the search evolve itself. Parameter control is a guiding approach that steers the course of parameter
changes during runtime.

The remainder of the paper is structured as follows: The original wolf search algorithm and
the published SAWSA [14] are briefly introduced in Section 2. The chaos system entropy analysis
and Gaussian-guided parameter control method are discussed in Section 3, followed by Section 4,
which presents the comparison experiments of both the self-adaptive method and the parameter
control method with several optional DE functions. The paper ends after presenting concluding
remarks in Section 5.

2. Related Works and Background

Researchers have extended and improved metaheuristic optimization algorithms to a large extent
during the past few decades. The classic algorithms have become more and more mature. Many new
and efficient algorithms were invented like those presented in the Introduction. They are tested
and shown to be suitable for real case studies. Researchers from other areas have started to use the
metaheuristic algorithms in their studies, as well, because of their ease of use. Lately, self-adaptive
methods have become popular, and many works in this direction have been published. The purpose
of the self-adaptive methods for metaheuristic algorithms is fitting the same algorithm to different
problems by self-tuning the parameter values. In the population-based optimization algorithms,
two common parameters are very easy to handle: these are the search agents’ population and the
search iterations. These two parameters have almost a linear effect with the performance, so the user
can choose them judging by the expected level of accuracy and the calculation resources. However,
the other parameters are very different from one another in nature. For loosely-packed type of
algorithms, one typical research direction is the self-adaptive methods for PSO, the idea being to
introduce a check and repair operation to every iterative generation of the search [16]. The idea is
suitable for the strong collective swarm algorithms, as well. The self-adaptive firefly algorithm [17]
and the hybrid self-adaptive bat algorithm [15] have both proven that the parameter control method
makes a great contribution to the search performance. In this paper, as we want to introduce a new
parameter control method for WSA, we will first introduce the original WSA and some related
self-adaptive methods. Then, this method could be potentially applied to all the other strong collective
swarm algorithms.

2.1. The Original Wolf Search Algorithm

The WSA is a relatively young, but efficient member of the family of swarm intelligence algorithms.
The logic of the WSA search agents is inspired by the hunting behaviour of wolf packs. When preying,
wolves use both cooperation and individual work [11]. The wolf applies both local search and a global
communication at the same time. To transfer the wolf swarm preying behaviour into a computing
method, some basic rules of the WSA are formulated as below.
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1. Each wolf search agent has a specific visual range γ, defined by Equation (1).

γ ≤ d(wi ,wc) = (
n

∑
k=1
|wi,k − wc,k|λ)

1
λ (1)

wi is the position of the current search agent; wc is a nearby search agent within visual range γ;
and λ is the order of the hyper space.

2. The result of the objective function, which is the fitness value produced from benchmark functions,
is used as the measurement of the local position of each search agent (wolf). The search agent
can move towards a better location by communication with other agents. Two situations can be
found here. One is that the wolf can sense a neighbour with a better location in its visual range.
Then, the wolf will move directly towards it. Another situation is that the wolf cannot sense any
better peers. Then, the wolf will try to find a better location using a random Brownian movement.

3. To avoid local optima, an escape strategy is introduced to the WSA. An enemy is randomly
generated in the search space. If a wolf search agent senses the presence of an enemy, from the
current position, it will jump very far away to a new position. The function escape(pa) requires
a user input parameter pa, and it generates a new location for an escaped wolf. The function
equation is shown in Equation (2) [14].

wi
′ = wi + [rand · (1

2
Γ− γ) + γ] i f rand > pa (2)

Γ is the measure of the search space range based on the given upper and lower bounds of the
variables, and pa is the escape probability. The behaviour control parameters are listed in Table 1.

Table 1. Behaviour control parameters.

Parameter Definition

γ The visual radius of a wolf agent
s The step size of a wolf agent
α The velocity of the wolf agent
pa The probability of having enemy presence

An example of the wolves’ preying behaviour is illustrated in Figure 1. The original WSA consists
of four main parts, which are shown as the four blocks in Figure 2.

Figure 2. The four main parts of the original Wolf Search Algorithm (WSA).
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The initialization process is important for the original WSA. This is when all the parameters are
set with some values. Once the parameters are set, the algorithm proceeds to search for solutions
iteratively according to the parameter values, which are fixed throughout the runtime. For all iterative
metaheuristics, the parameters control how the iterative search proceeds, such as how the solution
evolves and how new candidate solutions are discovered, and the fitter new solutions are replacing the
old ones according to some rules coded in the algorithm. For the evolution part, the wolves’ location
update function can be summarized by Equation (3).

wi
′ =

{
wi + α · γ · rand, random movement

wi + β0 · e−γ2 · (wj − wi), wj is the result from local search
(3)

2.2. The Self-Adaptive Wolf Search Algorithm

As the parameter training is very important for the performance except for the approach based on
preset static parameter values, there are three parameter control methods that are usually used. One is
the rule-based parameter setting method. The other one is the feedback adaptive method where the
parameters are made adaptive to the feedback from the result of the search algorithm [18]. The third
approach is the free self-adaptive method, where the parameters can be freely changed during the
algorithm run time [15]. Obviously, the adaptive and the self-adaptive methods can be considered as
more user friendly, as users do not need to know how to set the parameters or the rules by themselves.
From these two methods, the self-adaptive one has turned out to be more popular in the research
area, because the search agents’ situation and the local fitness landscape can be dynamically different
from generation to generation during the algorithm run. These three methods are conceptually shown
in Figure 3.

Figure 3. The processing of the self-adaptive method.
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In 2014, the original bat algorithm is hybridized with a differential evolution strategy called the
DE strategy; it was published in [19], known as the Hybrid Self-Adaptive Bat Algorithm (HSABA).
The working logics of HSABA are briefly listed as follows:

1. Execute the local search using the DE strategy. A self-adaptation rate, r, should be present, which
states the ratio of self-adaptive bats to the whole population of bats. In [19], the ratio of 1:10 was
used for the number of self-adaptive bats.

2. Choose four virtual bats randomly from the population, each of which was initialized with
a new position.

3. Apply the DE strategy to improve the candidate solution.

The WSA was designed for solving complex problems, and the advantage in efficiency becomes
more apparent when the search space dimension grows. Distinctive from HSABA, in our SAWSA,
the calculation cost is taken into account in the evolution. In contrast to SABA, the SAWSA uses the
DE functions instead of embedding the parameters into the search agents. DE functions are a kind of
well-developed local search and update function with very low calculation cost.

In the SAWSA, two kinds of self-adaptive methods are used. The first one is called the core-guided
one, which is related to the HSABA. During the parameter updating process, HSABA considers
the current global best solution from four selected bats using the DE function DE/best/2/bin [15],
which is depicted in Equation (4). In this equation, F > 0 is a real-valued constant, which adjusts the
amplification of the differential variation.

bj = batbest + F · (batr1,j + batr2,j − batr3,j − batr4,j) (4)

The other approach is fully random, which is therefore called the random selection DE method,
and a simple description is as follows [14]:

1. Randomly select a sufficient number of search agents.
2. Apply the DE functions on the crossover mechanism.
3. Determine if updating the parameters is needed by looking into the current global best solution.
4. Load new values from some allowable range into the parameters.

The pseudocode of the published SAWSA is shown in Algorithm 1. In this algorithm,
wi(i = 1, ..., w) is the wolf population, global f itnesswi is the global fitness values of each wolf,
f (x) is the objective function, the number of parameters is npar (with WSA, the number is
four), the control parameters are para[1], ..., para[npar] representing γ, s, α, pa, the lower bounds
for parameters are paralowerbound[1], ..., paralowerbound[npar], the upper bounds for parameters are
paraupperbound[1], ..., paraupperbound[npar], the update probability of parameters is Pupdate and the
self-adaptation probability is Psel f−adapted.
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Algorithm 1: The self-adaptive wolf search algorithm.

Input: Wolf population wi(i = 1, . . . , w). The radius of the wolf’s visual range γ, the length of
a wolf’s step size s, the velocity of the wolf α, the probability of enemy emergence and
escape frequency pa, and the objective function f (w).

