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This study was undertaken to investigate immunohistochemical expression of the
senescence-associated secretory phenotype (SASP) in invasive breast cancer (IBC)
tissues and to determine relationships between SASP positivity and tumor
microenvironments and the clinicopathological characteristics of IBC.
Immunohistochemistry for senescence markers, that is, high mobility group box-1
(HMGB1), p16, p15, and decoy receptor 2 (DCR2), was performed in tissue
microarrays of 1140 IBC samples. Cases positive for at least one of these four
markers were considered SASP-positive. Relations between SASP and tumor
characteristics, including immune microenvironments (stromal tumor-infiltrating
lymphocytes [sTILs] density and numbers of intraepithelial CD103-positive [iCD103 + ]
lymphocytes) and clinical outcomes were retrospectively evaluated. HMGB1, p16, p15, or
DCR2 was positive in 6.7%, 26.6%, 21.1%, and 26.5%, respectively, of the 1,140 cases.
Six hundred and five (53.1%) cases were SASP positive, and SASP positivity was
significantly associated with histologic grade 3, high-sTIL and iCD103 + lymphocyte
counts, absence of ER or PR, and a high Ki-67 index. Although SASP did not predict
breast cancer-specific survival (BCSS) or disease-free survival (DFS) in the entire cohort,
SASP positivity in luminal A IBC was associated with poor BCSS and DFS. However,
patients with SASP-positive TNBC showed better survival than those with SASP-negative
TNBC. In multivariate analysis, SASP positivity was an independent prognostic factor in
both luminal A IBC and TNBC, although the effect on prognosis was the opposite. In
conclusion, SASP would be involved in the modulation of immune microenvironments and
tumor progression in IBC, and its prognostic significance depends on molecular subtype.
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INTRODUCTION

Internal and external stimuli can damage DNA, and when this
damage cannot be repaired, cells undergo aging (senescence) or
apoptosis. Senescent cells secrete inflammatory cytokines,
chemokines, growth factors and matrix metalloproteinases
(MMPs) and modulate their microenvironments, which is
called senescence-associated secretory phenotype (SASP) and
can take various cell-dependent forms [1–3].

Tumor cell senescence can be induced by oncogenes, radiotherapy,
or chemotherapy, and senescent tumor cells that acquire SASP
change tumor microenvironments. Furthermore, SASP factors are
known to display anti-tumor effects by inducing the senescence of
surrounding tumor cells through paracrine or autocrine mechanisms
or by activating the host immune system to remove tumor cells [4–6].
However, SASP can also promote angiogenesis, proliferation, and
epithelial-mesenchymal transition (EMT), which result in tumor
progression and invasion [7]. Furthermore, cancer cells exhibiting
SASP cause chronic inflammation, tissue fibrosis, and increase tumor
cell drug resistance [4].

The senescence-associated markers that are usually used to
identify SASP in tumor tissue samples include p16, p15, p53,
ADP-ribosylation factor (ARF), p21, differentially expressed in
chondrocytes protein 1 (DEC1), decoy receptor 2 (DCR2), and
high mobility group box 1 (HMGB1) [8–12]. p16 inhibits cell
division by regulating G1 to S transition, and loss of p16 function
promotes cell cycle progression and is involved in the
pathogenesis of several cancers [13,14]. In addition, p16 is
upregulated during tissue aging [15] and has been considered
a prognostic marker in cancer patients [16–18]. p15 regulates G1
progression and is upregulated by senescence-associated
β-galactosidase (SA-β-Gal, a classic SASP marker) activation
[9]. p15 also participates in growth arrest in Ras-transformed
NIH 3T3 fibroblasts [19].

DCR2 is a TRAIL (tumor necrosis factor-related apoptosis-
inducing ligand) receptor and inhibits TRAIL-induced apoptosis
in response to chemotherapy [20]. HMGB1 is a member of the
alarmin family and an important component of tissue damage
signals and also inhibits apoptosis by reducing the functions of
caspase-3 and -9 [21–23]. HMGB1 is translocated from nuclei to
cytoplasm and extracellular space in senescent cells, and this
promotes the release of SASP factors, such as interleukin-1β (IL-
1β), IL-6, and MMP3 [8,10,11]. Therefore, loss of nuclear
expression of HMGB1 has been used for identifying senescent
cells [10,24,25].

