
Hindawi Publishing Corporation
Clinical and Developmental Immunology
Volume 2012, Article ID 579670, 8 pages
doi:10.1155/2012/579670

Review Article

Mesangial Cell-Specific Antibodies Are Central to the
Pathogenesis of Lupus Nephritis

Guillaume Seret,1, 2 Yannick Le Meur,1, 2 Yves Renaudineau,1, 3 and Pierre Youinou1, 3

1 EA2216 “Immunology & Pathology” and IFR146 “ScInBios,” European University of Brittany, 29200 Brest, France
2 Unit of Nephrology, Brest University Medical School Hospital, 29609 Brest, France
3 Laboratory of Immunology, Brest University Medical School Hospital, BP824, 29609 Brest, France

Correspondence should be addressed to Pierre Youinou, youinou@univ-brest.fr

Received 23 June 2011; Revised 31 August 2011; Accepted 4 October 2011

Academic Editor: Sara Marsal

Copyright © 2012 Guillaume Seret et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Not only is nephritis a common complaint in systemic lupus erythematosus, but it is also the most life-threatening complication of
the disease. Anti-double-stranded DNA antibodies (Abs), which are found in up to 80% of these patients, might be nephritogenic
per se. That is, they may cross-react with mesangial cell (MC) surface proteins, such as alpha-actinin and annexin A2, they
may cross-react with mesangial matrix protein such as laminine and fibronectin, or they may recognize chromatin material
previously deposited in the glomeruli. The consequence of the binding of anti-MC Abs may be their internalization, which results
in activation and proliferation of these MCs. In turn, these activated MCs are suspected of promoting immune complex formation
by sequestering and thereby protecting chromatin from degradation. The present paper will explain the mechanisms through
which such autoAbs may initiate nephritis.

1. Introduction

Systemic lupus erythematosus (SLE) is a nonorgan-specific
autoimmune disease, the hallmark of which is a vast array of
antiself antibodies (autoAbs), and, among them, the whole
range of antinuclear Abs (ANAs). The ensuing immune
complexes (ICs) settle in the tissues and thereby subsequently
contribute to local damage.

Most organs are at risk of being involved in this process
at one time or another, given that the course of the disease
consists of sequential flares and remissions. Estimates of the
prevalence vary from 20 to 150 cases per 100,000 individuals,
with the highest frequency in Afro-Caribbeans, followed by
Asians, and far less frequent in Caucasians [1]. The male-
to-female ratio rises to 1 : 9 during child-bearing age but
diminishes thereafter.

In fact, the pathophysiology of SLE is so complicated
that its development implicates multiple genes and entails a
number of environmental factors (recognized or unknown).
With regard to the genetics, predisposing genes are associated
with the innate as well as the acquired immune responses.
Of these, SLE can involve the antigen- (Ag-) presenting DR2

and DR3 HLA class II molecules, the lymphocyte activation
markers, components of the classical complement activation
pathway, various features involved in the processing of ICs,
and interferon (IFN) signaling cascade members [2].

Lupus nephritis (LN) predominates as a cause of mortal-
ity in SLE and displays several epidemiological particularities
[3]. For example, there exists an ethnic susceptibility, in that
it develops in 20% of Caucasian patients compared with
50% of Asian patients. Whereas SLE is, by and large, more
frequent in females than in males, the susceptibility for LN
in Caucasians reaches 50–60% in males compared with 20–
35% in females. This complication arises usually within the
first two years of the disease. Several gene polymorphisms
have been claimed to favor LN (Table 1), and some SLE-
specific autoAbs have been shown to recognize glomerular
Ags (Table 2). Furthermore, it has been suggested that
anti-double-stranded DNA (anti-dsDNA) Ab-induced renal
failure could be linked to differences in the fine specificities
of these autoAbs. Over several decades, a large body of work
has been devoted to deciphering the anti-dsDNA Abs and
to understand the deposition of anti-dsDNA/nucleosome
ICs in the kidney, yet there are few reports available on
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Table 1: Genes associated with lupus nephritis (LN) [4–10].

