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Conversion to secondary progressive (SP) course is the decisive factor for long-term

prognosis in relapsing multiple sclerosis (MS), generally considered the clinical equivalent

of progressive MS-associated neuroaxonal degeneration. Evidence is accumulating that

both inflammation and neurodegeneration are present along a continuum of pathologic

processes in all phases of MS. While inflammation is the prominent feature in early

stages, its quality changes and relative importance to disease course decreases

while neurodegenerative processes prevail with ongoing disease. Consequently,

anti-inflammatory disease-modifying therapies successfully used in relapsing MS are

ineffective in SPMS, whereas specific treatment for the latter is increasingly a focus of

MS research. Therefore, the prevention, but also the (anticipatory) diagnosis of SPMS,

is of crucial importance. The problem is that currently SPMS diagnosis is exclusively

based on retrospectively assessing the increase of overt physical disability usually

over the past 6–12 months. This inevitably results in a delay of diagnosis of up to 3

years resulting in periods of uncertainty and, thus, making early therapy adaptation to

prevent SPMS conversion impossible. Hence, there is an urgent need for reliable and

objective biomarkers to prospectively predict and define SPMS conversion. Here, we

review current evidence on clinical parameters, magnetic resonance imaging and optical

coherence tomography measures, and serum and cerebrospinal fluid biomarkers in

the context of MS-associated neurodegeneration and SPMS conversion. Ultimately, we

discuss the necessity of multimodal approaches in order to approach objective definition

and prediction of conversion to SPMS.

Keywords: multiple sclerosis, progression, neurodegeneration, biomarkers, brain atrophy, neurofilaments, optical

coherence tomography

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous
system, which results from the interaction of genetic and environmental factors that remain only
partially understood (1, 2). The majority of patients (85%) initially follow a relapsing-remitting
course (RRMS), defined by acute exacerbations and periods of relative clinical stability
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in between (3). In ∼10–15%, patients suffer from a progressive
decline in neurological function, called primary progressive
multiple sclerosis (PPMS) (4, 5). Natural history of RRMS
encompasses conversion to a secondary progressive course
(SPMS), which is a gradual process characterized by irreversible
disability progression, independent of relapses (6). SPMS
conversion is the decisive factor for long-term prognosis in
MS, generally considered the clinical equivalent of progressive
MS-associated neuroaxonal degeneration with limited and
qualitatively changed inflammatory ability (7–10). Although
once nearly 10% of patients with RRMS converted to SPMS
within 5 years, 25% in 10 years, and 75% in 30 years, the
10-, 15-, and 20-year risk of conversion to SPMS seems
to be much lower nowadays (2, 9, and 27%, respectively),
due to earlier diagnosis and possible treatment options (11–
13). However, anti-inflammatory disease-modifying interval
therapies (DMT) successfully used in RRMS are ineffective
in SPMS (without superimposed relapses), whereas specific
treatment for SPMS is increasingly a focus of MS research.
Therefore, the prevention, but also the (anticipatory) diagnosis
of SPMS, is of crucial importance.

The problem is that SPMS diagnosis is yet exclusively
based on retrospectively assessing the increase of overt physical
disability usually over the past 6–12 months. Currently, the most
widely used definition of SPMS is the occurrence of disability
progression of ≥1 Expanded Disability Status Scale (EDSS) steps
(when the EDSS score≤5.5) or≥0.5 EDSS steps (when the EDSS
score≥6) in the absence of a relapse, and a minimum EDSS score
of 4 and pyramidal functional system score of 2 (14). Besides,
the inflammatory and neurodegenerative process that have been
once thought to be almost strictly separated in relapsing and
progressive MS, respectively, are now thought to be a part of
a continuum, in which inflammatory activity prevails at the
beginning of the disease, but can occur in the later stages of the
disease, too—and vice versa. Recent studies have confirmed that
disability progression can be seen even in patients with RRMS
in the absence of relapses (15, 16). This “silent progression”
is associated with brain and retinal atrophy, and suggests that
neurodegeneration, which is the driving mechanism of disability

Abbreviations: BBSI, Brain Boundary Shift Integral; CHI3L1, chitinase 3-like

1; CSA, cross-sectional area; CSF, cerebrospinal fluid; DI, discrimination and

identification; DMT, disease-modifying therapy; EDSS, Expanded Disability Status

Scale; ELISA, enzyme-linked immunosorbent assay; GCIPL, ganglion cell-inner

plexiform layer; GFAP, glial fibrillary acidic protein; HCLA, high-contrast visual

acuity; LCLA, low-contrast letter acuity; MRI, magnetic resonance imaging;