Several studies have addressed SASP marker expression in
Korea and overseas. p15, p16, and DCR2 were reported to be
upregulated during prostate cancer progression [12], and DCR2
expression was increased in lung cancer cell lines treated with
anticancer drugs [20]. In addition, HMGB1 upregulation has
been observed in breast cancer [26], colon cancer [22] and
gastrointestinal stromal tumor [27] tissues. However, few
studies have shown combined expression of senescence
markers and its association with clinicopathologic features in
breast cancer [28].

In the present study, we used immunohistochemistry (IHC) to
determine the expressions of senescence-associated markers in

invasive breast cancer (IBC) tissues and then investigated the
effects of SASP on tumormicroenvironments, clinicopathological
characteristics, and patient prognosis.

MATERIALS AND METHODS

Collection of Breast Cancer Tissues and
Clinicopathological Data
IBC tissue samples surgically resected at Yeungnam University
Medical Center from 1995 to 2007 were included in this study.
Patients that received neoadjuvant chemotherapy or with a
microinvasive carcinoma were excluded. Clinicopathological
information and follow-up data were collected from medical
records including pathology reports. Breast cancer-specific
survival (BCSS) was defined as time interval between
surgical resection and death from -related cause or last
follow-up. Disease-free survival (DFS) was defined as time
interval between surgical resection and tumor relapse
(locoregional recurrence or distant metastasis), death or last
follow-up.

This study was approved by the Institutional Review Board
(IRB) of Yeungnam University Medical Center (YUMC2019-10-
002), which waived the requirement for informed consent.

Tissue Microarrays and
Immunohistochemical Staining for
Senescence-Associated Markers
For this study, we used tissue microarray (TMA) blocks that have
been used in our previous studies [29,30]. To briefly explain TMA
construction, a pair of 1.5 mm-diameter tissue cores was retrieved
from a representative tumor block using a manual tissue
microarrayer (Quick-Ray®, Unitma, Seoul, Korea), and
consecutively transferred to the recipient blocks (Unitma). A
total of 38 TMA blocks representing 1518 IBC cases were created.

IHC staining for HMGB1, p16, p15, and DCR2 was performed
on TMA sections using a Benchmark XT immunostainer
(Ventana Medical Systems) as described in Table 1. All IHC
slides were interpreted by two observers (YKB andMHP) under a
multi-headedmicroscope. HMGB1was ubiquitously expressed in
nuclei of most cells including non-neoplastic and cancer cells.
Therefore, loss of nuclear staining or faint nuclear staining
compared with internal control (non-neoplastic epithelial cells,
fibroblasts, endothelial cells, or inflammatory cells) in >50% of
tumor cells was considered positive for HMGB1.
Immunoreactivity for p16, p15, or DCR2 was not observed in
both nuclei and cytoplasm of normal breast epithelial cells. For
these markers, intensities of cytoplasmic staining and proportions
of immunoreactive tumor cells were evaluated. Staining
intensities were scored as follows: 0 (no staining), 1 (weak), 2
(moderate), and 3 (strong). Proportions of immunoreactive
tumor cells were expressed as percentages. IHC scores were
generated by multiplying intensity scores by percentages of
immunoreactive tumor cells, which resulted in a range of
0–300. We used 75th percentile IHC scores as cut-off values
to define positivity for p16, p15, and DCR2. Cases positive for at
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least one of the four markers were considered SASP-positive
tumors.

Molecular Classification of Invasive Breast
Cancer
In order to apply consistent criteria on determining estrogen
receptor (ER), progesterone receptor (PR) and human epidermal
growth factor receptor 2 (HER2) statuses, we repeated ER, PR,
and HER2 studies on TMA sections, as described in our previous
study [31] and their results were interpreted according to the
latest guidelines [32,33].

Ki-67 indices were reported at diagnosis and expressed as
percentages of positive cells per 500–1,000 tumor cells.

