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Abstract
The Dutch East India Company (VOC) intended the Cape of Good Hope to be a refresh-

ment stop for ships travelling between the Netherlands and its eastern colonies. The indige-

nous Khoisan, however, did not constitute an adequate workforce, therefore the VOC

imported slaves from East Africa, Madagascar and Asia to expand the workforce. Cape

Town became a cosmopolitan settlement with different categories of people, amongst them

a non-European underclass that consisted of slaves, exiles, convicts and free-blacks. This

study integrated new strontium isotope data with carbon and nitrogen isotope results from

an 18th-19th century burial ground at Cobern Street, Cape Town, to identify non-European

forced migrants to the Cape. The aim of the study was to elucidate individual mobility pat-

terns, the age at which the forced migration took place and, if possible, geographical prove-

nance. Using three proxies, 87Sr/86Sr, δ13Cdentine and the presence of dental modifications,

a majority (54.5%) of the individuals were found to be born non-locally. In addition, the
87Sr/86Sr data suggested that the non-locally born men came from more diverse geographic

origins than the migrant women. Possible provenances were suggested for two individuals.

These results contribute to an improved understanding of the dynamics of slave trading in

the Indian Ocean world.

Introduction
Between the years 1652 and 1795, the Dutch East India Company (VOC) governed the Cape
Colony of present day South Africa. Save for a short-lived Batavian period (1803–1806), the
British ruled the Cape from 1795 throughout the 19th-century. The VOC envisioned the Cape
as a refreshment stop for company ships on their way to and from the East. Neither the VOC
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employees, nor the indigenous Khoisan produced adequate provisions to satisfy the demand of
ships passing through the refreshment station. Thus, the VOC decided to import slaves to
increase the available workforce. The VOC, however, could not rely on West Africa as a source
of slaves because the Dutch West India Company had a monopoly on this trade [1]. In addi-
tion, the directors of the VOC, the Heren XVII or the Gentlemen Seventeen, did not support
enslavement of indigenous people. Therefore, the VOC looked to eastern realms such as the
east African coast, the middle South Asian circuit and the easternmost Asian circuit to supply
the additional labour [2]. Records suggest that these three regions contributed approximately a
quarter of the enslaved Cape population until 1808 when Britain outlawed the oceanic slave
trade in its colonies. The remaining quarter of the Cape’s imported enslaved population origi-
nated from Madagascar [1]. These figures were not constant throughout this period as at any
given time factors such as maritime conflicts and changing shipping patterns were at play [1].
Towards the end of the first Dutch administration, the colony relied less on imported Asian
slaves and more on African slaves from the western Indian Ocean [3]. In their study of the
18th-century transoceanic informal trade in Asian slaves, Mbeki and van Rossum [4] reported
that the majority of the enslaved transported by private persons to the Cape recorded topo-
nyms from South Asia (65%) and the minority (33%) from the Indonesian archipelago (Fig 1).
This study also suggested comparable numbers of men and women came from the Indonesian
Archipelago, which is in contrast to the overwhelming preference for male slaves from south
Asia. In general, men rather than women were favoured as slave labour at the Cape, particularly
when agricultural production increased significantly in the hinterland. Of the enslaved that
travelled on the Ceylon-Cape route, a large majority (89%) were from the Malabar Coast of
India. The transportation patterns may have been affected by racial attitudes at the Cape that
determined the kind of labour slaves were engaged in and the prices they fetched [4].

Fig 1. Indian Ocean slave trading routes.Map generated based on images provided by Iziko Museums and Frans Huijzenveld (Faculty
of Humanities, department of Art and Culture, History, and Antiquity, Vrije Universiteit Amsterdam).

doi:10.1371/journal.pone.0157750.g001

Isotopic Insights into Indian OceanWorld Slave Trade to the Cape

PLOSONE | DOI:10.1371/journal.pone.0157750 June 16, 2016 2 / 20

(FP7/2007-2013) / ERC Synergy grant agreement no
319209.

Competing Interests: The authors have declared
that no competing interests exist.



There have been several excellent reviews of the history of the Dutch Cape Colony and
Indian Ocean slavery to which the reader is referred [1, 2, 5–11]. A current impediment to a
full understanding of Indian Ocean World slave trades stems from a shortcoming in the histor-
ical record that often only provides information about slaves’ points of departure or sale as
opposed to their places of origin [12]. Researchers of the Atlantic Ocean slave trade have begun
to address this issue by adopting a biomolecular approach to investigate the life histories of
enslaved people. Isotopic analyses have proven to be useful in elucidating mobility, (childhood)
diet, manumission, and industrialisation in slave populations in for example the Caribbean
[13, 14], the United States [15–17], and Mexico [18].

One of the major differences between the Indian Ocean and Atlantic Ocean slave trades is
that the latter primarily involved a triangular movement of money, commodities, and people
between Europe, Africa and the Americas. Enslaved Africans fromWest and Central Africa
were transported to the Americas to labour on plantations. In contrast, the Cape was far more
cosmopolitan than any of these nodes, with slaves coming from several slaving regions from
the Indian Ocean basin. The complexity of the Indian Ocean slave system, however, has yet to
be fully quantified (see [19] and [11] for historical research attempting this difficult task), and
would benefit from further extensive biogeochemical and biomolecular studies to establish the
provenance of slaves.

Pioneering work by Cox and Sealy [20] employing carbon, nitrogen, and strontium iso-
topes in conjunction with historical documents demonstrated the contribution that isotopic
research could make to the study of Indian Ocean slavery. This was followed by the isotopic
investigation of the subaltern population (non-Europeans including slaves and free-blacks,
and possibly convicts and exiles) discovered at an informal burial ground at Cobern Street,
Cape Town (n = 53) [21]. Using carbon and nitrogen isotopes Cox and colleagues [21] differ-
entiated locally and non-locally born individuals based on dietary shifts. They proposed that
a significant dietary shift in δ13C and/or δ15N between childhood (dentine samples) and later
diet (cancellous bone samples) exceeding 2‰ can provide strong confirmatory evidence for the
presence of both first-generation slaves from Africa and the East and locally born people. The
study presented here compliments and refines their findings through a statistical reassess-
ment of the δ13C data to establish more relevant background data. Moreover, strontium
isotope analyses were performed on a selection of individuals from the same population
(n = 35). The study was designed to elucidate individual mobility patterns, the age at which
the forced migration took place and, if possible, geographical provenance. Ultimately, the
results will contribute to an improved understanding of the dynamics of slave trading in the
Indian Ocean in world history.