MS, multiple sclerosis; MSFC, Multiple Sclerosis Functional Composite; NEDA,

no evidence of disease activity; Nf, neurofilament; NfL, neurofilament light

subunit; OCT, optical coherence tomography; ON, optic neuritis; PASAT, Paced

Auditory Serial Addition Test; PPMS, primary progressive multiple sclerosis;

pRNFL, peripapillary retinal nerve fiber layer; RRMS, relapsing-remitting multiple

sclerosis; SCA, spinal cord atrophy; SDMT, Symbol Digit Modalities Test; SD-

OCT, spectral domain optical coherence tomography; SELs, slowly expanding

lesions; SIENA, Structural Image Evaluation of Normalized Atrophy; sNfL, serum

neurofilament light subunit; SPMS, secondary progressive multiple sclerosis;

sTREM2, soluble triggering receptor 2; SWI, susceptibility-weighted imaging; TD-

OCT, timed domain optical coherence tomography; TREM, triggering receptor

expressed on myeloid cells 2; T25FW, Timed 25-Foot Walk Test; 9HPT, 9-Hole

Peg Test.

progression in patients with SPMS, likely begins much sooner
than generally recognized (17, 18).

Defining SPMS retrospectively inevitably results in a delay
of diagnosis, reportedly of up to 3 years, resulting in periods
of uncertainty and, thus, also making early therapy adaptation
(including timely escalation) to prevent SPMS conversion
impossible (19, 20). Hence, there is an urgent need for reliable
and objective biomarkers to prospectively predict and define
SPMS conversion.

An objective definition and reliable prediction of SPMS
conversion is especially important in an era in which new
therapies with potential neuroprotective effects are introduced.
In this way, late RRMS and early SPMS may represent a window
of opportunity for intervention to delay or even prevent disability
progression. Therefore, the primary objective of this systematic
review was to assess the role of potential clinical and paraclinical
biomarkers to determine conversion to SPMS.

METHODS

Search Methods
A review of the literature concerning biomarkers in secondary
progressive MS was performed using PubMed with no restriction
placed on country or publication date. Search terms included the
following: biomarkers, ExpandedDisability Status Scale,Multiple
Sclerosis Functional Composite, Symbol Digit Modalities Test,
Low-Contrast Letter Acuity, olfactory function, magnetic
resonance imaging, brain atrophy, slowly expanding lesion,
spinal cord atrophy, optical coherence tomography, peripapillary
retinal nerve fiber layer, macular ganglion cell-inner plexiform
layer, neurofilaments, glial fibrillary acidic protein, soluble
triggering receptor 2, OR chitinase 3-like 1 AND disease
progression AND multiple sclerosis. Relevant articles were also
found by scanning the references of found articles (backward
search) and locating newer articles that included the original
cited paper (forward search). The last search was performed on
the October 31, 2020. The search yielded 4,508 articles.

Selection Criteria
Our selection criteria were language (English), focus of the
study (to determine the progression of MS), and an original
contribution of the publication, regardless of the interventional
or non-interventional nature of the study. Data from reports were
extracted from each report separately. Case reports were excluded
with an exception of one case report presented with qualitative
data. After selection criteria were applied, 4,261 articles were
excluded. We found 247 eligible articles, among which 91 were
included in the review (Table 1, Figure 1).

Evidence Grading Process
The methodological quality of the studies included in this
review was graded using the Grades of Recommendation,
Assessment, Development, and Evaluation (GRADE) tool for
best-evidence synthesis (Table 2). The systematic review was
prepared according to the latest PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines.
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TABLE 1 | Number of articles after applying selection criteria for each biomarker

of conversion to secondary progressive multiple sclerosis (SPMS).

Biomarkers of conversion to SPMS Eligible Articles included in

articles (n) the review (n)

Clinical biomarkers EDSS 38 6

MSFC 18 12

SDMT 16 11

Visual function 4 3

Olfactory function 12 7

MRI Brain atrophy 49 9

SELs 13 7

Spinal cord atrophy 22 8

OCT pRNFL, mGCIPL 15 11

Biomarkers in blood Nf 21 8

and CSF GFAP 11 4

sTREM2 2 1

CHI3L1 11 4

CHI3L1, chitinase 3-like 1; CSF, cerebrospinal fluid; EDSS, Expanded Disability Status

Scale; GFAP, glial fibrillary acidic protein; mGCIPL, macular ganglion cell-inner plexiform

layer; MRI, magnetic resonance imaging; MSFC, Multiple Sclerosis Functional Composite;

Nf, neurofilament; OCT, optical coherence tomography; pRNFL, peripapillary retinal nerve

fiber layer; SDMT, Symbol Digit Modalities Test; SELs, slowly expanding lesions; sTREM2,

soluble triggering receptor 2.