Definition used for surrogate molecular subtypes of IBC was as
follows [34]; luminal A (ER-positive/PR-positive/HER2-
negative/Ki-67 ≤ 20%), HER2-negative luminal B1 (ER-
positive/HER2-negative/Ki-67 > 20% or ER-positive/HER2-
negative/PR-negative or low), HER2-positive luminal B2 (ER-
positive/HER2-positive/any Ki-67/any PR), HER2-positive (ER-
negative/PR-negative/HER2-positive), or triple-negative (TNBC)
(ER-negative/PR-negative/HER2-negative). A low PR status was
defined as an Allred score of <5.

Tumor Microenvironment: Stromal
Tumor-Infiltrating Lymphocyte and
Intraepithelial CD103-Positive (iCD103+)
Lymphocyte Measurements
The stromal tumor-infiltrating lymphocyte (sTIL) density and
intraepithelial CD103 − positive (iCD103 + ) lymphocyte
count for each case were obtained from our previous
studies conducted in the same IBC cohort [35,30]. Brief
descriptions of the research methods are as follows. sTIL
densities were defined as percentages of total intratumoral
stromal areas infiltrated with lymphocytes and plasma cells
and measured on a whole section HandE slide for each case
[36]. Under low magnification observations (X100), average
sTIL densities were presented as; 0–1%, 2–5%, 6–10%,
11%–20%, 21–30%, or further 10% increments [35]. iCD103
+ lymphocytes were defined as CD103 + lymphocytes in tumor
cell nests or CD103 + lymphocytes adhering to tumor cells
when tumors exhibited highly infiltrative growth [37,38]. IHC

for CD103 [EPR4166(2), 1:500, Cambridge, United Kingdom]
was performed using TMA sections [30], and stained slides
were scanned using an Aperio CS2 slide scanner (Leica
Biosystems, Nussloch, Germany). In an area captured at
× 200 magnification (0.45 mm2) with the highest CD103
+ lymphocyte density, total numbers of iCD103 + lymphocytes
were manually counted and converted into numbers per
1 mm2.

Statistical Analysis
Statistical analysis was conducted using SPSS (Version 23.0 for
Windows, IBM, Armonk, NY, United States). The significance
of correlations between SASP and patient characteristics was
determined using chi-square test. Survival curves were plotted
using the Kaplan-Meier method and the significance of
survival differences between groups was determined using
the log-rank test. Variables found to be significant by
univariate analyses were subjected to Cox regression
proportional hazard analysis. Adjusted hazard ratios and
associated 95% confidence intervals were calculated for each
variable. A p value of <0.05 was considered statistically
significant.

RESULTS

Clinicopathological Characteristics of
Cases
Of the 1518 IBC samples included in the TMAs, only 1,140
yielded informative IHC results for the four SASP markers
(HMGB1, p16, p15, and DCR2). The other 378 samples were
exhausted by prior use, lost while performing
immunosistochemical staining, or included ductal carcinoma
in situ, extensive necrosis, or non-neoplastic tissue rather than
viable invasive tumor.

Patients ranged in age from 20 to 86 years (mean, 48 years),
and tumor sizes were 0.5–11.0 cm (mean, 2.4 cm). Axillary lymph
node metastasis was present in 544 (47.8%), and lymphovascular
invasion (LVI) in 600 (52.6%). Histological grades were 1 in 178
(15.6%), 2 in 326 (28.6%), and 3 in 636 (55.8%) patients (Table 2).

sTIL density could be obtained in 1,135 of 1,140 cases and ≤1%
in 554 (48.8%) cases, 2–5% in 244 (21.5%), 6–10% in 125 (11%),
11–20% in 76 (6.7%), 21–30% in 40 (3.5%), 31–40% in 26 (2.3%),

TABLE 1 | Antibodies and staining conditions used in the study.