Gene Function Influence

CD48 Leucocyte adhesion Protective effect

FcγRIIIA/IIA Binding affinity Susceptibility to SLE and LN

Kallikrein Inflammation Protective effect

IL-18 Inflammation Susceptibility to LN

Myeloperoxidase Inflammation Susceptibility to LN

TLR9 Immune response Susceptibility to LN

MBL2 Complement Susceptibility to LN

Table 2: Glomerular targets for anti-double-stranded (ds)-DNA
antibodies [11, 12].

Molecules that directly
cross-react with anti-dsDNA
antibodies

Cell type/glomerular matrix

Alpha-actinin Mesangial cells

Annexin A2 Mesangial cells, epithelial cells

Ribosomal P protein Mesangial cells, endothelial cells

Alpha-enolase Mesangial cells, epithelial cells

Laminin Glomerular matrix

Fibronectin Glomerular matrix

Collagen Glomerular matrix

Heparan sulfate Glomerular matrix

Hyaluronic acid Glomerular matrix

the recognition of glomerular structures, and even fewer
studies on the recognition of mesangial cells (MCs). Our
paper will, therefore, endeavour to provide glimpses into
the mechanisms that may account for the development of
nephritis in patients with SLE.

2. Mesangial Cells

2.1. Mesangial Cell Functions. Glomeruli are comprised of
at least four cell types: MCs, endothelial cells (ECs), and
podocytes plus parietal cells, both of an epithelial nature
and the later shaping the Bowman’s capsule (Figure 1).
Filtration through the glomerular barrier is under the control
of MCs plus podocytes, along with renal blood flow by
contracting the GBM [13]. The glomerular blood-urine
barrier superimposes three layers: fenestrae between adjacent
ECs, the glomerular basal membrane (GBM), and the slit
diaphragm mid podocytes.

The MCs are specialized smooth muscle cells, of which
the contractility depends upon vasoactive molecules, such
as angiotensin II and endothelin-1. They possess additional
capabilities, including support of the glomerular capillaries.
MCs synthesize and renew their own extracellular matrix,
which is distinct from the GBM. The mesangial matrix is
made up of fibronectin, collagen II, collagen IV, laminin,
entactin, nidogen, and perlecan. The sialoglycoprotein
fibronectin is located on the MC surface and is required for
attachment of circulating components, including chromatin,
to MCs and ECs. The other sialoglycoprotein laminin and
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Figure 1: Schematic representation of the different cell types of the
glomerular filtration barrier.

the sulphated glycoprotein entactin are equally implicated
in this event. Other important functions for MCs are
their phagocytic capacity to take up apoptotic cells and
their capacity to prevent accumulation of ICs by bringing
into play nonspecific mechanisms, such as pinocytosis and
phagocytosis, and specific mechanisms, such as receptor-
dependent processes. Once activated, MCs secrete pro-
inflammatory cytokines (e.g., interleukin (IL)-1, IL-6, IL-
12, and IFN-γ), growth factors (e.g., transforming growth
factor (TGF)-β and vascular endothelial growth factor), and
metalloproteinases (e.g., metalloproteinase (MMP)-2 and
MMP-9). All these effects are tightly regulated in normal cells
and may be markedly altered by glomerular pathology.

2.2. Mesangial Cells and Kidney Diseases. A variety of ICs,
which are lacking in normal mesangium, become detectable
in the kidneys of patients with a variety of diseases, such
as LN, IgA nephropathy (IgAN), C1q nephropathy, and
mild postinfectious glomerulonephritis (GN). Such patients
often present with hematuria, associated with proteinuria at
the nephrotic syndrome stage. Much uncertainty surrounds
abnormalities of MCs in ICs deposition. Several mechanisms
are, in fact, supposed to prevent ICs access into the
mesangium. They include the endothelial barrier itself, the
effect of a protective glycocalyx, and the recycling capacity
of the podocytes that express the neonatal receptor for
IgG (FcRn) [14]. The immunoglobulin-specific MC receptor
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remains a matter of debate, given that the mesangial Fc-
gamma receptors are dispensable for kidney injury as well
as for cellular activation [15]. Alternatively, nonconventional
receptors have been proposed. On the front line of the patho-
physiology of IgAN is the transferring receptor, referred to
as CD71 [16–18]. The IgA-IgG/CD71 complexes are crucial
[19], as suggested by the fact that blocking CD71 with a
related monoclonal Ab (mAb) inhibits MC proliferation and
cytokine production, namely, IL-6 and TGF-β. In addition,
IgA and IgG are associated with the complement fraction
C3 [20] and the mannose-binding lectin in the mesangium,
highlighting the relevance of the complement lectin pathway
to the development of such GNs.