CLINICAL PARAMETERS

EDSS
In most clinical trials, EDSS has been and is used to measure
disability progression. It consists of 20 steps ranging from 0
to 10, assessing MS-related impairment based on neurological
examination (EDSS score<4.0), walking ability (EDSS score 4.0–
6.0), or other functional impairments (EDSS score ≥6.5) (21).
However, it has proven less sensitive in detecting all clinically
relevant contributors to disability progression in SPMS patients,
especially upper-extremity and cognitive dysfunction (22, 23).
Besides that, the mid-range of the EDSS overvalues long-distance
ambulation and lacks inter- and intrarater reliability (24–26). In
the London (Ontario) cohort, the median time from EDSS score
6.0 to 8.0 was 7.9 years, arguing against using the EDSS as the
primary outcome in trials in which more disabled patients with
SPMS are included (27).

MSFC
The Multiple Sclerosis Functional Composite (MSFC) is a
composite score assessing short-distance ambulation [Timed 25-
Foot Walk Test (T25FW)], upper-extremity function [9-Hole
Peg Test (9HPT)], and cognitive function [Paced Auditory Serial
Addition Test (PASAT)].

T25FW and 9HPT measure time to walk 25 feet and to
put nine pegs in and out of a box with holes, respectively.
They are able to identify disability progression in SPMS patients
more frequently than EDSS (28, 29). The threshold for T25FW
and 9HPT to detect clinically meaningful disability progression
is reported at 20% or more (30–32). Still, the PASAT, a
test of auditory information processing speed, flexibility, and

calculation ability, has not been shown to sensitively detect
cognitive worsening in SPMS (33, 34). As the 9HPT and
PASAT have well-demonstrated practice effects, meaning that
participants learn how to perform the test and improve their
scores with each repetition, the T25FW seems to be the most
reliable clinical test to sense disease progression (35, 36).

In the IMPACT (The MS Progressive Avonex Clinical Trial)
and ASCEND (Effect of Natalizumab on Disease Progression
in Secondary Progressive Multiple Sclerosis) clinical trials,
evaluating the efficacy of intramuscular interferon beta 1a and
natalizumab treatment in SPMS, respectively, the T25FW was
the single outcome measure with the greatest proportion of
patients showing disability progression (37, 38). While the 9HTP
also shows a small but significant rate of change over time, it
is more prone to fluctuations (39). The EDSS-Plus composite
score (EDSS, T25FW, and 9HPT) is roughly twice as sensitive as
EDSS alone in detecting disability progression in SPMS patients
(59.5 vs. 24.7%, respectively) (30). With EDSS 3.0–6.5, and a
T25FW of 8 s or more, the progression rate above 40% was met
in both clinical trials (40). However, although the focus of the
clinical trials mentioned was disability progression in already
diagnosed SPMS rather than the conversion from RRMS to
SPMS, a composite score could be used as a sensitive biomarker
in determining the conversion to SPMS.

SDMT
Beside physical impairment, 40–65% of patients with progressive
MS have some degree of cognitive impairment (41). Cognitive
function correlates even closer with quality of life than
the measures of physical impairment but is frequently
underestimated when only EDSS is used (42). The areas
most affected comprise information processing speed, complex
attention, memory, and executive function (43). The cognitive
impairment is correlated with the atrophy of cortical and
subcortical areas, the corpus callosum, and the superior
longitudinal fasciculus (44, 45).

With a specificity of 60% and a sensitivity of 91%, the
Symbol Digit Modalities Test (SDMT) presents a sentinel test for
cognitive impairment in patients with MS (46, 47). It evaluates
the sustained attention, the capacity of concentration, and the
visuomotor speed. When compared to the PASAT, the SDMT
proved superior with a higher sensitivity (48–50). In general,
a four-point or 10% change in SDMT is considered clinically
relevant (51). It correlates less strongly with EDSS and the other
performance measures (T25FW, 9HPT), providing additional
information by assessing the function not captured by the
other measures (52). Among different neuropsychological and
language performances, the SDMT showed to have the greatest
effect size between RRMS and SPMS (53). In this respect, the
SDMT is used as the primary endpoint to assess cognitive changes
in patients with SPMS, e.g., in the AMASIA study [Impact
of Mayzent R© (Siponimod) on Secondary Progressive Multiple
Sclerosis Patients in a Long-Term Non-Interventional Study in
Germany] (54). However, it displays a significant practice effect
when brief inter-assessment intervals are used, which becomes
less pronounced with the progression of the disease (55, 56).
Therefore, a change in key is proposed to make the interpretation
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FIGURE 1 | PRISMA flow diagram demonstrating included and excluded studies, and the reasons for exclusion in the systematic review.

of the results less biased. Still, a recent study suggested that SDMT
scores improve throughout follow-up, possibly due to a practice
effect, and in that way does not reflect the steady cognitive decline
that patients with SPMS experience (57).