Antibody Source Clone Dilution Antigen retrieval Incubation time

HMGB1 Abcam EPR3507 1:400 Milda, CC1 40 min, RT
p15 Abcam Polyclonal 1:200 Autoclave, 10min 10 h, 4°C
p16 Ventana E6H4 Prediluted Standardb, CC1 16 min, 37°C
DCR2 Abcam EPR3588(2) 1:250 Standardb, CC1 40 min, RT
CD103 Abcam EPR4166(2) 1:500 Milda, CC1 40 min, RT

CC1, cell conditioning 1 solution; DCR2, decoy receptor 2; HMGB1, high mobility group box-1; RT, room temperature.
aMild antigen retrieval condition was performed for 30 min at 100°C.
bThe standard condition was 60 min at 100°C.
These procedures were performed using a Benchmark

®
XT autoimmunostainer.
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41–50% in 27 (2.4%), 51–60% in 20 (1.8%), 61–70% in 13 (1.1%),
71–80% in 8 (0.7%), and 81–90% in 2 (0.2%) (Figure 1). For
statistical analysis, cases were divided into low- and high-sTIL
groups, based on our previous study [35]. As a result, 798 (70.3%)
cases were allocated to the low-sTIL (≤5%) group and 337
(29.7%) to the high-sTIL (>5%) group.

iCD103 + lymphocyte counts were available in 1,032 of 1,140
cases and ranged from0 to 1,111 per mm2 of tumor area (Figure 2).
Cases were dichotomized into high (≥38/ mm2) and low (<38/
mm2) iCD103 + groups, as we previously described [30]. As a

result, 820 (79.5%) belonged to the low-iCD103 + group and 212
(20.5%) to the high-iCD103 + group.

Regarding biologic markers of IBC, ER was positive in 764
(67%), PR was positive in 645 (56.6%) and HER2 positivity
(protein overexpression or gene amplification) was observed in
228 (20%). Ki-67 index was available in 1,131 of 1,140 cases and
>20% in 687 (60.7%). As regards molecular subtypes, 303 (26.6%)
cases were classified as luminal A, 362 (31.8%) as luminal B1, 100
(8.8%) as luminal B2, 128 (11.2%) as HER2-positive, and 247
(21.7%) as triple-negative (TNBC) (Table 2).

TABLE 2 | Relationships between the senescence-associated secretory phenotype (SASP) and clinicopathological characteristics in patients with invasive breast
carcinoma.

Characteristics All patients, N (%) p-value Luminal A, N (%) p-value Triple-negative, N (%) p-value

No SASP (−) SASP (+) No SASP (−) SASP (+) No SASP (−) SASP (+)

Age 0.239 0.245 0.01*
< 50 713 325 (45.6) 388 (54.4) 207 133 (64.3) 74 (35.7) 153 22 (14.4) 131 (85.6)
≥ 50 427 210 (49.2) 217 (50.8) 96 55 (57.3) 41 (42.7) 94 26 (27.7) 68 (72.3)
Tumor size 0.1 0.951 0.03
≤ 2 cm 565 279 (49.4) 286 (50.6) 193 120 (62.2) 73 (37.8) 101 13 (12.9) 88 (87.1)
> 2 cm 575 256 (44.5) 319 (55.5) 110 68 (61.8) 42 (38.2) 146 35 (24) 111 (76)
LN metastasisa 0.163 0.31 0.088
Absent 594 267 (44.9) 327 (55.1) 167 108 (64.7) 59 (35.3) 155 25 (16.1) 130 (83.9)
Present 544 267 (49.1) 277 (50.9) 134 79 (59) 55 (41) 92 23 (25) 69 (75)
LVI 0.445 0.008 0.019
Absent 540 247 (45.7) 293 (54.3) 148 103 (69.6) 45 (30.4) 150 22 (14.7) 128 (85.3)
Present 600 288 (48) 312 (52) 155 85 (54.8) 70 (45.2) 97 26 (26.8) 71 (73.2)
Histologic grade <0.001 0.113 0.001
1 and 2 504 301 (59.7) 203 (40.3) 267 170 (63.7) 97 (36.3) 22 10 (45.5) 12 (54.5)
3 636 234 (36.8) 402 (63.2) 36 18 (50) 18 (50) 225 38 (16.9) 187 (83.1)
Stromal TILsb <0.001 0.117 0.981
Low (≤ 5%) 798 423 (53) 375 (47) 274 174 (63.5) 100 (36.5) 108 21 (19.4) 87 (80.6)
High (> 5%) 337 110 (32.6) 227 (67.4) 27 13 (48.1) 14 (51.9) 138 27 (19.6) 111 (80.4)
iCD103 + lymphocytec <0.001 0.869 0.042
Low (< 38/ mm2) 820 417 (50.9) 403 (49.1) 252 153 (60.7) 99 (39.3) 122 29 (23.8) 93 (76.2)
High (≥38/mm2) 212 58 (27.4) 154 (72.6) 12 7 (58.3) 5 (41.7) 106 14 (13.2) 92 (86.8)
ER <0.001
Positive 764 434 (56.8) 330 (43.2)
Negative 376 101 (26.9) 275 (73.1)
PR <0.001
Positive 645 368 (57.1) 277 (42.9)
Negative 495 167 (33.7) 328 (66.3)
HER2 0.882
Negative 912 427 (46.8) 485 (53.2)
Positive 228 108 (47.4) 120 (52.6)
Ki-67 indexd <0.001
≤ 20% 444 258 (58.1) 186 (41.9)
> 20% 687 275 (40) 412 (60)
Molecular subtype <0.001
Luminal A 303 188 (62) 115 (38)
Luminal B1 362 191 (52.8) 171 (47.2)
Luminal B2 100 55 (55) 45 (45)
HER2-positive 128 53 (41.4) 75 (58.6)
TNBC 247 48 (19.4) 199 (80.6)

ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; iCD103 + lymphocyte, intraepithelial CD103-positive lymphocyte; LN, lymph node; LVI, lymphovascular invasion;
TILs, tumor-infiltrating lymphocytes; TNBC, triple-negative breast cancer; PR, progesterone receptor.
aTwo patients did not undergo sentinel lymph node biopsy or axillary lymph node dissection.
bStromal TILs densities were not available in five patients.
ciCD103 + lymphocyte counts were missing in 108 patients.
dNine patients did not have a Ki-67 labeling index in their pathology reports.
*p-values in bold, statistically significant.
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Of the 1,140 patients, 444 (38.9%) received breast-conserving
surgery and 696 (61.1%)mastectomy. For adjuvant therapy, 1,003
(88%) received chemotherapy, 545 (47.8%) received radiation,
and 772 (67.7%) received hormone therapy. None of the HER2-
positive IBC patients received trastuzumab because trastuzumab

as an adjuvant regimen was approved in Korea in 2010. The
median follow-up period was 133months (range, 1–277months),
and 212 (18.6%) recurrences and 223 (19.6%) deaths had
occurred including 144 breast cancer-related deaths and 79
deaths from other causes.

FIGURE 1 | Representative cases with different stromal tumor-infiltrating lymphocyte (sTIL) densities. (A) sTIL densities were measured inside invasive tumor
borders (left of the black line) ( × 40). Microscopic findings showing sTIL densities of (B) 1%, (C) 30%, and (D) 80% (b-d, × 100).

FIGURE 2 | Representative images of (A–B) low (<38/ mm2) and (C–D) high (≥ 38/ mm2) densities of intraepithelial CD103 + (iCD103 + ) lymphocytes (all, × 200).
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Expressions of Senescence-Associated
Markers and Relationships Between SASP
and Clinicopathological Characteristics
Seventy-six (6.7%) cases showed loss of nuclear staining or faint
nuclear staining for HMGB1 with or without cytoplasmic
staining, therefore they were considered positive for HMGB1.
IHC scores corresponding to 75th percentiles were 30, 10, and 10
for p16, p15, and DCR2, respectively. Of the 1,140 cases, 303
(26.6%), 240 (21.1%), and 302 (26.5%) were positive for p16, p15,
and DCR2, respectively (Figure 3). As a total, 605 (53.1%) were
positive for at least one senescence-associated marker (362 for
one marker, 176 for two markers, 64 for three markers, and three
for all four markers) and were regarded as SASP-positive cases.
Among the five molecular subtypes, SASP positivity was found in
38% of luminal A cases, 47.2% of luminal B1 cases, 45% of
luminal B2 cases, 58.6% of HER2-positive cases, and 80.6% of
TNBC cases.