Output: fmin //which is the best wolf’s(w) fitness in the last generation
1 init_wol f ()
2 init_parameters()
3 eval = evaluate.the.new.population
4 fmin = f ind_best_solution(wbest)

5 while termination_condition_not_met do
6 for each i = 1 to w do
7 Prey_new_ f ood_initialtively()
8 y = generate_new_location(wi)

9 if f (wi) < f (wj) then
10 wi moves towards wj // wj is in a more feasible position.
11 end
12 else
13 Prey_new_ f ood_passively()
14 end
15 wi

′ = generate_new_location(wi)

16 wi
′ = escape(pa)

17 end
18 fmin = f ind_best_solution(wbest

′)

19 if rand() > Psel f−adapted then
20 ri=1,...,n = [rand() ·w + 1]∧ r1, . . . , rn being mutually different
21 end
22 for i = 1 to npar do
23 //for every parameter
24 temppara = para[i]
25 if rand() > Pupdate then
26 temppara = paraupperbound[i] + rand · (paraupperbound[i]− paralowerbound[i])

f itnesswn = DE_Function(r1.r2, . . . , rn)

27 end
28 if f itnesswn < global f itnesswi then
29 para[i] = temppara

30 end
31 end
32 end

3. Gaussian-Guided SAWSA Based on Information Entropy Theory

For the self-adaptive method, the parameter boundaries constitute crucial information [20]. By the
parameter definition, an extensive testing was carried out for finding the possible values or ranges
for the parameters. Some validated parameter boundaries for SAWSA are shown in Table 2. In the
previously-proposed self-adaptive wolf search algorithm, the parameter boundaries are the only
limitations of the parameter updating. Clearly, this is not good enough because the ideal parameter
control should follow the same patterns such that the changing of the parameter will not affect the
algorithm performance.
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Table 2. Boundaries of behaviour control parameters.

Parameter Update Range Definition

γ (0, 2 · ln(Γ)] by experiment visual range
s (0, 1] by definition step size
α (0, 1] by both experiment and definition velocity factor
pa [0, 1] by definition escape probability

Just like other classic probabilistic algorithms [21], a mathematical model of WSA is hard to
analyse with formal proofs given its stochastic nature. Therefore, we use extensive experiments to gain
insights from the experiences with WSA parameter control. To examine the effects of each parameter,
the static step size s, the velocity factor α, the escape frequency pa and the visual range γ as model
variables are used. The results show that already a small change of the parameter limits can obviously
affect the performance. When the parameter boundaries are well defined, the performance can hardly
be affected. Thereby, it provides consistent optimization performance. In Figure 4, an example with
the Ackley 1function for D = 2 is shown. Each curve in this figure is the average convergence curve
of 20 individuated results (experiment repetitions). Here, the static parameters are s = 1, α = 0.2
and pa = 0.25. The parameter γ changes from one to Γ = 70 with a step size of one. Here, as an
example, we only evaluate parameter γ. The other parameters follow a similar pattern.

Figure 4. Convergence curves of WSA with γ as the variable.

In Figure 4, most of the 70 curves are overlapping because changing the visual range does not
bring much improvement. Only in the range from γ = 1 to γ = 8, the improvement is obvious. It can
be clearly seen that for the Ackley 1function, updating γ in the definitional domain can be used, but is
not necessary. The best solution comes from updating γ within a reasonable range where a large
improvement can be obtained with the least number of attempts. By analysing the distribution of
the best fitness values with the corresponding γ values in Figure 5, we can conclude that the best
improvement can be obtained by the approach from the lower bound. This pattern can be shown in
our experiments with other benchmark functions, as well. Therefore, for parameter γ, we can give a
more reasonable updating domain from the experiments:

0 < γ ≤ 2 · ln(Γ) Γ > 0 (5)
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Another pattern can be used as shown in Figure 5, as well, where the best parameter solution
is always located in a small range. If we find a sufficiently suitable parameter value, the best way to
update is to do so within a certain range, which means the next generated parameter should be guided
by the previous one. By using this method, we can avoid unstable performance and save time from
random guesses. Subsequently, the challenge now is to choose a suitable entropy function to guide the
parameter control approach.

Figure 5. Best fitness value with each γ value.

However, as a probability-based algorithm, the current optimization states can influence the
results in the next generation, while the future move is highly unpredictable. This model behaviour
can be described by the theory of chaos [22], and the parameter update behaviour can be treated
as a typical chaotic behaviour; this behaviour seems like a random updating with an uncertain,
unrepeatable and unpredictable behaviour in a certain described system [23]. The chaotic phenomenon
has to take into account population control, hybrid control or initialized control in metaheuristic
algorithm studies [24] and other data science topics [25]. In our study, the entropy theory is used to
control the parameter self-update. The reason is analysed as below.

The individual parameter update behaviour is unpredictable by the updater; however, as a
chaotic system, the stability can be measured. The chaotic and entropy theory have been used in
many schemes [26]. The entropy or entropy rate is one of the efficient measures for the stability of a
chaotic system.

The logistic map is one of the most famous chaos maps [27]. It has a polynomial mapping of
degree two, which is also denoted as a recurrence relation. Often as an archetypal example, it is cited
and used to describe how chaotic and complex a behaviour can become after evolving from some
straightforward non-linear dynamical equations. In our paper, the logistic map is used as an example.
The map is defined by Equation (6) [28]:

fµ : = [0, 1]→ [0, 1] given by xn+1 = fµ(xn), where fµ(x) = µx(1− x) (6)

This map is one of the simplest and most widely-used maps in chaos research, which is also very
popular in swarm intelligence. For example, in water engineering, chaos PSO using the logistic map
provides a very stable solution to design a flood hydro-graph [29], and it was also used in a resource
allocation problem in 2007 [30]. Equation (6) is the mathematic definition of a logistic map; it gives the
possible iteration result of a linear problem. To analyse the stability of this map, we can calculate the
entropy by using Equation (7).

HL = − ∑
SL∈A

PrSL log2(PrSL) (7)

The entropy evaluation for the logistic map and the bifurcation diagram is shown in Figure 6.
It is clear that the most probable iteration solutions are located near the upper or lower bound of
the definition domain. Comparing with the entropy value, the larger the entropy value is, the larger
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the range of the distribution for the corresponding µ can be provided in the logistic map or defined
in information theory as larger information communication. The logistic map can provide a usable
way to solve the chaos iteration problem. However, it is not the best way for swarm intelligence,
because through many experiments, it is known that the best solution should hardly be located near
the boundary. Therefore, here, we consider using another chaos map, which can provide the same
stability with a more reasonable iteration outcome.

(a) (b)

Figure 6. Bifurcation diagram (a) and entropy value (b) of the logistic map.

The Gauss iterated map, which is popularly known as the Gaussian map or mouse map, is another
type of a nonlinear one-dimensional iterative map given by the Gaussian function [31] in mathematics:

xn+1 = exp(−α · x2
n) + β (8)

With this function, the Gaussian map can be described as the equation:

G : < → < defined by G(x) = e−αx2
+ β (9)

where α and β are constant variables. There is a bell-shaped Gaussian function named after Johann
Carl Friedrich Gauss. Its shape is similar to the logistic map. As the Gaussian map has two parameters,
it can provide more controllability to the iteration outcome, and the G : < → < definition domain can
meet more needs than the logistic map. The next step is to choose the most stable and suitable model
for use in parameter control. The goal for this step is to satisfy the stability requirement of a chaos
system, while keeping up a higher entropy value for more information communication in the system.

The stability of the chaotic maps is defined by the theorem below [32]:

Theorem 1. Suppose that the map fµ(x) has a fixed point at x∗. Then, the fixed point is stable if:∣∣∣∣ d
dx

fµ(x∗)
∣∣∣∣ < 1 (10)

and it is unstable if: ∣∣∣∣ d
dx

fµ(x∗)
∣∣∣∣ > 1 (11)
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The stability analysis of the Gaussian map is shown below.

∫
G(x)dx =

∫
e−αx2

+ βdx =

∣∣∣∣√π

α

∣∣∣∣ (12)

Using Theorem 1, we get the following stability result depending on the parameter values: x∗ is stable, if
√

π
α < 1

x∗ is unstable, if
√

π
α > 1

(13)

From the analysis, the stability is just related to α; the Gaussian map will move to stable regions
when α > π. In Figure 7, we can see the possible iterative outcome with each β when α = 4 and α = 9
to visualize the effects of different α values. As shown in Figure 8, this map shows the period-doubling
and period-undoubling bifurcations. Considering the parameter iteration needs in our program,
based on the entropy theory, the final parameters are set as α = 5.4 and β = −0.52, which can provide
both stability and enough inner information change.
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Figure 7. Bifurcation diagram of a Gaussian map when α = 4 (a) and α = 9 (b).
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Figure 8. Bifurcation diagram of a Gaussian map when α = 5 (a) and α = 5.4 (b).
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Using this Gaussian map, the new parameter iterative method will be updated from:

temppara = paralowerbound + rand · (paraupperbound − paralowerbound) (14)

to:
temppara = exp(−α · para2) + β (15)

where α and β will be set as above for generating modified parameter values for WSA within the
specified boundaries. If this equation leads to negative values in our algorithm, we simply use the
absolute value for the parameter update, as all used parameter values should be positive.