Determination of Geological Origins through Isotope Analysis
The applicability of strontium isotopes to resolve environmental, ecological, archaeological,
historical and forensic research questions has been illustrated by many scientific studies, e.g.,
[22–29]. The strontium isotope ratio 87Sr/86Sr serves as a powerful proxy to assign people and
animals to specific geological areas [28, 30–33]. 87Sr is a radiogenic isotope, derived from the
radioactive decay of 87Rb (t1/2 of 4.88 x 10

10 years) [34]. The 87Sr content of a rock is a function
of Rb content and the amount of time that has passed since its initial crystallisation [28, 35,
36]. Strontium passes from the geological bedrock into soil and is eventually taken up by vege-
tation [28, 35, 37, 38]. Since vegetation controls the 87Sr that enters the human and animal
food chain [28, 39], it is noteworthy that the 87Sr/86Sr of vegetation differs slightly from the
underlying geology, due to various soil-to-plant transfer factors, such as climate, fungi, root-
depth and taxon [40, 41]. Moreover, in particular in coastal regions such as the Cape region,
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the effect of marine derived strontium on the deviation between floral 87Sr/86Sr ratios and geo-
logical 87Sr/86Sr ratios may be significant [14]. Crops in coastal regions may absorb marine
derived strontium from rainwater, sea-spray and sea-splash, causing their 87Sr/86Sr ratio to
shift towards a more marine signal (~0.7092 [14, 28, 35, 42, 43, 44]). Hence, the biologically
available strontium may therefore deviate from the geological strontium isotope signature [14,
28, 45, 46].

Although mammals preferentially excrete ingested strontium via the kidneys and bile, a
small proportion is retained in the body and incorporated into bone and dental enamel through
diet. It then substitutes for calcium in the structure of hydroxyapatite (Ca10(PO4)6(OH)2), a cal-
cium phosphate mineral [47]. Whereas bone constantly remodels during life, dental enamel
develops during childhood and remains chemically unchanged in later life. The mineralisation
age varies between dental elements, ranging from birth (first molars, M1) to approximately 16
years of age (third molars, M3) in permanent dentition [48–51]. Due to the difference in devel-
opment, and age of incorporation of strontium, a difference in 87Sr/86Sr between bone and
enamel could be interpreted as the result of migration in an individual’s lifetime. Diagenetic pro-
cesses, however, lead to permanent alteration of the chemical and/or structural properties of
bone and dentine [52]. Enamel is markedly less prone to diagenetic processes than dentine and
bone, making it the preferred material for strontium isotope investigations [53–55]. Moreover,
the study of different dental elements potentially allows the determination of the age at which
migration took place provided it occurred in early life. Multi dental-elemental sampling,
enabling inter-element comparison, therefore, offers a high-resolution manner to trace migra-
tory patterns during early life (see Material and sampling strategy).

The interpretation of 87Sr/86Sr ratios and the ultimate determination of geological prove-
nance is highly dependent on available local or regional (bioavailable Sr) background data.
Regional bioavailable 87Sr/86Sr distribution maps have been constructed for a few countries
across the world, such as the United States [56], the United Kingdom [57, 58], France [59], the
Netherlands [60], Germany [61, 62], Denmark [63] and Greece [64], while other archaeological
studies in e.g. New Zealand and Thailand rely on the known geological data [65, 66]. A wide
selection of papers report archaeological, geological or modern biosphere and faunal data from
South Africa (see [67] for references), but to date no systematic study has been undertaken to
map the spatial distribution of one of these proxies. Based on the bioavailable (fauna) data
provided in Sealy et al. and Balasse et al. [68, 69], a schematic of the spatial distribution of
87Sr/86Sr in the Western Cape Province was generated (Fig 2).

An in-depth, but regionally applicable study by Maurer et al. emphasized the difficulties in
determining the sources of strontium that enter the local food chain [46]. Moreover, they con-
firmed the offset in 87Sr/86Sr between geological, biosphere and faunal samples [38, 45]. Both
factors hamper the accurate interpretation of the data in terms of provenancing, especially if
only geological analyses are available to investigate origins. Nevertheless, the available data did
provide some insight into the expected regional strontium ratios in the Cape region, and con-
tributed to understanding the local strontium isotope signature.

Material and Methods
The complete Cobern Street burial collection is curated at the Department of Human Biology,
University of Cape Town. The collection is available for academic research. All necessary per-
mits were obtained, which complied with all relevant regulations. Permission for sampling and
analysis was granted by Heritage Western Cape (Ref.: 130129TS09) and an export permit for
samples was obtained from the South African Heritage Resource Agency (Ref.: 9/2/018/0206.
Permit ID: 219).
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Material and sampling strategy
In 1994, excavations revealed 63 intact primary burials belonging to the Cobern Street informal
burial ground in Cape Town, which was used between circa 1750 and 1827 AD [21, 71]. The
carbon and nitrogen isotope study by Cox et al. [21] was performed on 53 individuals, dating
to the pre-colonial (<1652 AD) and colonial eras. The material and sampling strategy of the
bone samples are provided in Cox [72], and will be summarised here. Cancellous bone samples
were taken, preferably, from rib bones. If ribs were not available vertebrae were taken. A
detailed overview of the samples taken for stable isotope analysis per individual is presented in
Cox [72]. The rate of bone remodelling is influenced by bone type, bone element, age and a
number of physiological and pathological factors [73]. Little quantitative are available, how-
ever, about collagen turnover rates [74]. It is known to vary between 2% and 4%/yr in femoral
cortical bone in adults, with much higher rates up to even 100% reached during growth [75].
The turnover rate of trabecular bone, and in particular that or ribs and vertebrae, is faster than
cortical bone and collagen (on average 10%/yr in adults: [76]). The carbon isotope data pub-
lished by Cox et al. [21] and reassessed in this study therefore provide information on the die-
tary intake of the last circa 5 years of life. In contrast to bone, there is no significant turnover or
replacement of dentine [77]. As a result, the δ13C value of dentine is directly related to the die-
tary intake of carbon during the time of root formation, which is element dependant. In perma-
nent dentition, the initiation of root formation (developmental stage Ri: [78]) can start as early