Assessment of Visual Function
The anterior visual pathway is affected in more than 90%
of MS patients over the course of the disease (58). Among
a variety of available measures of visual function, visual
contrast threshold is the most promising in MS, defined as
the minimum amount of contrast necessary for an individual
to discern an object from its background. Visual contrast is
assessed by Sloan low-contrast letter acuity (LCLA) charts,
which are based on Early Treatment Diabetic Retinopathy
Study high-contrast visual acuity (HCLA) charts, but using
gray letters with 2.5 and 1.25% contrast level as opposed to
black letters (100% contrast level) (59). The charts provide a
continuous measure with seven letters of LCLA loss considered
to be meaningful and beyond the threshold of test-retest
variability (60).

LCLA has been found to be altered in patients with MS,
even when HCLA appears normal (61). It shows good structure-
function-correlation both with retinal atrophy and lesions in the
posterior visual pathway (62–64). Therefore, there have been calls
for the inclusion of LCLA in MSFC to reflect visual function (49,
65). The IMPACT study was the first clinical trial to use LCLA
as an exploratory visual outcome, reporting good correlation
with disability, MSFC and EDSS (65, 66). Recently, progressive
visual impairment has been proposed as an additional modality
in defining SPMS conversion in a case report (67).

Assessment of Olfactory Function
Impairment of olfactory function is an increasingly recognized
feature ofMSwith different modalities reflecting different aspects
of MS pathology (68–70). The capacity to correctly identify
odors (identification) and discriminate them (discrimination)
is predominantly affected in progressive and more advanced
MS (69). It slowly deteriorates over time in association
with progressing physical disability (68). In contrast, olfactory
threshold is impaired in early, active MS, and predicts short-term
inflammatory disease activity (71–73).
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TABLE 2 | The clinical and paraclinical biomarkers of conversion to secondary progressive multiple sclerosis (SPMS).

Biomarkers of conversion Measure Pathophysiological Advantages Disadvantages Evidence

to SPMS correlate grade

Clinical

biomarkers

EDSS 20 steps from 0 to 10

Relevant increase: ≥1 point when score is ≤5.5, ≥0.5 when

score is ≥6.0

Neuroaxonal damage,

primarily spinal

Easily accessible

Time efficient

Depends on walking ability

Does not reflect cognition

Lacks inter- and

intrarater reliability

High

MSFC Time to walk 25 feet (T25FW) and put nine pegs in and out of a

box with holes (9HPT), number of correct out of 60 possible

answers (PASAT)

Relevant change: ≥20% in MSFC subscores

Neuroaxonal damage,

primarily cerebral

Easily accessible

Evaluates measures not included

in EDSS

PASAT less sensitive to detect

cognitive worsening

9HPT and PASAT demonstrate

practice effect

High

SDMT Number of correct substitutions within a 90 s interval (maximum

110)

Relevant change: ≥4 points or ≥10%

Neuroaxonal damage,

primarily cortical and

subcortical

Time efficient

Easy to administer

Change sensitive

Independent of language

Practice effect High

Visual

function

Number of correctly identified letters (LCLA chart)

Relevant change: ≥7 letters loss

Neuroaxonal damage in

anterior visual pathway

Time efficient Requires a retroilluminated

cabinet or a standardized room

Low

Olfactory

function

Number of correctly discriminated (D) and identified (I) odors

DI-score of maximum 32 points

Relevant change: ≥2 points

Neuroaxonal damage in

olfaction-related brain

regions

Time efficient

Easy to administer

Easily accessible

Multiple external confounders

(smoking, hunger state, upper

respiratory tract infection,

corticosteroids)

Low

MRI Brain

atrophy

Global and regional cortical and subcortical atrophy

Relevant change: ≥0.4% per year

Neuroaxonal damage,

cerebral

Highly reproducible Pseudoatrophy effect

Dependent on confounding

factors (hydration, diurnal

fluctuations, lifestyle,

comorbidities)