Our experiments show that this parameter control method offers more stability and better
performance compared to the proposed SAWSA. The parameter control mechanism will be added into
the original random selection-based SAWSA, as it has a much better performance than the core-guided
DE, which is strongly based on the global best agent (this experiment result is shown in the next
section). With this modification, the final version of the Gaussian-guided SAWSA is generated.

To show the advantage of the entropy-based Gaussian-guided parameter update method,
which avoids the randomness, we modified all the optional DE functions to self-adaptive methods.
By adapting to all these functions, the result can show if the improvement is caused by the adaptive
function or the parameter update-guided methods. We mix two different solution selection methods
with DE, and the combinations are shown in Table 3. The two self-adaptive types of methods are
compared in this paper. Hence, we have a list of differential evolution crossover functions such as DE1,
DE2, DE3 functions. In these functions, the current global best solution is taken into consideration.
This approach is supposed to increase the stability of the system because the direction of movement is
calculated in relation to the location of the current global best. The calculation by RDE1, RDE2, RDE3
and RDE4 is only done at the chosen search agents, so it will not overload the system. The solution
by bestselected is the one picked as the best current fitness among the other chosen ones. In this way,
more randomness can be added to the algorithm by this method. Wider steps are taken for more
optional behaviour. So far, it has been tested and worked well with the semi-swarm type of algorithms,
such as bat and wolf. It is however not know whether it may become unstable when coupled with
other search algorithms.

Table 3. The names of Differential Evolution (DE) functions that are implemented with various solution
selection methods.

Function Name DE Function

Core-guided DE method

DE1 ŵ = wglobalbest + F · (wr1,j + wr2,j − wr3,j − wr4,j)
DE2 ŵ = wr1,j + F · (wglobalbest − wr2,j)− F · (wr3,j − wr4,j)
DE3 ŵ = wglobalbest + F · (wr1,j − wr2,j)

Random selection DE method

RDE1 ŵ = wselectedbest + F · (wr1,j + wr2,j − wr3,j − wr4,j)
RDE2 ŵ = wr1,j + F · (wselectedbest − wr2,j)− F · (wr3,j − wr4,j)
RDE3 ŵ = wselectedbest + F · (wr1,j − wr2,j)
RDE4 ŵ = wr1,j + F · (wr2,j − wr3,j)

4. Experimental Results

To validate the efficiency of the GSAWSA, we compare it with other well-established and efficient
swarm intelligence algorithms such as BA, HSABA and PSO in this paper. In order to prove that the
improvement is not caused by the different DE self-adaptive functions, we also use all the optional DE
functions in the experiments and select the most suitable function. Afterwards, we test whether the
Gaussian-guided method can bring a better performance for the considered problems.
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4.1. SAWSA Comparative Experiments

The main purpose of this part is to prove that the SAWSA is better than the other algorithms
in most cases. Then, we figure out which is the most suitable DE self-adaptive method for the
next Gaussian-guided modification. Furthermore, the outcomes of these experiments determine the
comparison group of the next experiment. Fourteen standard benchmark functions that are typically
used for benchmarking swarm algorithms are used for a credible comparison [33]. They are shown
in Table 4.

The objective of the experiments is to compare the suitability of integrating the DE functions,
which are listed in Table 3, on various swarm search algorithms, such as SAWSA, WSA, BA, HSABA
and PSO. The algorithm combos are benchmarked with those typical standard benchmark functions as
appeared in Table 4. The default parameter values used are those suggested from their original papers.
An exception is the self-adaptive approaches: there is no parameter value because it is designed to be
parameter free. Each benchmark function was tested in various dimensions increasing in complexity
from 2, 5, 10, 20, 30 to 50. The population sizes are maintained at two extremes: 20 and 10,000 iterations
are repeated for each case. To achieve consistent results, for each function and each dimension,
the program was run 50 times for 10,000 cycles, which was how it was done in [34]. Their average
curves are then computed, which are shown as the final result.

When the search space dimension is low, all the algorithms can achieve impressive results.
The differences are too small to show in both figures and tables. Therefore, for a clearer view, we only
present the results for D = 30 in Table 5 and the result for D = 50 in Table 6. In the result tables, the best
results are coloured in bold red, and the second best results are coloured in bold black.

Figures 9–11 show the box-plots of some standard benchmark functions’ comparisons for the
same or different dimensions. The black line in the middle of the box-plots indicates the average
baseline; half of the result range is shown by the size of the inner box. For easy visual comparison on
the same axis, the ranges for all the data have been normalized.

Table 4. Standard benchmark functions.

f Function Name Search Range Global Best

f1 Ackley function [−35, 35] f (x∗) = 0
f2 Alpine function [−10, 10] f (x∗) = 0
f3 Csendes function [−1, 1] f (x∗) = 0
f4 Deb 1 function [−1, 1] f (x∗) = 0
f5 Deflected Corrugated Spring function [0, 10] f (x∗) = 0
f6 Dixon and Price function [−10, 10] f (x∗) = 0
f7 Infinity test function [−1, 1] f (x∗) = 0
f8 Levy 3 test function [−10, 10] f (x∗) = 0
f9 Michalewicz test function [0, pi] f (x∗) = −1.8013
f10 Mishra 7 test function [−10, 10] f (x∗) = 0
f11 Moved axis function [−5.12, 5.12] f (x∗) = 0
f12 Penalty 1 function [−50, 50] f (x∗) = 0
f13 Rastrigin function [−15, 15] f (x∗) = 0
f14 Rosenbrock function [−15, 15] f (x∗) = 0
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Table 5. Result data when D = 30. HSABA, Hybrid Self-Adaptive Bat Algorithm; SAWSA, Self-Adaptive Wolf Search Algorithm.

Fun. a Meas. b PSO BA HSABA WSA
SAWSA

DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4

f1
Aver. c 2.00× 1001 1.89× 1001 2.00× 1001 2.02× 1001 1.36× 1001 1.22× 1001 1.45× 1001 9.30× 1000 3.60× 1000 1.00× 1001 7.06× 10−01

Stdev. d 5.58× 10−07 1.98× 1000 1.31× 10−06 5.30× 10−02 8.32× 10−01 5.90× 1000 1.96× 1000 9.93× 10−01 1.26× 1000 6.99× 1000 5.71× 10−01

f2
Aver. 2.30× 1001 7.59× 1000 3.75× 1001 1.51× 1001 7.99× 10−01 6.85× 10−01 2.15× 1000 6.09× 10−01 1.99× 10−06 3.46× 10−03 5.34× 10−04

Stdev. 3.13× 1001 1.65× 1001 1.00× 1002 2.40× 1000 2.37× 10−02 1.89× 10−02 1.07× 1001 8.95× 10−03 7.90× 10−11 1.75× 10−04 1.79× 10−06

f3
Aver. 6.40× 10−03 3.94× 10−06 5.42× 10−01 1.62× 10−03 2.55× 10−11 2.34× 10−11 3.43× 10−12 2.65× 10−11 6.07× 10−13 3.14× 10−12 2.51× 10−14

Stdev. 1.07× 10−04 1.40× 10−12 3.66× 1000 1.23× 10−06 1.40× 10−22 7.88× 10−23 1.31× 10−23 9.01× 10−23 9.31× 10−25 2.88× 10−23 7.44× 10−27

f4
Aver. −7.77× 10−01 −9.03× 10−01 −4.64× 10−01 −6.35× 10−01 −9.96× 10−01 −9.96× 10−01 −9.97× 10−01 −9.96× 10−01 −9.97× 10−01 −9.97× 10−01 −9.97× 10−01

Stdev. 2.21× 10−03 3.49× 10−03 1.12× 10−03 1.98× 10−04 3.52× 10−07 1.37× 10−06 4.50× 10−07 4.59× 10−07 7.05× 10−07 4.85× 10−07 6.90× 10−07

f5
Aver. 5.07× 1000 7.11× 1000 1.29× 1001 1.46× 1001 3.47× 1000 2.83× 1000 5.06× 1000 2.37× 1000 −1.17× 1000 9.22× 10−01 −1.84× 1000