Among the 1,140 cases, SASP positivity was significantly
associated with histologic grade (p < 0.001), sTIL density (p <
0.001), iCD103 + lymphocyte count (p < 0.001), ER negativity
(p < 0.001), PR negativity (p < 0.001), and a high Ki-67 index (p <
0.001) but not with clinicopathological variables, such as age,

tumor size, lymph node metastasis, LVI, or HER2 status
(Table 2). Furthermore, SASP positivity was significantly
greater in HER2-positive IBC and TNBC (Table 2).

When correlations between SASP and clinicopathological
features were analyzed for the surrogate molecular subtypes: in
the luminal A subtype, SASP was found to be significantly
associated with LVI (p � 0.008); in the luminal B1 subtype,
SASP was significantly associated with an age of < 50 (p � 0.023),
a tumor size of >2 cm (p � 0.05), and high sTILs density
(p � 0.024); in the luminal B2 subtype, SASP was not associated
with any clinicopathological variable; in the HER2-positive
subtype, SASP was significantly associated with high iCD103
+ lymphocyte count (p � 0.045); and in the TNBC subtype,
SASP was significantly associated with an age of <50 (p � 0.01),
a tumor size of ≤2 cm (p � 0.03), absence of LVI (p � 0.019),
high histologic grade (p � 0.001), and a high-iCD103 +
lymphocyte count (p � 0.042) (Table 2).

Prognostic Significance of SASP
Among the 1,140 cases, BCSS and DFS according to presence or
absence of SASP were similar (p � 0.851 and p � 0.341,
respectively) (Figures 4A,B). We performed subgroup analyses

FIGURE 3 | Representative images of positive cases for senescence-associated markers. (A) HMGB1 is ubiquitously expressed in all nuclei of non-neoplastic cells
(arrow, normal duct) and cancer cells (arrow heads). There is absence of cytoplasmic staining. (B) Positive case for HMGB1. Tumor cells show faint nuclear staining or
loss of nuclear staining without cytoplasmic staining (arrow heads). In left upper corner of the image, normal mammary glandular cells show strong nuclear staining for
HMGB1 (arrows, internal control). (C) Positive case for HMGB1. This case shows faint nuclear staining with perinuclear cytoplasmic staining for HMGB1. (D)
Positive case for p16. Tumor cells show diffuse immunoreactivity for p16 in both cytoplasm and nuclei. (E) Positive case for p15. Most of the nuclei of tumor cells was not
stained, only cytoplasm was stained. (F) Positive case for DCR2. Tumor cells show diffuse cytoplasmic staining for DCR2.
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to explore the association between SASP and prognosis in
different surrogate molecular subtypes. Of the 303 patients
with luminal A subtype, those with a SASP-positive tumor
had significantly shorter BCSS (p � 0.009) and DFS (p <
0.001) (Figures 4C,D), whereas in TNBC patients, SASP was

significantly associated with better BCSS (p < 0.001) and DFS
(p � 0.006) (Figures 4E,F). However, no such relations were
observed for luminal B1, B2 or HER2-positive subtypes.

Multivariate analyses showed SASP independently predicted
poor BCSS (HR, 2.884; CI, 1.204–6.909; p � 0.017) and DFS (HR,

FIGURE 4 | Survival analysis according to presence or absence of SASP. Breast cancer-specific survival (BCSS), and disease-free survival (DFS) for all 1,140
breast cancer patients (A-B) and patients with the luminal A subtype (C-D) or triple-negative breast cancer (E-F).

TABLE 3 |Multivariate analysis of clinicopathological characteristics affecting breast cancer-specific survival and disease-free survival in luminal A and triple-negative breast
cancers.