Of note, proliferation of MCs and expansion of the
mesangial matrix may take place in the absence of ICs.
In this context, different forms of glomerular damage
develop, namely, diabetic and amyloid nephropathies. In the
course of diabetic nephropathy, elevated plasma levels of
glucose contribute to the induction of nitric oxide synthase
(iNOS), which in turn activate protein kinase C (PKC),
mitogen-activated protein kinases (MAPK), and phos-
phatidyl inosytol-3 kinase/Akt [21]. As a result, fibronectin,
collagen IV, and TGF-β synthesis are upregulated, leading to
the development of fibrosis and resulting in end-stage renal
failure. Actually, such is the usual outcome of a large number
of GNs.

3. Mesangial Cells and Lupus Nephritis

3.1. Pathogenic Models. Anti-dsDNA Abs are relevant to the
diagnosis of SLE and instrumental in the development of LN.
However, the mechanism by which they contribute to the
GN is far from clear, considering the fact that not all Abs to
dsDNA are able to cause tissue damage to a similar extent. A
popular view has been that GN results from ICs associating
with nucleosomes released from apoptotic/necrotic cells
that have bound anti-dsDNA/chromatin Abs. A wealth of
evidence supports this simplistic model. For example, renal
flares are preceded by a rise of the anti-dsDNA Ab levels in
plasma and a reciprocal reduction in levels of free DNA [22].
In LN, the anti-dsDNA Ab/chromatin complexes are seen as
electron-dense structures in the mesangial matrix and move
to the GBM as soon as the disease is established [23]. An
acquired renal DNase1 deficiency, coupled with chromatin
sequestration by matrix protein accumulation, amplifies the
process by offering more target Ags to anti-dsDNA Abs
[24]. Nonetheless, this mechanism cannot be responsible
for the whole process, since analysis of kidney-eluted IgG
has revealed that those Abs binding to dsDNA represent as
little as 10% of the total bulk of IgG [25]. Additional points
to keep in mind are that only a minute fraction of anti-
dsDNA Abs are pathogenic when transferred to experimental
animals, and LN could develop in the absence of anti-dsDNA
Ab. Last but not least, differences between nephritogenic
and nonnephritogenic anti-dsDNA Abs are unrelated to
structural differences in class, subclass, or avidity (Table 3).
Rather, they consist of varying capacities to react with MC
products in the absence of a DNA docking site [26]. The

generation of nephritogenic Ab is incompletely understood
and possibly results from an antigen-dependent stepwise
process due to isotype switching and somatic mutations
that would result in acquisition of cross-reactivity and high-
affinity binding. Stimulation may be sustained by dsDNA
along with a glomerular antigen or more probably shared
epitopes. It is striking to observe that only one mutation can
change the affinity, the cross-reactivity properties, and the
kidney binding localization of a pathogenic anti-dsDNA Ab.

Accordingly, the concept has been put forward that
anti-dsDNA Abs launch the GN process through cross-
reaction with cell-surface and matrix components. So far,
several glomerular Ags have indeed been suspected as serving
as targets for anti-dsDNA Abs [11, 12]. To reconcile the
theory of active cross-reactivity and the concept of passive
IC deposition, we reasoned that neither is exclusive and
speculated that both are ordered, in that Ab glomerular
recognition precedes anti-dsDNA Ab/chromatin deposition
[27, 30].