Stdev. 8.68× 1000 1.32× 1001 3.34× 1001 5.15× 1000 3.01× 1000 4.61× 1000 4.09× 1000 1.50× 1000 5.67× 10−01 2.35× 1000 2.54× 10−01

f6
Aver. 1.17× 1004 3.98× 10−01 2.94× 1005 1.16× 1001 7.75× 10−01 1.56× 1000 1.83× 1000 5.86× 10−01 2.65× 10−01 7.45× 10−01 1.19× 1000

Stdev. 4.71× 1008 1.73× 10−01 1.35× 1011 8.53× 1000 3.54× 10−01 6.90× 1000 3.30× 1000 2.79× 10−01 6.92× 10−05 8.33× 10−01 9.57× 10−01

f7
Aver. 1.36× 10−02 3.46× 10−06 2.58× 10−01 1.73× 10−03 3.48× 10−11 2.16× 10−11 2.71× 10−12 2.85× 10−11 7.01× 10−13 2.31× 10−12 1.93× 10−14

Stdev. 2.30× 10−04 1.27× 10−12 4.96× 10−01 1.24× 10−06 2.47× 10−22 1.22× 10−22 9.58× 10−24 1.73× 10−22 1.73× 10−24 1.20× 10−23 2.81× 10−27

f8
Aver. 3.64× 1001 3.22× 1000 5.17× 1001 4.48× 1001 1.40× 10−04 9.06× 10−02 1.69× 1000 9.88× 10−05 9.05× 10−02 6.63× 10−01 1.39× 10−07

Stdev. 3.56× 1002 1.97× 1001 1.01× 1003 4.52× 1001 1.32× 10−08 7.77× 10−02 6.65× 1000 2.99× 10−10 7.77× 10−02 1.06× 1000 3.69× 10−13

f9
Aver. −1.26× 1001 −1.41× 1001 −1.60× 1001 −1.08× 1001 −2.47× 1001 −2.66× 1001 −2.87× 1001 −2.59× 1001 −2.95× 1001 −2.92× 1001 −2.96× 1001

Stdev. 1.09× 1000 4.71× 1000 5.19× 1000 3.56× 10−01 4.64× 10−01 1.60× 10−01 2.36× 10−01 3.48× 10−01 9.69× 10−03 9.18× 10−02 1.09× 10−03

f10
Aver. 6.98× 1064 1.34× 1049 6.98× 1064 9.67× 1052 3.51× 1051 3.27× 1051 3.34× 1051 4.60× 1051 3.18× 1051 8.05× 1051 5.61× 1051

Stdev. 5.76× 1098 5.59× 1098 5.76× 1098 2.74× 10106 2.50× 10103 3.97× 10103 6.43× 10103 4.22× 10103 1.79× 10103 3.81× 10104 1.18× 10104

f11
Aver. 1.83× 1003 9.93× 10−04 2.89× 1003 2.89× 1001 1.69× 10−01 1.85× 10−01 7.29× 10−01 1.40× 10−01 2.77× 10−30 1.65× 10−13 7.80× 10−05

Stdev. 7.90× 1005 5.36× 10−08 5.45× 1006 2.62× 1002 1.11× 10−02 8.92× 10−03 9.67× 10−02 2.16× 10−03 6.80× 10−59 5.47× 10−25 7.53× 10−08

f12
Aver. 8.98× 1001 7.04× 1001 2.21× 1002 1.32× 1002 1.84× 1001 7.16× 1000 2.51× 1001 5.04× 1000 3.63× 10−02 7.39× 10−01 9.88× 10−09

Stdev. 2.16× 1003 1.66× 1003 1.84× 1004 1.21× 1002 1.75× 1002 5.01× 1001 6.93× 1002 3.34× 1000 1.05× 10−02 3.57× 1000 6.32× 10−16

f13
Aver. 5.42× 1002 8.60× 1002 4.26× 1002 9.62× 1002 2.40× 1002 3.00× 1002 5.75× 1002 1.35× 1002 4.48× 10−01 2.11× 1002 5.00× 10−02

Stdev. 1.80× 1004 1.05× 1005 6.20× 1004 1.04× 1004 5.94× 1003 2.27× 1004 2.01× 1004 2.17× 1003 1.40× 1000 1.21× 1004 4.97× 10−02

f14
Aver. 1.26× 1005 8.07× 1001 2.20× 1006 7.50× 1001 1.10× 1001 8.16× 1001 1.15× 1002 1.83× 1001 4.25× 1001 2.07× 1001 5.01× 1001

Stdev. 2.09× 1010 8.05× 1003 1.59× 1013 1.18× 1002 7.95× 1002 1.80× 1004 1.58× 1004 6.48× 1002 1.45× 1003 7.11× 1002 2.26× 1003

a Short for Function, listed the benchmark function number. b Short for Measures, in this table two measures are used, the average number and the standard deviation. c The average
number of the best fitness result set. d The standard deviation of the best fitness result set.
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Table 6. Result data when D = 50.

Fun. Meas. PSO BA HSABA WSA
SAWSA

DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4

f1
Aver. 2.00× 1001 1.89× 1001 2.05× 1001 2.00× 1001 1.49× 1001 1.27× 1001 1.49× 1001 1.20× 1001 1.32× 1000 1.22× 1001 6.21× 1000

Stdev. 6.80× 10−07 1.22× 1000 8.55× 10−03 3.49× 10−07 7.00× 10−01 4.90× 1000 3.15× 1000 4.93× 10−01 8.02× 10−01 3.62× 1000 4.56× 1000

f2
Aver. 4.41× 1001 1.73× 1001 3.82× 1001 6.07× 1001 2.89× 1000 2.44× 1000 6.80× 1000 2.59× 1000 4.93× 10−02 2.67× 10−01 4.27× 10−02

Stdev. 1.23× 1002 6.32× 1001 4.94× 1000 3.26× 1002 2.16× 10−01 2.83× 10−01 8.84× 1001 1.01× 1000 9.06× 10−03 3.18× 10−01 3.50× 10−02

f3
Aver. 9.57× 10−02 4.67× 10−06 2.36× 10−03 1.45× 1000 1.15× 10−09 8.21× 10−10 1.92× 10−10 1.08× 10−09 1.69× 10−12 9.25× 10−10 3.17× 10−10

Stdev. 6.83× 10−02 1.64× 10−12 5.92× 10−06 4.51× 1000 1.99× 10−19 1.09× 10−19 3.92× 10−20 2.86× 10−19 6.04× 10−24 6.34× 10−18 4.34× 10−19

f4
Aver. −6.63× 10−01 −9.12× 10−01 −5.60× 10−01 −4.45× 10−01 −9.87× 10−01 −9.87× 10−01 −9.88× 10−01 −9.88× 10−01 −9.89× 10−01 −9.90× 10−01 −9.89× 10−01

Stdev. 2.46× 10−03 2.05× 10−03 6.75× 10−05 1.22× 10−03 2.13× 10−06 5.99× 10−06 1.86× 10−06 4.22× 10−06 2.76× 10−06 3.79× 10−06 2.61× 10−06

f5
Aver. 8.03× 1000 1.31× 1001 2.71× 1001 2.17× 1001 1.02× 1001 8.98× 1000 1.31× 1001 7.87× 1000 −1.89× 1000 3.73× 1000 −5.62× 10−01

Stdev. 6.65× 1000 2.85× 1001 6.14× 1000 3.03× 1001 3.65× 1000 3.08× 1000 1.28× 1001 4.83× 1000 8.01× 10−01 8.86× 1000 1.59× 1000

f6
Aver. 3.11× 1005 1.63× 1000 3.80× 1001 9.00× 1005 1.16× 1000 2.07× 1000 3.26× 1000 1.42× 1000 6.61× 1000 1.48× 1000 6.69× 10−01

Stdev. 1.57× 1011 8.64× 1000 1.37× 1002 7.01× 1011 2.13× 10−01 3.44× 1000 9.54× 1000 4.32× 10−01 1.93× 1001 2.52× 1000 6.77× 10−01

f7
Aver. 3.03× 10−02 4.37× 10−06 2.08× 10−03 1.25× 1000 1.24× 10−09 7.58× 10−10 1.61× 10−10 1.21× 10−09 1.32× 10−12 1.97× 10−10 2.13× 10−09