Fig 2. Schematic geological map of the southwestern Cape. Figure adapted from Compton et al. [70].
Strontium isotope data as published by Sealy et al. [69] and Balasse et al. [68].

doi:10.1371/journal.pone.0157750.g002
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as four years of age and finish as late as the early twenties (apex completed: Ac). The selected
dental elements and the interpretational consequences of that selection are specifically dis-
cussed in Cox [72].

For this research, a complete overlap with the Cox et al. [21] dataset could not be achieved
due to insufficient sample material. To enable meaningful comparison, and depending on
availability, enamel was sampled from 35 individuals dating from the colonial era. Where pos-
sible, first molars were selected for single-elemental analysis to distinguish locally and non-
locally born individuals.

Multi dental-elemental analysis was performed on preferably first, second and third molars
of a subset of individuals (n = 17) to further investigate individual migration events in early life
(Table 1). Slight variations in mineralisation age are observed between European, Asian and
African populations [49, 79]. Despite the fact that persons of Asian ancestry were present in
the colonial Cape [1], in this paper the tooth crown initiation (Ci) and completion (Crc) times
for Southern African populations published by Reid and Dean [49] are used for reference
(Table 2). First evidence of calcification of the crown (Ci) of the first molar is observed at birth.
The last state of dental enamel formation, crown completion (Crc), finishes around the age of
three. The observed 87Sr/86Sr ratio of this element, therefore, reflects the dietary 87Sr/86Sr intake
during the first three years of life. Since the M1 mineralises while the infant is likely to be
breastfed, the mother’s dietary 87Sr/86Sr intake will be (partly) reflected in the children’s decid-
uous teeth and molars, which mineralise in the womb (in utero), and the first permanent
molar. The second and third permanent molars mineralised between the ages of circa 3 and 6,
and 8 and 16 years respectively.

To test the hypothesis that a significant dietary shift is indicative of migration [21], multi-
dental elemental sampling was performed on eight individuals who were assumed to represent
migrants based on the presence of such a significant dietary shift in δ13C (burials 14, 18, 21, 32,
49, 54, 57, and 58). An additional five individuals (burials 20A, 20B, 50, 52, and 60) were
selected for multi-dental elemental sampling based on the presence of dental modifications.
Intentional dental modifications present in the Cobern Street collection (see [71, 72] for a sum-
mary of the unpublished data by Morris and Phillips [80]. Illustrative images are provided in
Manyaapelo [81]) were not a tradition at the Cape at any time, and are therefore indicative of
foreign origins [81]. Four individuals were selected for multi-dental elemental analysis based
on the absence of such a significant dietary shift (random selection: burials 23, 44, 59, and 65).
It is noteworthy that individuals 44, 49, and 65 showed a shift in δ15N exceeding 2.0‰. In con-
trast to Cox et al. [21], however, individuals with significant isotopic differences between
δ15Ndentine and δ

15Ncancellous were not assigned as migrants. This is due to the fact that there are
multiple contributing factors that influence δ15N, such as sea spray, precipitation, fertilisers,
disease, malnutrition and water stress [82–88]. Eighteen individuals, who were assumed to be
locally born, or second- or subsequent generation slaves, were selected for single-elemental
analysis. The individuals sampled for isotopic analysis represented two distinct patterns of
burial placements, defined as type B (supine burial, Christian style) and type C (buried on their
right side, Muslim style).

Analytical methods
Osteological methods and analytical details of the carbon isotope analyses were provided else-
where [71, 72]. For the strontium isotope analysis, dental enamel samples were obtained at the
Department of Human Biology, University of Cape Town. Mechanical cleaning was performed
on the enamel using an acid-leached diamond-tipped drill bit to expose a dull white surface
visually unaffected by diagenetic alterations. Approximately 1–3 milligrams of enamel powder
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Table 1. Osteological data and selected teeth for strontium isotope analysis from 35 individuals from the Cobern Street informal burial site, Cape
Town, dating to the colonial period.

Burial
type

Burial # UCT # Age (yr) Sex Dental modifications? dI1 or dI2 I2 PM1 M1 M2 M3

B 3 460 20 M - - - - 16 - -

B 4 458.1 17–18 F - - - - 16 - -

B 10 498 35–40 F - - - - 26 - -

B 12 500 35–40 M - - - - 46 - -

B 13 501 30–40 M - - - - 46 - -

B 14 502 45–55 F - - - - 46 47 48

B 15 504 25 M - - - - 46 - -

B 18 508 >50 F - - - - 26 47 18

B 20A 510 25–30 M The maxillary central incisors were chipped mesially at the
midline, and the lateral maxillary incisors were chipped distally
to form inverted 'V' shapes

- - - 16 17 18

B 20B 511 16 F The maxillary central incisors were chipped mesially at the
midline, and the lateral maxillary incisors were chipped distally
to form inverted 'V' shapes

- - - 46 47 38

B 20C 512 1,5–2 ? - 71/2 or
81/2

- - - - -

B 21 514 25–35 F - - - - 46 47 38

B 23 516 17–19 F - - - - 36 37 38

B 24 517 20–25 M - - - - 36 - -

B 25 518 35–40 M - - - - 46 - -

B 27B 521 40–15 M - - - - 26 - -

B 28 522 50 F - - - - 46 - -

C 32 526 50–60 M - - - - 46 17 48

B 34 528 14–15 F - - - - 46 - -

B 40 535 12 F The maxillary central incisors were chipped mesially at the
midline

- - - 46 - -

B 41 536 35–50 M - - - - 36 - -

B 42A 539 40–50 M - - - - 16 - -

B 42B 540 40–50 F - - - - 26 - -

B 44 542 40–50 F - - - - 46 47 48

B 45 543 50+ M - - - - - 37 -

B 46 544 35–50 F - - - - 16 - -

B 47 545 30–40 M - - - - 46 - -

B 49 547 30–35 M - - - - 26 47 -

B 50 548 35–50 M The central maxillary incisors were chipped distally, and the
lateral maxillary incisors were chipped mesially.