3.2. Histology. To account for so much variation in the
clinical and histological patterns, the LN histopathological
abnormalities have been classified into six classes. Based
on the criteria proposed by the International Society of
Nephrology/Renal Pathology Society (ISN/RPS) in 2003
[31], they include the morphology of the lesions, their
mesangial, endothelial and epithelial extent, the Ab deposi-
tion, and the distinction between active and chronic lesions.
Briefly, class I histopathological damage corresponds to
mesangial deposits, but renal symptoms may be absent. Class
II refers to mesangial proliferation, and mild proteinuria
and microscopic hematuria characterize these patients. The
renal prognostic value is often excellent but may evolve
through mesangial and endothelial lesions [32, 33]. Class
III and class IV imply glomerulus antibody deposition.
In essence, class III LN (less than 50% of the glomeruli
are impacted) manifest hematuria, proteinuria, nephritic
syndrome, and occasionally hypertension. Class IV (more
than 50% of the glomeruli) characterizes diffuse LN and
comprises segmental and global forms, according to the
severity of glomerular lesions. Hematuria, massive protein-
uria, nephritic syndrome, and acute renal failure occur in
16% of class IV patients. Class V corresponds to immune-
complex-derived membranous nephritis. The lesions display
global or segmental distribution, although more than 50%
of the capillary basement membrane is involved in either
case. Clinical presentations include proteinuria (typically
at a nephritic range), with hematuria but usually without
renal insufficiency. Finally, class VI lesions correspond to
the last stage of the disease, resulting from the alteration
between flares and pauses, leading to overt renal failure,
and substantiated by vascular sclerosis, tubulointerstitial
scarring, and glomerular sclerosis. However, these clinical
features are not well associated with the classification since,
histologically, severe LN may be clinically silent. Besides these
well-documented types of damage, SLE yields a broad variety
of vascular lesions, which are neglected in the ISN/RPS 2003
classification.
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Table 3: Nephritogenic and cross-reactive anti-dsDNA Ab properties [26–29].

Non-nephritogenic anti-dsDNA Ab Nephritogenic anti-dsDNA Ab Cross-reactive anti-dsDNA Ab

Class IgG, M and A IgG mainly IgG mainly

Somatic mutations No Yes Yes

Affinity Low High High

Cross-reactivity No Yes Yes

Living cell internalization No Yes suspected

Glomerular direct binding No Yes Yes

Proteinuria No Yes mainly

3.3. Mesangial Cells in Lupus Nephritis. Aberrant prolifera-
tion, apoptosis, and activation of MCs are common findings
during LN. As a consequence, numerous genes have been
demonstrated by immunohistochemistry and/or molecular
biology to be upregulated during LN [34–38]. These include
genes for survival and apoptotic factors (Bcl-2, Fas, FasL),
chemokines that attract inflammatory cells (CCL5, CXCL1),
inflammatory mediators (ROS, iNOS), proinflammatory
type 1 cytokines (IFN-γ, IL-12, IL-6), mesangial matrix
synthesis (fibronectin), collagen IV degradation (MMP-2
and MMP-9), and chromatin accumulation (DNase1 down-
regulation). MC pathogenicity could be attributed in part to
anti-dsDNA activity since anti-dsDNA Abs stimulate MCs
to produce chemokines (MCP-1, CCL-5), matrix metal-
loproteinases (MMP-2, MMP-9), reactive oxygen (iNOS),
cytokines (IL-6, TGF-β), and lipocalin-2/NGAL [39, 40].
Although incompletely characterized, such effects are related
in part to the activation of the PKC and MAPK pathways.

4. Autoantibodies and Lupus Nephritis

4.1. Antiglomerular Antibodies. ANAs may arise well before
the development of overt disease, with a crescendo of more
and more SLE-specific autoAbs being produced over 10 years
[41]. The earliest ANAs are anti-Ro/Sicca Syndrome (SS)-A
and anti-La/SSB Abs, on average 3.7 years before, followed by
anti-dsDNA Abs, on average 2.2 years before, and the anti-
Smith (Sm) ribonucleoprotein (RNP) Abs, on average 0.9
years before the advent of clinical symptoms. Intriguingly,
the presence of anti-Ro/La/Sm RNP Abs and IgM anti-
β2 glycoprotein I could well protect the patient from LN
[42, 43]. On the other hand, high-titer and high-avidity anti-
dsDNA Abs have been reported to be linked to active disease
and suspected to be associated with LN.