Stdev. 2.09× 10−03 3.45× 10−12 1.52× 10−06 8.03× 1000 2.91× 10−19 9.67× 10−20 4.87× 10−20 3.46× 10−19 3.08× 10−24 2.66× 10−19 8.12× 10−17

f8
Aver. 7.84× 1001 5.70× 1000 8.59× 1001 1.07× 1002 1.11× 1000 1.40× 10−01 1.52× 1000 1.36× 10−01 8.59× 10−07 5.68× 10−01 1.85× 10−01

Stdev. 8.69× 1002 4.69× 1001 8.78× 1001 2.81× 1003 6.72× 1000 2.12× 10−01 6.45× 1000 3.67× 10−01 1.65× 10−12 1.82× 1000 2.39× 10−01

f9
Aver. −1.75× 1001 −2.00× 1001 −1.41× 1001 −2.63× 1001 −3.84× 1001 −4.09× 1001 −4.69× 1001 −3.94× 1001 −4.71× 1001 −4.81× 1001 −4.67× 1001

Stdev. 4.10× 1000 1.01× 1001 2.97× 10−01 2.65× 1001 9.17× 10−01 6.45× 10−01 7.22× 10−01 5.30× 10−01 1.90× 10−01 2.11× 10−01 2.46× 10−01

f10
Aver. 9.25× 10128 9.94× 10128 1.01× 10117 9.55× 10119 8.11× 10115 5.04× 10115 1.09× 10116 7.82× 10115 3.60× 10115 3.47× 10115 1.07× 10116

Stdev. 9.97× 10226 9.97× 10226 4.10× 10226 9.97× 10226 1.71× 10226 1.25× 10226 4.52× 10226 2.19× 10226 4.84× 10226 2.19× 10226 4.92× 10226

f11
Aver. 8.35× 1003 9.44× 10−03 8.85× 1001 1.09× 1004 1.76× 1000 2.19× 1000 5.08× 1000 1.56× 1000 8.03× 10−02 3.44× 10−03 3.15× 10−08

Stdev. 1.10× 1007 4.83× 10−06 1.89× 1003 3.77× 1007 1.44× 1000 1.32× 1000 8.50× 1000 6.74× 10−01 5.38× 10−02 1.06× 10−04 1.70× 10−14

f12
Aver. 1.99× 1002 9.64× 1001 2.66× 1002 4.02× 1002 4.90× 1001 1.09× 1001 2.70× 1001 2.01× 1001 5.04× 10−02 1.50× 1000 1.04× 10−02

Stdev. 6.40× 1003 8.99× 1002 6.66× 1002 5.64× 1004 3.18× 1003 1.38× 1002 2.05× 1003 1.25× 1001 5.08× 10−02 1.58× 1001 1.02× 10−03

f13
Aver. 1.27× 1003 1.52× 1003 1.58× 1003 1.05× 1003 5.02× 1002 6.35× 1002 1.21× 1003 3.10× 1002 1.24× 1000 6.22× 1002 1.85× 1001

Stdev. 6.42× 1004 3.04× 1005 1.51× 1004 1.68× 1005 2.96× 1004 4.63× 1004 9.37× 1004 4.30× 1003 2.16× 1001 5.52× 1004 2.82× 1003

f14
Aver. 7.47× 1005 7.95× 1002 1.58× 1002 5.39× 1006 2.57× 1001 6.16× 1001 1.03× 1002 3.24× 1001 1.57× 1002 6.14× 1001 7.55× 1001

Stdev. 3.62× 1011 3.97× 1006 7.22× 1002 4.26× 1013 5.52× 1002 3.65× 1003 8.46× 1003 2.53× 1003 1.02× 1004 1.51× 1003 1.87× 1003
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(a) (b)

Figure 9. Alpine function (a) and Levy 3 test function (b) when D = 50.

(a) (b)

Figure 10. Rastrigin function (a) and penalty function (b) when D = 50.

(a) (b)

Figure 11. Ackley function when D = 30 (a) and D = 50 (b).

4.2. Gaussian-Guided Parameter Control Comparative Experiments

In this section, the experiment purpose is to prove the efficiency of the entropy-guided parameter
control mechanism using the Gaussian function for a substantiation of the expected benefits of SAWSA.
From the previous section, we can see clearly that the random selection method is more suitable as a
self-adaptive method for WSA. Therefore, in this experiment, to reduce the redundancy, we only add
the entropy-guided parameter control mechanism using the Gaussian function to the randomization
part of the DE self-adaptive WSA with the four functions listed in Table 3. They are referred to as
RDE1, RDE2, RDE3 and RDE4. For comparison, the entropy-guided SAWSA in the searching part is
generated using the Gaussian function, and they referred to as GRDE1, GRDE2, GRDE3 and GRDE4
in this experiment. We also use the 14 benchmark functions from Table 4, which are tested for the
dimensions 2, 5, 10, 20, 30 and 50. The maximum number of generations and the population size are
set as gen = 10,000 and static pop = 20, respectively. For consistent results and a fair comparison, each
case was run 50 times, and we use the average for the final data analysis.



Entropy 2018, 20, 37 18 of 25

When the dimension is low, all algorithms have a similar performance, and the algorithmic
enhancement seems unnecessary. However, when D increases to a large number (which means the
objective function is very complex), the enhancement provided by this entropy-based Gaussian-guided
parameter control method can be clearly observed. Therefore, here, we only show the experiment
results for D = 30 and D = 50 in Tables 7 and 8. The best results are marked in red.

In Tables 7 and 8, we can see that most of the best results are obtained by the entropy-based
Gaussian-guided SAWSA. The entropy-based Gaussian-guided methods not only enhance the
performance, but also stabilize it. In the box charts as shown in Figures 12 and 13, the boxes show the
location ranges of middle half of the result data, while the black lines show the average data. For better
visual comparison, all the data are normalized. In most cases, the entropy-guided SAWSA produces
better performance than the original SAWSA, and even every entropy-guided algorithm has a much
smaller box in the box chart than the SAWSA comparison algorithm. For a metaheuristic algorithm.
this improvement is significant, as stability is a very important attribute, which is often very hard
to achieve.

For the statistical tests, we use the p-values as the measurement and the WSA as the control
method. Due to page limitation, we cannot show all the comparisons with other control methods.
Therefore, we focus on improving the original WSA. The hand p-values are shown in Table 9. Knowing
the “no free lunch” policy [35], the improvement resulted in the algorithm costing more calculation
resources than the original WSA. In Table 10, the CPU times are listed for all the algorithms with
D = 30 and D = 50. The CPU time is defined as the total run time for each algorithm that runs
1000 generations with 20 search agents.

RDE1  GRDE1    RDE2   GRDE2   RDE3  GRDE3  RDE4   GRDE4

    1

0.8

0.6

0.4

0.2

   0

(a) (b)

Figure 12. Deb 1 function (a) and Levy 3 test function (b) when D = 50.

RDE1  GRDE1  RDE2   GRDE2   RDE3  GRDE3   RDE4   GRDE4

    1

0.8

0.6

0.4

0.2

   0

(a) (b)

Figure 13. Michalewicz test function (a) and Penalty 1 function (b) when D = 50.
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Table 7. Gaussian-guided SAWSA comparison result data when D = 30.