- - - 46 47 48

B 51 549 35–40 M - - - - 26 - -

B 52 550 25–35 F The chipping of the maxillary central and lateral incisors to
points.

- - - 46 47 48

B 53 551 35–40 M - - - 44 - - -

B 54 552 30–35 M - - - - 46 47 48

B 56 554 35 M - - - - 46 - -

C 57 555 20–30 F - - - - 36 47 18

B 58 556 35–40 F - - 32 - - 17 48

C 59 557 40 M - - - - 36 37 18

B 60 558 30 F The central and lateral maxillary incisors are sharpened to a
points, by chipping the incisors both mesially and distally.

- - - 36 37 18

B 61 559 35 M - - - - 46 - -

(Continued)
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were collected from the buccal or lingual surface, depending on the state of preservation of the
dental element, sealed in acid-cleaned polyethylene Eppendorf centrifuge tubes and trans-
ported to the class 100 clean laboratory at the Vrije Universiteit Amsterdam. The samples were
leached with 0.1N acetic acid (CH3CO2H) to remove labile diagenetic strontium [55], and
eventually dissolved in 3.0N nitric acid (HNO3). Strontium was isolated by ion exchange chro-
matography using Sr-Resin (EIChroM) and collected in acid-leached Teflon vials (Savillex).
Blanks were spiked with 84Sr. All samples were nitrated twice with concentrated HNO3 before
isotopic analysis.

The samples were loaded on single annealed rhenium filaments with TaCl5. The measure-
ments were performed on a MAT-Finnigan 262 RPQ-plus multicollector mass spectrometer
(Finnigan Corp., San Jose, CA) at the Vrije Universiteit Amsterdam using a static routine. The

Table 1. (Continued)

Burial
type

Burial # UCT # Age (yr) Sex Dental modifications? dI1 or dI2 I2 PM1 M1 M2 M3

C 65 563 22–25 F - - - - 26 27 18

Key: Archaeological and osteological data from [71], dental modofication data from [71, 72]. Burial type refers to supine/Christian style (B) or facing Signal

Hill/Muslim style (C). UCT number refers to the accession number. Dental element notation conforms to Fédération Dentaire Internationale (syntax:

<quadrant code><tooth code>. Details presented in Table 2). dI1 of dI2: deciduous central or lateral incisor. I2: permanent lateral incisor. PM1: first

premolar. M1: permanent first molar. M2: permanent second molar. M3: third molar.

doi:10.1371/journal.pone.0157750.t001

Table 2. Chronology of human dentition in South African populations. Average crown formation times from [49].

FDI notation Average crown formation times

Dentition Tooth Right quadrant Left quadrant Initiation (Ci) Completion (Crc)

Permanent maxillary teeth Central incisor 11 21 4 mon. 4.1 yr.

Lateral incisor 12 22 12.5 mon. 4.8 yr.

Canine 13 23 9 mon. 4.8 yr.

First premolar 14 24 1.5 yr.* 6 yr.*

Second premolar 15 25 2 yr.* 7 yr.*

First molar 16 26 Birth 2.9 yr.

Second molar 17 27 3 yr. 6.4 yr.

Third molar 18 28 8 yr. 11.3–16 yr.**

Permanent mandibular teeth Central incisor 41 31 3 mon. 3.4 yr.

Lateral incisor 42 32 5 mon. 3.8 yr.

Canine 43 33 6.5 mon. 5.2 yr.

First premolar 44 34 1.75 yr.* 6 yr.*

Second premolar 45 35 2.25 yr.* 7 yr.*

First molar 46 36 Birth 3 yr.

Second molar 47 37 3 yr. 6.2 yr.

Third molar 48 38 8 yr. 11.2–16 yr.**

Key: Ci: FDI notation: a two-digit system (ISO 3950) developed by the Feédeération Dentaire Internationale (FDI) to associate information to a specific

tooth. Syntax: <quadrant code><tooth code>. Deciduous teeth quadrant codes start with 5 (left quadrant maxilla), followed by 6 (right quadrant maxilla), 7

(right quadrant mandible), and 8 (left quadrant mandible); Ci: cusp initiated; Crc: crown completed (developmental stages conform to Moorrees [78]);

*: no data published by Reid and Dean [49]—formation ages adapted from Nelson and Ash [50];

**: formation age extended to 16 due to observed inconsistencies and variations in literature with regards to M3 crown formation times [50, 89].

doi:10.1371/journal.pone.0157750.t002
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isotope ratios were corrected for mass-fractionation to 86Sr/88Sr = 0.1194. All measurements
were referenced to the NBS987 standard, which gave a mean 87Sr/86Sr value of 0.710241 (n = 10)
over the period of the study. The samples were run to an internal precision of ± 0.000006 (1SE)
or better. The total procedural blanks (n = 5) provided a negligible contribution (mean 65 pg).
All statistical assessments were performed in SPSS 22.0 (IBM SPSS Statistics for Macintosh,
Armonk, IBM Corp.).