Technical limitations

(heterogenous acquisition

protocol, scanner variability)

Moderate

SELs Number of iron rim lesions

Relevant change: not known

Chronic demyelination,

leading to neuroaxonal

damage

In vivo assessment of chronic

demyelination

Highly reproducible

Technical limitations Low

Spinal cord

atrophy

Cervical spinal cord average CSA

Relevant change: not known

Neuroaxonal damage,

spinal cord

Higher rate of change compared

to brain atrophy

Anatomical (high mobility, low

dimensions) and imaging (low

tissue contrast) limitations

High impact of lesions

on measurements

Moderate

OCT pRNFL Thickness in µm

Relevant change: >1.5µm

Axonal degeneration,

antero- and retrograde

Non-invasive

Easily accessible

Highly reproducible

Prone to confounding from optic

neuritis

Moderate

(Continued)
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The sum score of discrimination and identification (DI
score) has been shown to correlate with disease duration,
physical disability, reduced cognitive function, and reduced
retinal thickness of MS patients (69, 74). Moreover, a recent study
has shown a robust correlation between impairment of DI score
and decreased gray matter concentration in the putamen and
temporomesial brain regions in MS patients (75). The olfactory
dysfunction is related to several cognitive measures, including
SDMT (76).

MAGNETIC RESONANCE IMAGING

Brain Atrophy
Gray matter atrophy quantified by means of MRI volumetry is
a well-established imaging marker of neurodegeneration in MS
(77). It is typically measured from standard 3D T1-weighted
images, using fully automated approaches, among which the
SIENA method (Structural Image Evaluation of Normalized
Atrophy) and Brain Boundary Shift Integral (BBSI) are most
commonly used (78–81). SIENA performs segmentation of brain
from non-brain tissue, estimates the outer skull surface as a
normalizing factor, and aligns the two scans to correct for
changes in image geometry. The registered segmented brain
images are used to find local atrophy,measured on the basis of the
movement of image edges (81). It has a good test–retest reliability
with an error of 0.17% on an MS data set (82). Segmentation-
based algorithms used in a semiautomatic way (with manual
correction) are considered as reference standard techniques, but
are time consuming and less reproducible (83).

Gray matter atrophy occurs in all phenotypes of MS and is
associated with disability accumulation (84). Recently, cut-offs
to distinguish pathological brain atrophy related to MS from
the physiological change have been established, with 0.40% per
year performing best for detecting physical disability progression
(65% sensitivity, 80% specificity) (85). Cortical atrophy seems
to accelerate in progressive MS compared to RRMS (−0.87
vs. −0.48%, respectively) (86). Some brain areas display earlier
atrophy compared to others, namely, cingulate cortex, insular
and temporal cortical gray matter, and the deep gray matter
(putamen, caudate nucleus) (84, 87). Cortical atrophy patterns
show stronger association with clinical (especially cognitive)
dysfunction than global cortical atrophy (86, 87).

Thalamic volume is another MRI volumetric measure of
neurodegeneration in MS. Thalamic atrophy at baseline is
associated with higher risk for 5-year EDSS increase as well as for
not reaching criteria of no evidence of disease activity (NEDA-
3) after 2 years (88, 89). Atrophy of anterior thalamic nucleus is
also associated with decreased cognitive processing speed (90).
However, the rate of decline shows little variation throughout the
disease at an estimated −0.71% per year (95% CI = −0.77 to
−0.64%) (91). Among regional brain atrophy, corpus callosum
seems to be one of the most sensitive MRI markers for memory
and processing speed (92). In contrast to the rate of thalamic
atrophy, a study of the MAGNIMS study group showed SPMS to
have a higher rate of temporal (−1.21%) and parietal (−1.24%)
gray matter atrophy. However, only the atrophy rate in the deep
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gray matter was associated with disability accumulation (p <

0.001) (84).
There are several external confounding factors that need to

be taken into account when analyzing brain atrophy, including
hydration changes, diurnal fluctuations, lifestyle (smoking,
alcohol consumption), menstrual cycle, and comorbidities
(93–97). Whereas inflammation can transiently increase
brain volume in the short-term, DMT reduce edema,
causing accelerated, non-tissue-related brain volume loss,
known as pseudoatrophy (98). However, these confounding
factors only result in minor volume changes. Besides the
confounding factors, there are also technical barriers that
pose a challenge in the adoption of atrophy in clinical
practice. These include heterogeneity in acquisition protocol,
distortion differences, and scanner variability, to name a few
(99, 100).