Parameter Breast cancer-specific survival Disease-free survival

Hazard
ratio (95% CI)

p-value Hazard
ratio (95% CI)

p-value

Luminal A subtype (n � 303)
SASP, present vs absent 2.884 (1.204–6.909) 0.017 3.119 (1.731–5.618) <0.001
LVI, present vs absent - - -
Lymph node metastasis, present vs absent - - 1.982 (1.072–5.618) 0.029
Histologic grade, 3 vs 1 and 2 - -
Tumor size, >2 cm vs ≤ 2 cm 11.031 (3.262–37.311) <0.001 - -

Triple-negative subtype (n � 247)
SASP, present vs absent 0.355 (0.167–0.757) 0.007 0.437 (0.215–0.889) 0.022
LVI, present vs absent - - 4.66 (2.164–10.035) <0.001
Lymph node metastasis, present vs absent 4.203 (1.891–9.342) <0.001 - -
iCD103 + lymphocyte, high (≥ 38/ mm2) vs low (< 38/ mm2) 0.412 (0.178–0.954) 0.038
Stromal TILs,> 5% vs ≤ 5% - - 0.444 (0.222–0.888) 0.022

CI, confidence interval; iCD103 + lymphocyte, intraepithelial CD103-positive lymphocyte; LVI, Lymphovascular invasion; SASP, senescence-associated secretory phenotype; TILs, tumor-
infiltrating lymphocytes.
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3.119; CI, 1.731–5.618; p < 0.001) for the luminal A subtype, but
on the contrary it was an independent predictor of better BCSS
(HR, 0.355; CI, 0.167–0.757; p � 0.007) and DFS (HR, 0.437; CI,
0.215–0.889; p � 0.022) in TNBC (Table 3).

DISCUSSION

In this study, SASP was found to be significantly associated with
surrogate molecular subtype in IBC. SASP positivity was lowest in
the luminal A subtype and highest in TNBC. This association
concurs with a previous study, which reported that inhibition of
ER in ER-expressing cells induced a senescence-like phenotype by
increasing SA-β-Gal activity and decreasing retinoblastoma (RB)
protein phosphorylation [39].

Regarding previous studies that investigated the expressions of
senescence-associated markers in tumor tissues, Brezniceanu et al.
[26] reported that HMGB1 is involved in the regulation of apoptosis
and that its overexpression inhibits apoptosis and promotes tumor
growth. These researchers also reported that apoptosis was induced
by transfection of BAK into the RKO colon cancer cell line and the
human and mouse kidney cell lines (203T and NRK1), but that
cotransfection of BAK with HMGB1 significantly inhibited
apoptosis. In addition, they investigated HMGB1 expression in
normal and cancer tissues of the breast by Western blot and
IHC and observed that HMGB1 expression was significantly
higher in cancer tissues than in normal tissues. In a study on
cotransfections of BAK and HMGB1 genes into NRK1 cells, Völp
et al. [22] revealed HMGB1 expression inhibited BAK–induced
apoptosis by blocking the activities of caspase-9 and–3 and found
that this anti-apoptotic effect was due to inhibitors of apoptosis
proteins (IAPs) that bind to and inhibit caspases. HMGB1
overexpression in the RKO cells increased nuclear factor kappa B
(NFκB) activity and resulted in the overexpression of c-IAP2 (a
target gene product of NFκB). In order to confirm these
relationships in tissues, Volp et al. [22] examined the expressions
of c-IAP2 and HMGB1 by IHC staining on TMAs of colon cancer
and normal colon tissues from 29 patients. They found the
expressions of c-IAP2 and HMGB1 were upregulated in 72.4%
of colon cancer tissues, and that the expression of HMGB1 in tumor
cell cytoplasm and nuclei was pronounced at tumor borders. Kim
et al. [40] evaluated the immunohistochemical expressions of p16
and cyclin D1 in 224 cases and observed that p16/cyclin D1 indexes
were significantly higher in HER2-positive and TNBC groups than
in a luminal group and that this index was associated with poor
prognosis. Pare et al. [28] investigated DCR2 expression in 1,032
tissues by IHC and reported DCR2 overexpression was associated
with poor prognostic factors such as high histologic grade, ER
negativity, PR negativity, and HER2 positivity. In addition, they
found DCR2 overexpression was not related to age, tumor size,
stage, or LVI, and reported that the DCR2 positive group tended to
have poorer prognoses than the DCR2 negative group.