Typically, ICs from patients suffering LN contain IgG,
IgM, and IgA, along with the complement fractions C1q and
C3. In 90% of the cases, IgG predominates over IgM and
IgA which are associated with 60% of the IgG-containing
ICs. These latter abnormalities are exceptional in diseases
other than LN. With regard to fibrin and fibrinogen, they
characterize crescent and necrotizing segments. Specificity
analysis of Abs eluted from the kidneys unveils a broad range
of reactivities. These are chromatin, α-actinin, collagen,
entactin, fibrinogen, laminin, proteoglycan, phospholipids
(PLs), myosin, RNP, and so on [25]. Similarly, microarray
technology has distinguished two main clusters of serum IgM

and IgG autoAbs in the serum of patients with LN, based
on their specificities. One is directed to chromatin and the
other to the glomerulus [44]. Their DNA dependence has
been tested using DNase-1 pretreatment, and the results of
these experiments indicated that 20% of the Abs binding to
the glomeruli were DNA independent.

The observation that some anti-dsDNA Abs attach
directly to renal tissues, and more particularly to MCs, raises
the question as to whether or not any target Ag is specific for
such LN-associated autoAbs. This issue has been addressed
using several approaches. First, anti-dsDNA mAbs have been
injected into nonautoimmune mice and shown to cause a
LN-like disease [26, 45]. Similarly, immunization with a pep-
tide for anti-dsDNA Ab can initiate LN in Balb/c mice [46].
Of note, site-directed mutagenesis of the nephritogenic anti-
dsDNA mAb R4A alters not only its affinity to dsDNA, but
also its cross-reactivity with glomerular Ags. Cross-reactivity
can even shift from the glomerular to the tubular area [28].
Anti-dsDNA Ab point mutations may thus influence the
evolution of LN over time. The second approach relied on
glomerular-derived peptides which were examined for their
interactions with anti-dsDNA Abs [47]. The third approach
used human sera purified from LN patients and those which
recognized human MCs as well [48]. This approach enabled
the discovery of three main specific MC targets at 42, 63,
and 74 kDa when using anti-dsDNA and non-anti-dsDNA
purified Abs from these patients. DNase1 pretreatment did
not affect their binding. Furthermore, purified antihuman
MC Abs are likely to be internalized and thus able to
encourage iNOS activation, MC proliferation, and matrix
synthesis [12]. As recently documented [49], antihuman MC
Abs are associated with 84% of active LN compared with 43%
of inactive LN.

4.2. Antimesangial Cells Antibodies

4.2.1. Anti-α-Actinin Antibodies. Glomerular α-actinin is
expressed on the surface of MCs and podocytes but not on
that of the GBM. This actin-binding protein belongs to the
superfamily of cytoskeletal proteins. It is comprised of four
isoforms, and mutations in the fourth isoform can lead to
focal and segmental glomerulosclerosis [50].

That α-actinin can be targeted by anti-dsDNA Abs has
also been demonstrated. This is tied to the fact that injection
of anti-dsDNA mAb into RAG-1-deficient mice induces
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a proteinuria with glomerular deposits in these animals.
Cross-reaction with α-actinin [26] or laminin-1 [51] pro-
vided the anti-dsDNA Abs with the capacity to impair the
renal function. This view was supported by the finding
that, once bound to MCs, anti-dsDNA R4A mAbs [29]
upregulate the production of iNOS and proinflammatory
chemokines [39]. Demonstration of the reality of pathogenic
α-actinin, which is worthy of pursuit in the future, was
thus reinforced by the observation that α-actinin-immunized
normal mice mounted an anti-α-actinin Ab response first
and then produced anti-α-actinin and anti-chromatin Abs,
along with advancing stages of the LN-like disease [52]. In
SLE patients, the anti-α-actinin Ab production culminates
early at the initiation of the LN, but their titers drop
dramatically after treatment is initiated, that is, when the
disease activity is reduced. We must admit that, in contrast
to the anti-dsDNA/chromatin activity, the results of the
detection of these autoAbs are inconsistent [53–56]. Of
interesting note, the anti-α-actinin response is related to the
actin-binding site of α-actinin [54, 57].