Slowly Expanding Lesions
In MS, some lesions remyelinate early after the
demyelinating event, evolving into remyelinated shadow
plaques which is protective against axonal degeneration
(101, 102). While those predominate in early RRMS,
some lesions develop into smoldering plaques or slowly
expanding lesions (SELs) which are more prominent
in progressive MS (12–28% plaques) and seem to
indicate progressive disease activity (103–106). They are
associated with incomplete remyelination which results
in irreparable myelin loss, leading to axonal degeneration
(107, 108).

Histopathologically, SELs are characterized by an inactive
center with no or few macrophages, surrounded by an iron
rim containing microglia/macrophages with a pro-inflammatory
activation status.Whilemost studies on SEL have been conducted
on 7TMRI, which has limited availability, it has been consistently
shown that SEL can also be sensitively detected on 3T MRI using
several different sequences, among which the susceptibility-
weighted imaging (SWI) is the most reliable (109–114). SELs
expand toward the surrounding white matter in comparison with
non-iron lesions, which significantly shrink over time (115). They
seem to be more destructive, too, reflected by T1 hyperintensities
(black holes) which are associated with greater reduction in
myelin and axonal density (116–118).

Patients with multiple SELs (≥4 SELs) have more aggressive
disease (higher lesion load and ventricular volumes, lower brain
and basal ganglia volumes) and reach higher motor (EDSS)
and cognitive disability (SDMT, PASAT) or transit to disease
progression at a younger age (119, 120). Another study confirmed
that SELs significantly predict clinical progression, evaluated by
EDSS, T25FW, and 9HPT (121).

As edge-related iron accumulation might separate SEL from
the lesions with a higher remyelination potential, SWI-based
iron imaging may present a useful imaging biomarker for
progressive MS.

Besides that, SELs seem to have a good imaging–pathologic
correlation, which is why we think they could be used routinely
to determine disease progression or even conversion to SPMS.

Spinal Cord Atrophy
Spinal cord atrophy (SCA) is another promising biomarker of
MS-associated neurodegeneration. A recently published meta-
analysis has confirmed the correlation between SCA and clinical
disability, assessed by EDSS (122). When comparing the cross-
sectional area (CSA) of a spinal cord, it can differentiate between
RRMS and progressive types of MS (p < 0.001) (123). SCA also
progresses faster in patients exhibiting disease progression at 2
years (124). A recent study has confirmed that SPMS and RRMS
patients differ in cervical spinal cord average CSA (p = 0.03)
as well as in C7 area (p = 0.002) (125). Atrophy of the upper
cervical cord is most evident in the antero-posterior direction,
and attains a cranio-caudal pattern with the progression of the
disease (126, 127). It presents a sensitive biomarker, especially as
the estimated annual rate of SCA is greater when compared to
the rate of brain atrophy in patients with MS (−1.78 vs. −0.5%)
(123, 128).

However, assessment of the SCA is technically more difficult
than brain segmentation due to anatomical (higher mobility,
smaller dimensions) and imaging (lower tissue contrast) features
of the spinal cord. Focal lesions also add variance to SCA
measures, with acute lesions and chronic lesions causing swelling
and shrinking, respectively (129). SCA is usually measured on
T1-weighted gradient recalled sequences, with the mean upper
cervical cord area, a measurement of CSA at the level between
the C2 and C3 vertebrae, being most commonly used (130–
132). A study of Liu and coworkers showed that the C2/C3
CSA is comparable to the CSA 2.5 cm below the inferior margin
of pons, which may be of interest in longitudinal studies or
trials where spinal cord measurements were not included as an
original outcome measure, but could be obtained from the brain
scans (133).

OPTICAL COHERENCE TOMOGRAPHY

Optical coherence tomography (OCT) is a non-invasive and
accessible technique that uses near-infrared light to create
images of the retina (134). It can measure the thickness of
peripapillary retinal nerve fiber layer (pRNFL) and ganglion
cell-inner plexiform layer (GCIPL), which are both robust
indicators of neuroaxonal degeneration in MS (135). Since time
domain OCT (TD-OCT) has been supplanted by spectral domain
OCT (SD-OCT), which provides a better image resolution and
enables the use of segmentation algorithms, validity has so
much increased that small changes in the micrometer spectrum
can be reliably reproduced (136). Among fully automated
segmentation techniques, two commonly utilized are Cirrus and
Spectralis (137). Both Spectralis and Cirrus proved to have high
reproducibility and repeatability in both pRNFL and GCIPL
measurements, especially when eye tracking and averaging of
multiple images are used (138–140).