In the present study, SASP positivity was associated with
poorer prognosis in the luminal A group and multivariate
analysis showed SASP positivity independently predicted BCSS
and DFS, and these results were broadly in-line with several
previous studies. Kim et al. [41] investigated the role of cellular

senescence in papillary thyroid carcinoma (PTC) and found that
senescent tumor cells were present at the invasive borders of PTC
and exhibited a higher invasive ability than non-senescent tumor
cells by upregulated MMPs. They also demonstrated that
senescent cancer cells lead the collective invasion through
CXCL12/CXCR4 signaling and enhance collective LVI in
thyroid cancer. Similar result was obtained in our study. LVI
was more frequently observed in SASP-positive group than in
SASP-negative group in luminal A .

Inflammatory cytokines secreted by senescent tumor cells can
modulate tumor microenvironment. IL-6 was known to activate
STAT3 and consequently increase MMP-2 expression and the
metastatic ability of cancer cells in malignant melanoma [42].
Waugh and Wilson [43] reported IL-8 secreted by tumor cells
plays an important role in the tumor microenvironment and
observed that the expressions of the IL-8 receptors, CXCR1 and
CXCR2, were elevated in cancer cells, endothelial cells, and tumor-
infiltrating neutrophils and macrophages. The authors concluded
IL-8 signaling increases cancer cell proliferation and survival,
promotes angiogenesis by stimulating endothelial cells, and
promotes the migration of neutrophils into tumor tissues and
their activations. Vascular endothelial growth factor (VEGF, a
SASP factor) is secreted by senescent cells and promotes cancer
cell growth by promoting angiogenesis and facilitating access to
growth factors [44]. Althoughwe did not investigate the associations
between SASP and tumor tissue concentrations of MMP, IL-6, or
IL-8, we believe that the significantly higher frequency of LVI
observed in SASP-positive tumors reflected increased tumor cell
invasiveness induced by factors secreted by senescent tumor cells.

In tumor microenvironments, IL-6 signaling not only
promotes proliferation and survival but also has anti-tumor
effects due to inhibition of tumor growth through T-cell
immune response. IL-6 promotes T cell migration to lymph
nodes and tumor areas and can exhibit cytotoxic effects on
tumor cells by activating T cells [45]. In the present study,
SASP was significantly associated with high sTIL density and
high iCD103 + lymphocyte levels. Although we did not
measure IL-6 secreted by SASP-positive cells, we think that
high sTIL density and high iCD103 + lymphocyte levels in
SASP-positive tumors would be, in part, T cell migration to
tumor site by IL-6 signaling by senescent cells. In contrast to
that observed in the luminal A subtype, SASP positivity was
associated with good prognosis in TNBC. In our previous
studies, high sTIL density and high iCD103 + lymphocyte
counts were good prognostic factors in a subset of s (e.g.,
TNBC) and iCD103 + lymphocyte infiltration was more
closely related to prognosis than sTIL density [30]. In the
present study, SASP was not related to sTIL density and
iCD103 + lymphocyte count was significantly higher in
SASP-positive cases in TNBC. These relationships may, in
part, explain the better prognosis of SASP-positive tumors in
TNBC. However, we suggest further study be conducted on
relationships between biomarker expressions (ER, PR, and
HER2) and biologic effects of SASP.

This study has several limitations. It is a single-center and
retrospective study and immunohistochemical expression of
SASP was observed in TMA tissues rather than in whole

Pathology & Oncology Research June 2021 | Volume 27 | Article 16097958

Park et al. Senescence-Associated Secretory Phenotype



sections. Furthermore, we did not investigate SASP factors by
placing focus on their functions. However, we conducted this
study on a large cohort of primary IBCs with follow-up data.

Summarizing, immunohistochemically detected SASP in
tissues was significantly associated with tumor aggressiveness
(LVI, high histologic grade, and triple-negativity) and with
immune microenvironments exhibiting high sTIL density and
iCD103 + lymphocyte infiltration. In addition, the prognostic
significance of SASP was found to be dependent on the surrogate
molecular subtypes of breast cancer.
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