Fun. Meas.
SAWSA D = 30

RDE1 GRDE1 RDE2 GRDE2 RDE3 GRDE3 RDE4 GRDE4

f1
Aver. 9.30× 1000 3.60× 1000 1.52× 1001 2.12× 1000 1.00× 1001 7.06× 10−01 1.24× 1001 2.18× 1000

Stdev. 9.93× 10−01 1.26× 1000 3.13× 1000 1.36× 1000 6.99× 1000 5.71× 10−01 3.24× 1000 2.11× 1000

f2
Aver. 6.09× 10−01 1.99× 10−06 1.47× 1000 2.94× 10−03 3.46× 10−03 5.34× 10−04 9.00× 10−01 4.64× 10−03

Stdev. 8.95× 10−03 7.90× 10−11 3.03× 1000 4.00× 10−05 1.75× 10−04 1.79× 10−06 8.00× 10−01 1.74× 10−04

f3
Aver. 2.65× 10−11 6.07× 10−13 4.26× 10−18 1.40× 10−20 3.14× 10−12 2.51× 10−14 6.48× 10−15 3.57× 10−21

Stdev. 9.01× 10−23 9.31× 10−25 9.54× 10−36 4.48× 10−40 2.88× 10−23 7.44× 10−27 8.39× 10−28 1.33× 10−40

f4
Aver. −9.96× 10−01 −9.97× 10−01 −1.00× 1000 −1.00× 1000 −9.97× 10−01 −9.97× 10−01 −1.00× 1000 −1.00× 1000

Stdev. 4.59× 10−07 7.05× 10−07 2.02× 10−10 9.41× 10−10 4.85× 10−07 6.90× 10−07 2.24× 10−10 8.77× 10−10

f5
Aver. 2.37× 1000 −1.17× 1000 3.61× 1000 −2.37× 1000 9.22× 10−01 −1.84× 1000 −7.95× 10−01 −2.21× 1000

Stdev. 1.50× 1000 5.67× 10−01 1.44× 1000 9.57× 10−26 2.35× 1000 2.54× 10−01 4.49× 10−01 1.04× 10−01

f6
Aver. 5.86× 10−01 2.65× 10−01 1.28× 1000 1.87× 1000 7.45× 10−01 1.19× 1000 5.07× 10−01 1.32× 1000

Stdev. 2.79× 10−01 6.92× 10−05 3.17× 1000 1.86× 1000 8.33× 10−01 9.57× 10−01 2.96× 10−01 3.54× 1000

f7
Aver. 2.85× 10−11 7.01× 10−13 7.14× 10−18 2.19× 10−20 2.31× 10−12 1.93× 10−14 1.94× 10−19 1.45× 10−21

Stdev. 1.73× 10−22 1.73× 10−24 8.83× 10−35 2.66× 10−39 1.20× 10−23 2.81× 10−27 2.14× 10−37 7.08× 10−42

f8
Aver. 9.88× 10−05 9.05× 10−02 1.59× 10−01 8.98× 10−09 6.63× 10−01 1.39× 10−07 2.30× 10−01 1.31× 10−09

Stdev. 2.99× 10−10 7.77× 10−02 1.16× 10−01 8.31× 10−17 1.06× 1000 3.69× 10−13 2.62× 10−01 2.95× 10−18

f9
Aver. −2.59× 1001 −2.95× 1001 −2.50× 1001 −2.92× 1001 −2.92× 1001 −2.96× 1001 −2.56× 1001 −2.90× 1001

Stdev. 3.48× 10−01 9.69× 10−03 8.58× 10−01 3.17× 10−02 9.18× 10−02 1.09× 10−03 1.74× 1000 8.78× 10−02

f10
Aver. 4.60× 1051 3.18× 1051 7.05× 1048 7.28× 1048 8.05× 1051 5.61× 1051 2.45× 1049 1.01× 1049

Stdev. 4.22× 10103 1.79× 10103 1.66× 1098 1.49× 1098 3.81× 10104 1.18× 10104 1.04× 1099 1.77× 1098

f11
Aver. 1.40× 10−01 2.77× 10−30 7.65× 10−03 2.09× 10−03 1.65× 10−13 7.80× 10−05 7.05× 10−05 5.70× 10−04

Stdev. 2.16× 10−03 6.80× 10−59 1.92× 10−04 2.49× 10−06 5.47× 10−25 7.53× 10−08 1.02× 10−08 1.52× 10−06

f12
Aver. 5.04× 1000 3.63× 10−02 3.05× 1001 5.18× 10−03 7.39× 10−01 9.88× 10−09 4.59× 1000 1.04× 10−02

Stdev. 3.34× 1000 1.05× 10−02 1.32× 1002 5.37× 10−04 3.57× 1000 6.32× 10−16 4.51× 1001 1.02× 10−03

f13
Aver. 1.35× 1002 4.48× 10−01 3.88× 1002 1.47× 1001 2.11× 1002 5.00× 10−02 1.78× 1002 2.06× 1001

Stdev. 2.17× 1003 1.40× 1000 4.78× 1003 5.63× 1001 1.21× 1004 4.97× 10−02 4.00× 1003 8.82× 1001

f14
Aver. 1.83× 1001 4.25× 1001 4.62× 1001 5.55× 1001 2.07× 1001 5.01× 1001 4.63× 1001 4.04× 1001

Stdev. 6.48× 1002 1.45× 1003 1.15× 1003 5.43× 1003 7.11× 1002 2.26× 1003 1.56× 1003 2.60× 1003
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Table 8. Gaussian-guided SAWSA comparison result data when D = 50.

Fun. Meas.
SAWSA D = 50

RDE1 GRDE1 RDE2 GRDE2 RDE3 GRDE3 RDE4 GRDE4

f1
Aver. 1.72×1001 1.20×1001 5.15×1000 1.32×1000 1.22×1001 1.47×1001 6.21×1000 5.10×1000

Stdev. 1.79×1000 4.93×10−01 3.64×1000 8.02×10−01 3.62×1000 1.29×1000 4.56×1000 1.30×1001

f2 Aver. 2.59×1000 6.12×1000 4.93×10−02 4.09×10−02 2.67×10−01 5.06×1000 4.27×10−02 7.12×10−02

Stdev. 1.01×1000 3.80×1001 9.06×10−03 3.72×10−03 3.18×10−01 3.17×1000 3.50×10−02 5.61×10−03

f3 Aver. 1.08×10−09 1.28×10−09 2.41×10−12 1.69×10−12 9.25×10−10 5.01×10−09 3.17×10−10 1.29×10−19

Stdev. 2.86×10−19 7.54×10−18 9.79×10−23 6.04×10−24 6.34×10−18 2.38×10−16 4.34×10−19 1.58×10−38

f4 Aver. −9.88×10−01 −9.96×10−01 −9.89×10−01 −1.00×1000 −9.90×10−01 −1.00×1000 −9.89×10−01 −1.00×1000

Stdev. 4.22×10−06 5.50×10−05 2.76×10−06 2.72×10−09 3.79×10−06 3.04×10−10 2.61×10−06 3.99×10−09

f5 Aver. 7.87×1000 1.05×1001 −1.89×1000 −3.47×1000 3.73×1000 2.66×10−01 −5.62×10−01 −3.03×1000

Stdev. 4.83×1000 2.82×1000 8.01×10−01 1.15×10−01 8.86×1000 3.29×1000 1.59×1000 3.21×10−01

f6 Aver. 1.42×1000 2.95×1000 6.61×1000 6.48×1000 1.48×1000 6.69×10−01 8.28×10−01 3.77×1000

Stdev. 4.32×10−01 1.11×1001 1.93×1001 1.07×1002 2.52×1000 6.77×10−01 1.29×1000 1.19×1001

f7 Aver. 1.21×10−09 1.75×10−09 1.32×10−12 1.09×10−17 1.97×10−10 2.45×10−09 2.13×10−09 8.39×10−20

Stdev. 3.46×10−19 4.78×10−18 3.08×10−24 2.67×10−34 2.66×10−19 4.81×10−17 8.12×10−17 6.46×10−39

f8 Aver. 1.36×10−01 2.52×1001 8.59×10−07 9.72×10−08 5.68×10−01 3.29×10−01 1.85×10−01 1.10×10−08

Stdev. 3.67×10−01 2.13×1002 1.65×10−12 4.86×10−15 1.82×1000 5.98×10−01 2.39×10−01 7.24×10−17

f9 Aver. −3.94×1001 −3.92×1001 −4.71×1001 −4.86×1001 −4.81×1001 −4.00×1001 −4.67×1001 −4.86×1001

Stdev. 5.30×10−01 4.85×1000 1.90×10−01 2.05×10−01 2.11×10−01 3.47×1000 2.46×10−01 1.49×10−01

f10 Aver. 7.82×10115 5.62×10112 3.60×10115 9.41×10112 3.47×10115 1.01×10113 1.07×10116 7.39×10112

Stdev. 2.19×10226 3.82×10225 4.84×10226 3.08×10226 2.19×10226 2.18×10226 4.92×10226 1.20×10226

f11 Aver. 1.56×1000 5.17×10−01 8.03×10−02 5.54×10−02 3.44×10−03 3.15×10−08 8.48×10−04 2.66×10−02

Stdev. 6.74×10−01 1.39×10−01 5.38×10−02 1.03×10−02 1.06×10−04 1.70×10−14 1.30×10−06 3.65×10−03

f12 Aver. 2.01×1001 1.04×1002 5.04×10−02 1.04×10−02 1.50×1000 2.48×1001 4.66×10−02 1.04×10−02

Stdev. 1.25×1001 3.16×1003 5.08×10−02 2.15×10−03 1.58×1001 2.94×1002 1.07×10−02 1.02×10−03

f13 Aver. 3.10×1002 8.46×1002 4.84×1001 1.24×1000 6.22×1002 5.42×1002 4.95×1001 1.85×1001

Stdev. 4.30×1003 8.49×1003 2.67×1002 2.16×1001 5.52×1004 1.46×1004 2.82×1003 5.36×1002

f14 Aver. 9.67×1001 3.24×1001 1.57×1002 6.14×1001 1.30×1002 5.93×1001 7.55×1001 1.37×1002

Stdev. 9.73×1003 2.53×1003 1.02×1004 1.51×1003 6.80×1003 1.57×1003 1.87×1003 4.85×1003
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Table 9. h and p-value for the statistical test with WSA as the control method.