Several studies have shown that pRNFL and GCIPL are
significantly reduced in patients with MS regardless of prior
optic neuritis (ON) (136, 141, 142). They are associated with
both present and future physical and cognitive disabilities as
well as brain atrophy, while short-term relapse activity (apart
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from ON) has little or no effect on pRNFL and GCIPL thinning
(74, 135, 143–145). A baseline pRNFL thickness in the eyes
without prior ON of ≤87µm (Cirrus) or 88µm (Spectralis)
approximately doubled the risk of disability worsening and
cognitive decline during the following 2–5 years (74, 144). Similar
results were found for a baseline GCIPL thickness below 77µm
(Spectralis) (146).

OCT can potentially help differentiate between MS subtypes,
with RRMS patients having significantly lower RNFL thinning
compared to patients with SPMS. There was no statistically
significant difference between the RNFL thickness in patients
with both subtypes of progressive MS (SPMS, PPMS) (147). With
a specificity of 90% and a sensitivity of 76.1%, annual pRNFL
thinning rate of more than 1.5µm is able to distinguish between
stable and progressive MS; the risk is increased by 15-fold (148).
A recent study found that an annual loss in GCIPL above a
cut-off≥1µm accurately identifies clinically progressing patients
with 87% sensitivity and 90% specificity, and presents a strong
predictor of clinical progression (146).

One of the limitations of pRNFL measurement is its
dependence on optic disc swelling at the time of ON, and its
reduction after the episode of ON, which makes GCIPL superior
for detection of early atrophy following ON (149, 150). Besides
that, RNFL is not homogenous but thicker around the optic disc,
decreasing the reliability of scan acquisition (151). Progressive
thinning of GCIPL, and to a lesser extent, pRNFL in absence of
inflammatory episodes makes the measure a compelling model
for MS associated neurodegeneration and, thus, a promising
candidate biomarker for definition and prediction of conversion
to SPMS.

BIOMARKERS IN BLOOD AND
CEREBROSPINAL FLUID

Neurofilaments
Neurofilaments (Nf) are major components of the neuronal
cytoskeleton and neuroaxonal damage causes their release into
the extracellular space and further into the cerebrospinal fluid
(CSF) and the blood. Thus, Nf have recently garnered increasing
attention as a biomarker of axonal injury (152).

InMS, NfL levels in the CSF are associated with the occurrence
of neurological disability, MRI lesions, and treatment status in
MS (153, 154). CSF NfL levels at the time of diagnosis seem to be
an early predictive biomarker of long-term clinical outcome and
conversion from RRMS to SPMS (155, 156).

Until recently, Nf studies were limited to CSF as
detection systems were not sensitive enough to quantitate
the physiologically lower levels of Nf in the peripheral blood.
This restricts clinical applicability since obtaining CSF requires
lumbar puncture, which is an invasive procedure and necessitates
stringent indication for diagnostic purpose (152). Also, repeated
measurement is hardly feasible as repeated lumbar punctures are
difficult to justify and seldomly tolerated by patients (152).

The advent of the SIngle MOlecule Array (Simoa R©)
technology enables highly sensitive quantitation of the Nf light
(NfL) subunit in the peripheral blood (153). Importantly, several

studies have demonstrated that CSF and serum NfL (sNfL)
levels are highly correlated paving the road for application of
NfL as biomarker available for serial measurement (152). sNfL
levels correlate with disability and increase over time, even
in the absence of prior/subsequent disability progression, and
are associated with various MRI parameters of neuroaxonal
degeneration (T1 black holes, brain and spinal cord atrophy)
(157–160). However, several current limitations need to be
addressed: Nf levels are age-dependent and may be confounded
by certain concomitant disorders (e.g., physical activity, trauma,
small vessel disease); Nf correlations are based on group-wise
rather than individual evaluations (161).

Therefore, serum Nf are a promising candidate biomarker
for definition and prediction of SPMS conversion, but utility in
clinical routine practice awaits confirmation.

Glial Fibrillary Acidic Protein
Glial fibrillary acidic protein (GFAP) is one of the major
intermediate cytoskeletal proteins of astrocytes and presents a
well-established marker of reactive astrogliosis. The upregulation
of GFAP is critically important for the formation of extended and
thickened astrocytic processes observed in reactive astrogliosis at
the site of the injury (162). The latter is not necessarily connected
with glial scar formation, and its re- or demyelinating potential
depends on a number of factors, including the timing after injury,
themicroenvironment of the lesion, and its interactionwith other
cell types and factors influencing their activation (163–165).
However, extensive astrocytosis leads to the formation of the
astroglial scar which plays a role in the progression of MS (166).