Results
Strontium, carbon and nitrogen isotope ratios from 35 individuals are reported in Table 3.
Knowledge of the local isotopic background signature is essential for accurate interpretation of
the isotopic data. Available human δ13C isotope values from Cox et al. were therefore reas-
sessed to gain (additional) insight into the carbon isotope range specific to the Cape non-Euro-
pean underclass. Intra-population comparisons of carbon isotopes seem to provide the best
way to identify individuals as migrants based on a different isotopic composition compared to
the majority [90]. Therefore, to calculate the range of non-European underclass δ13C values
local to the Cape, we reanalysed all human δ13C data from Cox et al. [21]. A statistical assess-
ment of the carbon isotope data showed that the variance in δ13Cdentine was three times as high
as the variance in δ13Ccancellous (11.3 and 3.6 respectively), indicating more diverse childhood
diets, which converged in later life to a narrower range. We interpret these data as indicative of
the Cape diet of this group (Table 4). The data are presented in a Tukey’s schematic boxplot in
Fig 3 to display the variations in δ13C of the dentine and cancellous bone samples. By interpret-
ing the mild outliers and extreme outliers in δ13Ccancellous (indicative of diet in the last few
months to years of life) as non-local to the Cape, a local dietary δ13C range between -18.8‰ to
-13.5‰ can be inferred (Fig 3). This range corresponds to a diet consisting of predominantly
C3 foods with an approximate 25% to 65% contribution from C4 and/or marine food resources
(see Fig 6 in [91]).

The 87Sr/86Sr of the human enamel data range from 0.70600 to 0.73605 with a mean of
0.71527 ± 0.015 (2σ). The extremely wide range in strontium values with no apparent cluster-
ing of values indicated that the individuals in this study came from very diverse geological
regions. A nonparametric Mann-Whitney U test was performed to quantify differences
between males (n = 17) and females (n = 17). The results showed no statistically significant
difference between the median 87Sr/86Sr ratios (U = 122, z = -0.775, p = 0.438) of males
(0.714051 ± 0.00621) and females (0.716680 ± 0.00827).

Insight into the local strontium signal is gleaned from a statistical assessment of the first
molar and deciduous teeth data from Cobern Street (n = 33). As in Wright [92], it is assumed
that the 87Sr/86Sr ratios of a ‘local’ population are normally distributed. A Shapiro-Wilk test
rejects the hypothesis that the Cobern Street dataset resembles a normal distribution (W = 830,
df = 33, α = 0.000). Exclusion of statistical outliers (n = 10) results in a normally distributed
dataset (W = 0.943, df = 23, α = 0.677) in which the mean and median coincide (0.71239 and
0.71236 respectively). Based on the human data, an approximate local range of 0.7086 to
0.7167 could be defined which was subject to later refinement (See section on Background
87Sr/86Sr data).

Discussion

Background 87Sr/86Sr data
A large amount of regional 87Sr/86Sr data, both biological and geological, are available for the
Greater Cape Floral Region and surrounding areas of South Africa (e.g., see [67] for an exten-
sive overview). These latter data are, however, not incorporated in this study due to A) the
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Table 3. Osteological, carbon, nitrogen, and strontium isotope data from 35 individuals from the Cobern Street informal burial site, Cape Town,
dating to the colonial period.

Burial
type

Burial # UCT # Age (yr) Sex δ13C
dentine (‰)

δ13C
cancellous (‰)

Δδ13C (‰) δ15N
dentine (‰)

δ15N
cancellous (‰)

Δδ15N (‰) Element # 87Sr/86Sr ± 2 S.E.