D = 30
DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4 GRDE1 GRDE2 GRDE3 GRDE4

h p h p h p h p h p h p h p h p h p h p h p

f1 1 8.02× 10−36 1 2.00× 10−36 1 1.31× 10−27 1 1.02× 10−39 1 3.10× 10−17 1 1.99× 10−44 1 1.07× 10−45 1 2.53× 10−41 1 9.25× 10−26 1 1.35× 10−72 1 1.31× 10−40

f2 1 1.69× 10−56 1 2.30× 10−63 1 1.14× 10−59 1 1.48× 10−62 1 1.75× 10−71 1 5.04× 10−66 1 6.23× 10−58 1 6.82× 10−43 1 1.17× 10−77 1 2.68× 10−77 1 1.50× 10−151

f3 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 2.03× 10−208 1 0.00× 1000

f4 1 1.37× 10−124 1 7.95× 10−125 1 5.99× 10−124 1 1.41× 10−124 1 8.09× 10−125 1 6.01× 10−125 1 4.22× 10−124 1 3.00× 10−120 1 1.75× 10−130 1 3.72× 10−103 1 5.69× 10−88

f5 1 1.76× 10−42 1 3.88× 10−39 1 6.02× 10−46 1 2.60× 10−55 1 5.42× 10−76 1 1.96× 10−76 1 4.87× 10−60 1 5.96× 10−45 1 1.05× 10−70 1 1.96× 10−78 1 7.76× 10−142

f6 1 1.07× 10−15 1 2.91× 10−10 1 4.87× 10−10 1 2.84× 10−14 1 4.34× 10−31 1 5.32× 10−32 1 5.42× 10−35 1 2.88× 10−32 0 2.02× 10−01 1 5.86× 10−18 0 9.16× 10−01

f7 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 7.09× 10−186 1 0.00× 1000

f8 1 9.35× 10−45 1 3.60× 10−38 1 3.75× 10−42 1 1.27× 10−36 1 2.22× 10−69 1 6.62× 10−73 1 5.89× 10−59 1 1.07× 10−40 1 1.35× 10−75 1 3.53× 10−77 1 4.59× 10−150

f9 1 9.53× 10−82 1 8.29× 10−82 1 5.97× 10−67 1 5.37× 10−76 1 6.33× 10−88 1 6.11× 10−98 1 2.08× 10−94 1 2.18× 10−58 1 3.69× 10−75 1 3.81× 10−76 1 9.80× 10−81

f10 0 9.40× 10−02 1 1.81× 10−02 1 1.49× 10−02 0 9.15× 10−01 0 8.93× 10−02 1 1.91× 10−02 1 1.62× 10−02 1 9.75× 10−03 1 9.74× 10−03 1 9.74× 10−03 1 7.87× 10−06

f11 1 5.65× 10−08 1 7.67× 10−20 1 2.20× 10−06 1 1.90× 10−03 1 9.16× 10−21 1 9.13× 10−21 1 9.15× 10−21 1 1.09× 10−29 1 1.39× 10−20 1 1.66× 10−20 1 3.90× 10−51

f12 1 2.49× 10−42 1 9.71× 10−38 1 5.12× 10−35 1 5.23× 10−35 1 1.61× 10−36 1 2.61× 10−48 1 3.09× 10−49 1 7.61× 10−45 1 2.21× 10−66 1 1.49× 10−78 1 1.66× 10−132

f13 1 8.46× 10−68 1 2.39× 10−45 1 3.15× 10−50 1 1.28× 10−52 1 8.80× 10−97 1 6.28× 10−97 1 1.37× 10−70 1 5.58× 10−55 1 1.44× 10−96 1 2.44× 10−97 1 3.21× 10−155

f14 1 2.79× 10−18 1 1.94× 10−06 1 4.93× 10−14 1 7.06× 10−20 0 1.46× 10−01 1 7.86× 10−04 1 2.37× 10−04 1 1.47× 10−31 1 2.18× 10−05 1 3.21× 10−06 1 3.67× 10−03

D = 50
DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4 GRDE1 GRDE2 GRDE3 GRDE4

h p h p h p h p h p h p h p h p h p h p h p

f1 1 4.20× 10−35 1 6.44× 10−28 1 4.12× 10−35 1 2.73× 10−36 1 4.00× 10−11 1 1.20× 10−45 1 5.52× 10−33 1 4.54× 10−47 1 5.75× 10−17 1 8.03× 10−75 1 4.34× 10−27

f2 1 9.99× 10−43 1 2.70× 10−48 1 1.79× 10−55 1 2.80× 10−52 1 4.53× 10−66 1 1.43× 10−63 1 7.30× 10−44 1 1.95× 10−36 1 5.95× 10−69 1 1.23× 10−69 1 1.60× 10−133

f3 1 1.82× 10−188 1 1.80× 10−188 1 1.81× 10−188 1 1.82× 10−188 1 1.80× 10−188 1 1.80× 10−188 1 1.80× 10−188 1 1.88× 10−188 1 1.80× 10−188 1 1.80× 10−188 1 0.00× 1000

f4 1 5.81× 10−125 1 1.51× 10−127 1 3.78× 10−132 1 5.17× 10−131 1 8.09× 10−127 1 1.54× 10−126 1 6.80× 10−126 1 2.86× 10−107 1 7.01× 10−136 1 4.82× 10−123 1 2.42× 10−94

f5 1 1.07× 10−22 1 6.12× 10−37 1 3.06× 10−47 1 1.70× 10−46 1 8.79× 10−78 1 1.17× 10−80 1 1.02× 10−60 1 8.69× 10−45 1 1.33× 10−70 1 4.51× 10−83 1 2.26× 10−135

f6 1 4.12× 10−22 0 9.42× 10−01 1 1.09× 10−18 1 2.17× 10−33 0 3.83× 10−01 1 2.65× 10−20 1 1.14× 10−21 1 6.92× 10−44 1 3.08× 10−05 0 5.81× 10−02 1 1.06× 10−04

f7 1 3.11× 10−178 1 3.07× 10−178 1 3.09× 10−178 1 3.09× 10−178 1 3.07× 10−178 1 3.07× 10−178 1 3.07× 10−178 1 3.15× 10−178 1 3.07× 10−178 1 3.07× 10−178 1 0.00× 1000

f8 1 1.22× 10−36 1 1.05× 10−37 1 5.78× 10−36 1 6.06× 10−49 1 2.13× 10−40 1 3.12× 10−57 1 7.67× 10−46 1 1.56× 10−38 1 2.48× 10−66 1 2.41× 10−82 1 2.02× 10−119

f9 1 4.12× 10−74 1 2.40× 10−71 1 1.59× 10−71 1 3.13× 10−76 1 3.58× 10−83 1 1.47× 10−90 1 2.49× 10−83 1 1.13× 10−57 1 5.19× 10−54 1 2.55× 10−57 1 1.29× 10−64

f10 0 3.20× 10−01 0 3.20× 10−01 0 3.20× 10−01 0 3.20× 10−01 0 3.20× 10−01 0 3.20× 10−01 0 3.20× 10−01 0 1.76× 10−01 0 3.20× 10−01 0 3.12× 10−01 0 7.95× 10−01

f11 1 4.76× 10−23 1 3.98× 10−29 1 2.41× 10−16 1 1.02× 10−28 1 2.53× 10−31 1 2.13× 10−31 1 2.07× 10−31 1 3.70× 10−49 1 2.05× 10−29 1 1.36× 10−30 1 1.18× 10−70

f12 1 1.51× 10−35 1 3.43× 10−27 1 1.75× 10−18 1 2.06× 10−29 1 2.90× 10−22 1 1.64× 10−45 1 1.87× 10−27 1 5.47× 10−37 1 1.42× 10−52 1 1.26× 10−85 1 1.38× 10−102

f13 1 2.62× 10−41 1 4.16× 10−42 1 4.73× 10−50 1 3.14× 10−72 1 6.89× 10−99 1 1.08× 10−98 1 1.06× 10−73 1 4.37× 10−55 1 1.21× 10−97 1 1.30× 10−99 1 1.84× 10−136

f14 1 3.62× 10−34 1 3.04× 10−04 1 1.47× 10−22 1 4.39× 10−33 1 8.42× 10−04 1 8.91× 10−05 0 5.79× 10−01 1 9.15× 10−51 1 2.23× 10−08 1 1.82× 10−04 1 7.67× 10−05
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Table 10. CPU time comparison with 20 search agents.