Patients with progressive MS have significantly higher levels
of GFAP in CSF compared to the patients with clinically isolated
syndrome or early RRMS (167). GFAP levels in CSF and
serum correlate with neurological disability (EDSS) and disease
progression; the mean annual increase of GFAP is significantly
higher in SPMS patients compared to RMS and correlates with
sNfL and the MRI lesion count, especially in progressive MS
patients (168–170).

Soluble Triggering Receptor 2
The triggering receptor expressed on myeloid cells 2 (TREM2)
is found on the cell surface of macrophages and microglia
cells. Activation of TREM2 is associated with reduced tissue
destruction in animal models (171). In contrast, the soluble
form of TREM2 (sTREM2) detectable in CSF appears to
reflect the extent of microglial activation, with elevated
sTREM2 concentrations indicating increased microglial
activation (170, 171).

An essential aspect of the pathophysiology of SPMS
conversion is seen in a microcompartmentalization of
inflammation within the central nervous system, which is
primarily mediated by macrophages and microglia (172).
Intriguingly, a small study has recently described an increase
in sTREM2 in CSF in patients with progressive MS (173).
Therefore, sTREM2 could be important as a biomarker of SPMS
conversion. So far, however, sTREM2 has only been determined
by an enzyme-linked immunosorbent assay (ELISA) test, which
does not yield valid results in serum. A study of sTREM2 using
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the ultrasensitive Simoa method in serum or CSF has not yet
been performed.

Chitinase 3-Like 1
Chitinase 3-like 1 (CHI3L1), also known as YKL-40, is a member
of the chitinase-like glycoprotein family and is predominantly
produced by reactive astrocytes (174). Although its biological
and physiological function in the central nervous system remains
unclear, some studies have suggested that CHI3L1 is expressed in
astrocytes and microglia in a variety of acute neuroinflammatory
conditions, including traumatic brain injury and MS, being
involved into tissue remodeling during inflammation (174–177).

CHI3L1 levels in CSF were reported to be elevated in SPMS
patients and to predict SPMS conversion when NfL levels were
also increased (178, 179). Interestingly, CHI3L1 levels in SPMS
were similar to the level in active RRMS patients, which supports
the hypothesis that inflammation remains important in the
chronic phase of the disease (180). However, higher CHI3L1
levels are seen in both SPMS and PPMS patients compared to
RRMS, providing a possible biomarker to differentiate between
RRMS and progressive MS in general (178, 179). Accordingly,
higher levels of CHI3L1 are associated with higher EDSS and
related neurologic disability (181).

CONCLUSION

To date, several potential clinical and paraclinical biomarkers
have been researched in order to determine and predict
conversion from RRMS to SPMS. The most promising clinical
biomarkers are T25FW and SDMT, which evaluate both
function of the lower extremities and cognition and show
a good correlation with other biomarkers of MS-associated
neurodegeneration. Among paraclinical biomarkers, brain and
spinal cord atrophy, sNfL, GCIPL and pRNFL thinning, and
decreased DI score present an easy-accessible and repeatable
biomarker in determining progression of the disease. With
reaching a higher degree of disability, we should aim to take more
paraclinical outcome measures into consideration, especially as
they show some degree of worsening even in the absence of
clinical progression of the disease. However, currently available
evidence for most of these biomarkers is still low.

Going forward, by conducting prospective high-quality
standard studies combining multiple parameters within a

multimodal approach, we could gain a more holistic view of the
pathophysiology underlying SPMS conversion. Consequently,
diagnostic accuracy could be improved, shortening the time
to diagnosis and providing a window of opportunity for
intervention to delay disability progression.

However, although a combination of the mentioned
biomarkers would likely present the most sensitive tool to
assess disease progression, using a large number of methods is
unrealistic in everyday clinical practice. Thus, the goal would
be to better define the accessible paraclinical biomarkers of
conversion to SPMS, such as MRI, OCT, and biomarkers in
blood, and combine the most reliable and predictive markers
with clinical measurements for disease progression.

An objective and reliable definition of SPMS and a high-risk
profile for SPMS conversion would enable a new approach to
the management of patients with MS: DMT could be adapted
or escalated in a timelier manner in order to delay or even
prevent SPMS conversion, and symptomatic treatment could
be intensified. In the hopefully not too distant future, these
definitions might guide design and inclusion criteria when
studying neuroprotective or neurorepairing agents.
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