B 3 460 20 M -16.4 -16.5 0.1 11.8 11.1 0.7 16 0.71375 0.00001

B 4 458.1 17–18 F -18.8 - 12.7 16 0.71581 0.00001

B 10 498 35–40 F -16.6 -15.9 0.7 13.3 12.9 0.4 26 0.71195 0.00001

B 12 500 35–40 M -17.1 -16.4 0.7 11.2 12.4 1.2 46 0.70862 0.00001

B 13 501 30–40 M -16.3 -16.2 0.1 12.4 13.2 0.8 46 0.71350 0.00001

B 14 502 45–55 F -19.2 -16.9 2.3 8.8 8.7 0.1 46 0.71274 0.00001

47 0.71336 0.00001

48 0.71234 0.00001

B 15 504 25 M -17.4 -16.6 0.8 10.9 12.4 1.5 46 0.71328 0.00001

B 18 508 >50 F -13.9 -16.2 2.3 11.8 12.6 0.8 26 0.71465 0.00001

47 0.71499 0.00001

18 0.71167 0.00001

B 20A 510 + 25–30 M -13.8 -12.8 1.0 9.8 9.6 0.2 16 0.72738 0.00001

17 0.72858 0.00001

18 0.72278 0.00001

B 20B 511 + 16 F -12.2 -8.6 3.6 7.5 7.5 0.0 46 0.71675 0.00001

47 0.71522 0.00001

38 0.71570 0.00001

B 20C 512 1,5–2 ? -16.2 -16.2 0.0 16.1 14.1 2.0 71/2 or 81/
2

0.71194 0.00001

B 21 514 25–35 F -11.3 -16.0 4.7 12.3 12.3 0.0 46 0.71219 0.00001

47 0.71158 0.00001

38 0.71047 0.00001

B 23 516 17–19 F -15.3 -16.6 1.3 12.0 13.4 1.4 36 0.71211 0.00001

37 0.71109 0.00001

38 0.71199 0.00001

B 27B 521 40–15 M -16.4 -16.7 0.3 10.3 9.9 0.4 26 0.71900 0.00001

B 28 522 50 F -13.9 - 11.9 46 0.71267 0.00001

B 34 528 14–15 F -19.8 -18.8 1.0 10.3 9.9 0.4 46 0.71555 0.00001

B 40 535 + 12 F -9.9 -10.5 0.6 6.1 7.3 1.2 46 0.72803 0.00001

B 41 536 35–50 M -15.3 -16.2 0.9 12.1 10.8 1.3 36 0.71822 0.00001

B 44 542 40–50 F -13.4 -14.1 0.7 14.3 11.7 2.6 46 0.73407 0.00001

47 0.74186 0.00001

48 0.71913 0.00001

B 45 543 50+ M -16.7 -17.6 0.9 13.1 12.1 1.0 37 0.71343 0.00001

B 46 544 35–50 F -17.7 -16.8 0.9 11.3 11.9 0.6 16 0.72015 0.00001

B 47 545 30–40 M -15.3 -16.7 1.4 12.1 13.4 1.3 46 0.71260 0.00001

B 49 547 30–35 M -10.3 -14.1 3.8 8.1 11.2 3.1 26 0.72830 0.00001

47 0.74143 0.00001

B 50 548 + 35–50 M -9.8 -16.0 6.2 7.6 12.6 5.0 46 0.70639 0.00001

47 0.70603 0.00001

48 0.70907 0.00001

B 51 549 35–40 M -16.0 - 12.8 26 0.71017 0.00001

B? 52 550 + 25–35 F -12.0 -10.1 1.9 7.2 8.6 1.4 46 0.70921 0.00001

47 0.70938 0.00001

48 0.71545 0.00001

B 54 552 30–35 M -18.6 -15.8 2.8 9.9 12.3 2.4 46 0.71027 0.00001

47 0.71044 0.00001

48 0.71221 0.00001

B 56 554 35 M -16.5 - 11.2 46 0.71387 0.00001

(Continued)
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diverse nature of the sample types (biosphere/biological and geological); B) the distance of the
samples location from Cape Town (up to ±150 kilometre); and/or C) the relatively low preci-
sion of the data due to choice of analytical method (±0.005, resulting in a large data range from
similar sample types: Δ87Sr/86SrMIN-MAX = 0.023). Consequently, as explained in the section on
determination of geological origins through isotope analysis, the regional strontium values
were estimated solely on faunal samples. Local modern and archaeological faunal strontium
data from wild and domestic animals from the south-western Cape within a 150 kilometre
radius of Cape Town were reported by Balasse et al. [68] (n = 8) and Sealy et al. [69] (n = 10).
Sealy and colleagues [69] found that humans and animals living on the Holocene coastal sands
exhibited 87Sr/86Sr ratios between 0.7094 and 0.7117. The strontium ratios of modern fauna
found in the (Pre-) Cambrian inland resource zones are characterised by higher ratios ranging
between 0.7154 and 0.7179. The Cape granite areas surrounding Cape Town are characterized
by bioavailable 87Sr/86Sr ratios ranging between 0.7099 and 0.7107 [68]. Based on the available
modern and archaeological faunal data there appears to be an isotopic compositional gap in
the local environment between 0.7117 and 0.7154 (Fig 2).

The human 87Sr/87Sr local signature was found to range from 0.7086 to 0.7167, simulta-
neously overlapping with the Sealy et al. [69] and Balasse et al. [68] datasets and filling the
compositional gap left by the faunal data. Thus, in this study, a conservative local 87Sr/86Sr
range, 0.7086 (human data) to 0.7179 (Pre-Cambrian bioavailable data), is used for the Cape
(Fig 2). This range is remarkably wide due to the geological diversity of the region and hence
not especially diagnostic. Moreover, the range will probably encompass the vast majority of the

Table 3. (Continued)

Burial
type

Burial # UCT # Age (yr) Sex δ13C
dentine (‰)

δ13C
cancellous (‰)

Δδ13C (‰) δ15N
dentine (‰)

δ15N
cancellous (‰)

Δδ15N (‰) Element # 87Sr/86Sr ± 2 S.E.

B 58 556 35–40 F -11.9 -14.2 2.3 11.7 12.0 0.3 32 0.71233 0.00001

17 0.71182 0.00001

48 0.71378 0.00001

B 60 558 + 30 F -8.0 -15.3 7.3 7.2 12.8 5.6 36 0.73605 0.00001

37 0.73566 0.00001

1/28 0.73608 0.00001

B 61 559 35 M -15.5 -15.2 0.3 14.6 14.0 0.6 46 0.71183 0.00001

C 32 526 50–60 M -18.0 -15.9 2.1 11.4 14.1 2.7 46 0.71225 0.00001

17 0.71093 0.00001

48 0.70923 0.00001

C 57 555 20–30 F -18.4 -15.6 2.8 11.8 13.7 1.9 36 0.71011 0.00001

47 0.71023 0.00001

18 0.70947 0.00001

C 59 557 40 M -17.6 -17.1 0.5 8.1 12.2 4.1 36 0.70600 0.00001

37 0.70618 0.00001

18 0.70602 0.00001

C 65 563 22–25 F -15.6 -14.9 0.7 10.8 13.3 2.5 26 0.70921 0.00001

27 0.70921 0.00001

18 0.70910 0.00001

Key: Initial osteological investigations are executed and published by the Western Cape Physical Anthropology Group (see [71] for details). Carbon and

nitrogen isotope data from Cox et al. [21]. Intra-individual differences between δ13Cdentine and δ13Ccancellous, and δ15Ndentine and δ15Ncancellous are

expressed as Δδ13C and Δδ15N respectively. Burial type refers to supine/Christian style (B) or facing Signal Hill/Muslim style (C). UCT number refers to

the accession number. “+” indicates the presence of intentional dental modifications (see Table 1 for details). Dental element notation conforms to

Fédération Dentaire Internationale (details presented in Table 2).

doi:10.1371/journal.pone.0157750.t003
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human data. As a result, the extent of human mobility is likely to be significantly underesti-
mated, and the number of individuals assigned as non-local to the Western Cape should be
considered a minimum.

Human isotopic data
Based on the strontium data, a minimum of ten individuals were found to have not been born
at the Cape, three of whom were female (burials 44, 46 and 60), while six were male (burials
20A, 27B, 41, 49, 50 and 59) and one was a child (burial 40). It seems reasonable to speculate
that their migrations might have coincided with enslavement or change of ownership. Despite
the absence of significant Δδ13C and/or Δδ15N in four of the assumed local or second- or

Table 4. Statistical assessment of human 87Sr/86Sr data (this study) and δ13C [21] data from Cobern Street, Cape Town.