D = 30 PSO BA HSABA WSA DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4 GRDE1 GRDE2 GRDE3 GRDE4
SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA

f1 4.40 1.92 9.26 8.19 11.24 11.44 11.44 11.98 12.61 12.67 12.55 13.12 13.79 13.70 13.49

f2 4.32 2.02 9.38 7.80 10.94 11.17 11.04 11.64 12.05 12.30 11.73 12.85 12.78 12.84 12.59

f3 7.16 2.51 13.77 10.68 14.81 15.10 15.54 15.87 16.57 16.43 16.83 16.41 16.65 16.54 16.74

f4 7.13 2.76 13.72 10.15 14.60 14.55 14.44 15.54 15.35 15.37 15.52 15.96 15.97 16.24 15.83

f5 5.06 2.16 10.62 8.40 11.76 11.82 11.72 12.47 12.46 12.58 12.54 13.54 13.69 13.52 13.53

f6 3.88 1.88 8.49 7.84 10.63 10.61 11.17 11.25 12.02 12.09 11.95 12.30 12.28 12.59 12.18

f7 6.75 2.44 13.08 10.26 14.39 14.49 15.28 15.29 16.51 15.99 16.12 15.82 15.97 16.16 16.12

f8 6.30 2.57 12.65 9.45 13.14 13.30 14.09 13.79 14.84 14.85 14.61 15.28 15.61 15.44 15.62

f9 7.28 2.72 14.36 10.54 14.67 14.73 15.04 15.51 15.46 15.77 15.61 16.49 16.73 16.59 16.62

f10 10.00 3.42 18.77 12.45 17.05 17.27 17.14 17.84 18.04 17.99 18.12 19.89 20.14 19.94 20.06

f11 3.43 1.77 7.82 7.47 10.12 10.30 10.51 10.93 11.75 11.73 11.50 11.66 12.05 11.81 11.87

f12 9.76 3.56 19.12 12.58 16.15 15.64 17.47 16.38 16.81 16.83 16.41 19.50 17.55 17.99 17.60

f13 4.16 1.90 9.19 7.73 11.08 10.88 11.17 11.54 12.18 12.11 12.02 12.76 12.73 12.75 12.79

f14 3.77 1.88 8.28 7.66 10.44 10.55 10.88 11.09 11.97 11.91 11.75 12.10 12.48 12.20 12.08

D = 50 PSO BA HSABA WSA DE1 DE2 DE3 RDE1 RDE2 RDE3 RDE4 GRDE1 GRDE2 GRDE3 GRDE4
SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA SAWSA

f1 5.09 2.25 10.75 9.56 12.82 13.06 13.43 13.56 14.33 13.49 13.91 14.90 14.89 14.86 15.03

f2 5.05 2.36 11.08 9.22 12.59 12.46 12.59 13.45 13.76 13.44 13.14 14.40 14.23 14.52 14.44

f3 9.82 3.21 18.21 13.52 18.45 18.44 19.31 19.39 20.59 20.80 20.55 20.29 20.61 20.40 20.66

f4 9.54 3.42 18.58 13.26 18.05 18.05 18.00 18.89 18.96 18.88 18.96 19.71 19.86 19.83 19.79

f5 6.21 2.58 12.84 9.97 13.69 13.58 13.72 14.25 14.29 14.33 14.53 15.70 15.95 15.69 15.72

f6 4.31 2.27 9.60 8.76 11.54 11.69 12.28 12.21 13.20 13.32 12.99 13.52 13.93 13.70 13.56

f7 9.15 3.05 17.07 12.87 17.83 17.72 18.56 18.58 19.82 19.47 19.51 19.65 19.73 19.39 19.64

f8 8.14 3.27 16.46 11.70 16.02 15.88 16.98 16.50 18.08 18.05 17.59 18.57 18.70 18.73 18.61

f9 10.34 3.62 19.72 13.77 18.57 18.43 18.51 19.05 19.33 19.17 19.21 20.89 20.75 20.76 20.64

f10 10.23 3.84 19.77 13.69 18.14 18.12 17.98 18.76 19.02 18.95 19.06 21.17 21.30 20.96 21.26

f11 3.76 2.03 8.82 8.41 11.38 11.21 11.55 12.02 12.65 12.70 12.43 12.95 13.15 12.88 13.17

f12 13.46 4.81 26.55 17.04 21.09 20.65 20.80 21.36 21.46 21.44 21.11 25.42 22.31 23.89 22.22

f13 5.09 2.26 11.01 9.29 12.32 12.44 13.03 13.03 13.48 14.08 13.39 14.48 14.47 14.35 14.41

f14 4.31 2.31 9.53 8.60 11.55 11.53 12.13 12.24 13.16 13.30 12.98 13.58 13.85 13.76 13.31
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5. Conclusions

Self-adaptive methods are effective to enable parameter-free metaheuristic algorithms; they can
even improve the performance because the parameters’ values are self-tuned to be optimal
(hence optimal results). Based on the authors’ prior work about the hybridizing self-adaptive DE
functions in the bat algorithm, a similar, but new self-adaptive algorithm was developed called
SAWSA. However, due to the lack of stability control and missing knowledge of the inner connection
of the parameters and performance, the SAWSA is not sufficiently satisfactory for us. In this paper,
the self-adaptive method is considered from the perspective of entropy theory for metaheuristic
algorithms, and we developed an improved parameter control called the Gaussian-guided self-adaptive
method. After designing this method denoted as GSAWSA, we configured test experiments with
fourteen standard benchmark functions. Based on the results, the following conclusions can be drawn.

Firstly, the self-adaptive approach is proven to be very efficient for metaheuristic algorithms,
especially those that require much calculation cost. By using this method, the parameter training part
can be removed in the real case usage. However, as the self-adaptive modification would increase
the complexity of the algorithm, the calculation cost of the self-adaptive method must be taken
into consideration.

Secondly, comparing all the optional self-adaptive DE methods in the experiment, the type
of random selection is a better choice for SAWSA. However, as the average outcome is improved,
the stability is clearly decreased by introducing more randomness into the algorithm. How to balance
the random effects and to improve the stability is, in general, a difficult challenge for a the metaheuristic
algorithm study.

Thirdly, the parameter-performance changing pattern can be considered a very important feature
of metaheuristic algorithms. Normally, researchers use the performance or the situation feedback
as an update reference. However, how the parameters influence the performance usually remains
outside of consideration. By analysing how the parameters influence the performance, a better
self-adaptive updating method could be developed and a better performance could be achieved with
less computing resources.

In conclusion, a parameter-free metaheuristic model where a Gaussian map is fused with the
WSA algorithm is proposed. It has the advantages of not requiring the parameters’ values to remain
static and the parameters will tune themselves as the search operation proceeds. Often, from our
experiment results, the new model shows improvement in performance compared to the naive version
of WSA, as well as other similar swarm algorithms. As future work, we want to investigate in depth
the computational analysis of how the Gaussian map contributes to refining the performance and
preventing the search from converging prematurely to local optima. The analysis should be done
together with the runtime cost, as well. It is known from the experiments reported in this paper that
there is a certain overhead when the Gaussian map is fused with WSA, extending its performance,
but at the same time, the extra computation consumes additional resources. In the future the GAWSA
should be enhanced with the capability of balancing the runtime cost and the best possible performance
in terms of the solution quality obtained.
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Appendix

Processor: Intel(R) Core(TM) i7-4790 CPU @3.60 GHz
Installed memory (RAM): 8.00 GB
System: Windows 7 Enterprise Service Pack 1 64-bit
Development environment: MATLAB R2014a 64-bit
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