Statistics 87Sr/86Sr Trimmed 87Sr/86Sr δ13Cdentine δ13Ccancellous

N 33 23 36 50

Mean 0.71527 0.71239 -14.98 -15.54

Median 0.71274 0.71236 -16.25 -16.20

Standard deviation (1σ) 0.00696 0.00215 33.63 19.07

Standard deviation (2σ) 0.01393 0.00431 67.26 38.14

Variance 0.00001 0.00001 11.31 3.64

Minimum 0.70600 0.70862 -19.80 -18.80

Maximum 0.73605 0.71675 -5.30 -8.60

Range 0.03006 0.00813 14.50 10.20

Key: The trimmed dataset resembles a normally distributed dataset in which the statistical outliers (n = 10) are excluded.

doi:10.1371/journal.pone.0157750.t004

Fig 3. Tukey’s schematic boxplot showing 87Sr/86Sr variation for the background data (n = 18: Sealy
et al. [69] and Balasse et al. [68]), the (trimmed) Cobern Street data (this study), and the variation in δ13C
for the dentine (n = 36) and cancellous bone (n = 50) samples from Cox et al. [21]. Key: the boxes
represent the interquartile range (IQR: Q3-Q1), the central line indicates the median. The whiskers represent
Q1–1.5*IQR and Q3 + 1.5*IQR. The circles represent mild outliers (>1.5*IQR), the asterisks extreme outliers
(>3*IQR). The trimmed dataset resembles a normally distributed dataset in which the statistical outliers are
excluded.

doi:10.1371/journal.pone.0157750.g003
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subsequent generation slaves (burials 27B, 40, 41 and 46, see Table 1 and [21]), these individu-
als appeared to be alien to the Western Cape based on their 87Sr/86Sr ratio. It was therefore con-
cluded that the isotopic difference between δ13Cdentine and δ

13Ccancellous and/or δ
15Ndentine and

δ15Ncancellous did not provide reliable evidence for the presence of migrants. The non-local
male dataset was isotopically more varied; its standard deviation (0.0089) was almost 1.5 times
as high as the non-local female dataset (0.0061). Although the sample sets are small, this differ-
ence may indicate a larger variety in geological origins of the male population.

Figs 4 and 5 display the first molar and deciduous teeth 87Sr/86Sr data (n = 33) and multi-
dental elemental 87Sr/86Sr data (n = 17) respectively. The data range from 0.7060 to 0.7419.
The majority of these individuals (n = 22) also displayed a local childhood dietary carbon iso-
tope signal (δ13Cdentine: -18.8 to -13.5‰). Only four individuals, two males, one female and one
child, exhibited both non-local strontium and carbon isotope values (burials 40, 49, 50 and 60).
Burial 40, a child aged 12, had a significantly different diet during life (δ13Cdentine: -9.9‰;
δ13Ccancellous: -10.5‰), which was dominated by C4 food resources [21]. In addition, this indi-
vidual displayed a type of intentional dental modification characteristic of people of Mozambi-
can descent [20, 21, 93]. This individual’s elevated 87Sr/86Sr ratio, 0.72803, was consistent with
provenance from the radiogenic Phanerozoic and Precambrian bedrocks in Mozambique, fur-
ther supporting possible Mozambican origins. Seven individuals, burials 14, 20B, 21, 34, 52, 54
and 57, exhibit local 87Sr/86Sr ratios, but their δ13Cdentine values deviated from the local range.
They may therefore also be assigned as non-local.

All five individuals who exhibited culturally modified teeth (burials 20A, 20B, 50, 52 and 60;
all type B burials) were found to be of non-local descent based on either 87Sr/86Sr (20A) or
δ13Cdentine (20B and 52), or both proxies (50 and 60). These results verify the earlier assumption
that the use of only one biogeochemical proxy may lead to the underestimation of the number
of non-local individuals. The fact that all individuals with intentional dental modifications

Fig 4. Strontium isotope data fromM1 and deciduous teeth data from 33 individuals. The horizontal lines mark the local
strontium range. Key: “+” next to sample number indicates the presence of intentional dental modifications. Open symbols
identify individuals who exhibit non-local δ13Cdentine values. The standard errors in the analytical data are smaller than the plotted
symbols.

doi:10.1371/journal.pone.0157750.g004
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exhibited non-local 87Sr/86Sr and/or δ13Cdentine values was expected. It has been suggested that
imported slaves quickly abandoned this practice to avoid recognition if they ran away [72, 94].
It would be unlikely that locally born individuals would continue this cultural practice. Based on
the multi-dental elemental strontium data, individuals 20A and 60 lived in more radiogenic
areas than the Cape in early life. Individual 50 originated from a geological area with less radio-
genic strontium. Individual 20A appears to have experienced at least two migration events: one
at the age of circa 8 (Δ87Sr/86SrM1-M2 = 0.0012), and one after 16 (Δ87Sr/86SrM2-M3 = 0.0058). In
contrast, the isotopic data of individual 60 indicates residential stability until the age of at least
16 (Δ87Sr/86Sr< 0.001). The strontium isotope data for individuals 20B and 52 were compatible
with the local range of strontium isotope ratios. The presence of dental modifications and a pre-
dominantly C4 based childhood diet (δ13Cdentine ~-12‰), however, precluded these individuals
from being locally born. Burials 20A (a male between 25 and 30 years at time of death) and 20B
(a young female of approximately 16 years of age) were buried together with a 1.5–2-year-old
child (20C) in a common shaft and shared a single coffin [71]. The isotopic data and the pres-
ence of dental modifications showed that individuals 20A and 20B were of non-local descent,
but did not share common geographical origins. Perhaps their dietary shift towards a more C4
signal, implied by the change in δ13C between dentine and cancellous bone, corresponded to
their transportation to a central slave market from where they were bought and subsequently
shipped to the Cape. They died shortly after arrival, before their bone was able to remodel and
incorporate the local dietary isotopic signature. The 87Sr/86Sr ratio and δ13Cdentine value of the
child, however, are consistent with the inferred local values.

The majority of the 12 individuals without dental modifications for whom multi-dental ele-
mental analysis was performed exhibited strontium ratios compatible with the Cape indicating
possible local provenance (n = 9). The carbon isotope data for individuals 18, 21 and 58, how-
ever, indicated a strong reliance on C4 food resources uncharacteristic of the Cape diet (all
δ13Cdentine >-13.5‰). Thus despite strontium isotope ratios compatible with the estimated

Fig 5. Multi-dental elemental strontium isotope data from 17 individuals. The horizontal linesmark the local strontium
range. Key: “+” next to sample number indicates the presence of intentional dental modifications. Open symbols identify
individuals who exhibit non-local δ13Cdentine values. The standard errors in the analytical data are smaller than the plotted
symbols.

doi:10.1371/journal.pone.0157750.g005
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local range, local origins were unlikely. A similar conclusion was drawn for individuals 14, 54
and 57: their childhood diet consisted of C3 foods, but in much larger proportions than the
inferred local diet at the Cape. Hence, the use of strontium isotope ratios alone as a diagnostic
tool at the Cape will invariably lead to an underestimation of migrants. As a result, just four
out of the seventeen individuals selected for multi-dental elemental sampling exhibited both
δ13Cdentine values and

87Sr/86Sr ratios compatible with the inferred local ranges. From the avail-
able data, it was not possible to determine if these individuals were second or subsequent gen-
eration slaves, or had consumed a comparable diet to that of the Cape and hailed from a
geologically similar region.

In addition to individual 20A, multiple migration events were also evident from the stron-
tium isotope data of individual 44. This 40 to 50-year-old female was transhipped to more radio-
genic regions after the age of 3 (Δ87Sr/86SrM1-M2 = 0.0078) and experienced another (forced)
migration after the age of 7 (Δ87Sr/86SrM2-M3 = 0.023). As with individual 44, individual 49, a 30
to 35-year-old male, exhibited an M2 87Sr/86Sr ratio that was significantly more radiogenic than
his M1 ratio (Δ87Sr/86SrM1-M2 = 0.013). Due to the absence of the 3rd molar, it could not be estab-
lished whether this individual’s migration to the Cape occurred after the age of 7 or 16.

Individual 59 plotted outside of the Cape strontium range throughout life. The 87Sr/86Sr
ratios for this individual were similar to those of the M1 and M2 of individual 50, however,
their differing childhood dietary habits (δ13Cdentine -17.6‰ and -12.0‰ respectively) suggested
different geographical origins for the two males.

Individuals 32 and 59 (males) and 57 and 65 (females) were buried facing Signal Hill (type
C burials, see Table 3), a sacred place for Cape Muslims. Due to their orientation, it was
deduced that these individuals were Muslims. During the period under investigation, Islam
was present in all corners of the Indian Ocean basin, including the Cape where slaves favoured
it to Christianity for its inclusiveness [95, 96]. Unsurprisingly individuals from burial type C
showed a wide range of Sr isotope ratios, ranging from 0.70600 to 0.71225, implying origins
from very different geological regions. Based on combined carbon and strontium isotope data,
two individuals (57 and 59) were undoubtedly of non-local descent. Individual 59’s low
87Sr/86SrM1 ratio (0.70600) allows a tentative assignment to a region characterised by a young
volcanic geology, such as the Indonesian archipelago, the Deccan traps region of India or volca-
nic islands in the Indian Ocean.

Conclusion
We demonstrated the utility of relating dietary isotope data to strontium isotope data to enable
a more accurate identification of individuals as local or non-local. The approach is particularly
useful for migrations in which the geographical relocation is associated with the adaptation to
new dietary habits.

The variable geology and the current absence of a comprehensive biological or biosphere
database from the region in the near proximity of Cape Town, however, prevents the accurate
delineation of the local strontium signal for the Cape Town region. As a result, the relatively
broad local 87Sr/86Sr signature undoubtedly led to an underestimation of the number of non-
local individuals. We argue, however, that this outcome is preferable to the overestimation of
migrants. The use of only one isotopic proxy for migration (either strontium or carbon) gener-
ates an incomplete and inaccurate number of non-locally born individuals. This study demon-
strates the efficacy of using multiple lines of evidence to generate a more reliable assessment of
migration.

We conclude that the absence or the presence of a significant dietary shift cannot be used
alone as a reliable proxy for migration. In contrast, a δ13Cdentine value that deviates from the
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assumed local range seems to identify migrants remarkably well and is as indicative as the pres-
ence of intentional dental morphological modifications, a practice not reported at the Cape. As
a result, based on the combined interpretation of the osteological, carbon isotope and stron-
tium isotope data, a minimum of 54.5% of the investigated population can be identified as
non-local to the Cape (18/35).

Further identification of non-locally born individuals might be feasible using additional iso-
topic proxies such as lead (206/207/208Pb/204Pb and 207/208Pb/206Pb) and oxygen (δ18O). Lead
isotope analysis was not undertaken in this study, however, as it requires a minimum of 120
mg of enamel powder for archaeological samples, destroying most of the dental element.
Recent analytical developments, however, now offer this possibility as sub nanogram amounts
of Pb can now be analysed [97]. Although oxygen isotope analysis may give additional infor-
mation, expected oxygen isotope values in coastal regions of South Africa and countries bor-
dering the Indian Ocean basin partly overlap, hampering an accurate interpretation of a
person’s geological provenance (see e.g. Fig 3 in [98]).

This is the first extensive isotopic study that elucidates the complexity of the multi-direc-
tional Indian Ocean slave trade and sheds light on possible provenances. To date, the history of
the Indian Ocean slave trades after European involvement has been highly dependent on the
historical record in which subaltern populations are not always well represented. Future inter-
disciplinary research (combining isotopic data with palaeogenetics) of non-Europeans at the
Cape will offer a direct route to assess a neglected history.
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