4.2.2. Antiannexin A2 Antibodies. Annexin A2 is a calcium-
dependent PL-binding protein expressed on the surface of
phagocytic cells, such as macrophages, ECs, and MCs. This
protein is pivotal in the regulation of MC proliferation,
activation, apoptosis, and in coagulation by recruiting plas-
minogen and tissue plasminogen activator.

In LN, IgG, and C3, deposits colocalize with annexin A2
in the glomeruli but, surprisingly, not in the tubuli [12].
Annexin A2-dependence has been tested by gene silencing
using RNA interference technology, as an attempt to establish
that its downregulation prevents anti-dsDNA Ab binding, Ab
internalization, and MC activation. Supporting this view, a
positive antiannexin A2 Ab test is associated with active LN
and thrombosis [12, 58]. The abnormality is related to the
activation of the tissue factor on ECs and monocytes, which
is in accord with the detection of anti-annexin A2 Ab in 40%
of patients with the anti-PL syndrome.

4.3. Antimatrix Antibodies

4.3.1. Antilaminin Antibodies. Laminin belongs to the
mesangial matrix. Laminin-1, which is the most abundant
isoform, is derived from MCs. It is overexpressed and hence
becomes detectable in the GBM during LN and at the
periphery of end-stage sclerotic lesions [59]. It is, therefore,
of no surprise that antilaminin Abs are found during LN
and that their levels correlate with the disease activity and
proteinuria [51]. Notwithstanding, they are not specific
for SLE, being also detected in recurrent miscarriages,
infertility and pemphigus. The main epitope recognized by
antilaminin-1 Ab corresponds to the binding site of laminin
to the basement membrane receptors.

4.3.2. Antifibronectin Antibodies. Fibronectin is absent from
normal mesangial matrix but overexpressed in LN and
colocalized with IgG/chromatin ICs in the mesangium. The
prevalence of antifibronectin Abs ranges from 30 to 80%
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Figure 2: A working model of mesangial cell (MC) stimulation
by nephritogenic anti-dsDNA Ab in lupus nephritis leading to
accumulation of immune complexes.

in patients with SLE, and from 15 to 40% in those with
rheumatoid arthritis and other systemic vasculitis. Although
nonspecific for any disease, antifibronectin Ab levels corre-
late with activity in patients with SLE. In this regard, one of
the most efficient drugs to treat LN, mycophenolate mofetil,
prevents anti-dsDNA Ab-induced fibronectin production by
MCs. In other words, the drug contributes to reduce IC
deposition [40].

4.4. Miscellaneous Antibodies. Involved in the elongation step
of protein synthesis when associated with the large ribosomal
subunit, the ribosomal serine phosphorylated proteins P0,
P1, and P2 appear on the membrane of multiple cells,
including MCs and blood cells of patients with SLE. The
reported prevalence of antiribosomal Abs varies from 5 to
45% in SLE, more often in Asian patients than in Caucasian
and African patients [60]. In SLE, they are restricted to
active disease, with kidney, hepatic, and neuropsychiatric
complications. Once again, high-affinity anti-dsDNA Abs
cross-react with ribosomal proteins.

Alpha-enolase appears on the surface of MCs and
podocytes and in the tubuli from patients with LN. In this
setting, it acts as a glycolytic enzyme and a receptor for
plasminogen. The anti-α-enolase Ab test is positive in SLE
patients but is not associated with LN and flares [61]. Alpha-
enolase has been identified as an autoAg in other diseases,
such as Behcet’s disease, retinopathy, and severe asthma.

5. Conclusion

Whereas compelling evidence in LN suggests a pathogenic
role for anti-dsDNA Abs, their detailed mechanisms of action
are not restricted to IC formation. As illustrated in Figure 2,
we propose that, among anti-dsDNA Abs, a minute fraction
of anti-dsDNA Abs stimulate MCs to produce cytokines,
chemokines, and matrix metalloproteinases important in the
initiation of the inflammatory process. In addition, such
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activation is associated with proliferation and apoptosis,
matrix protein accumulation, and a reduction of DNase1
activity that would, in turn, contribute to the formation of
anti-dsDNA Ab chromatin/ICs in the mesangium and later
in the GBM that characterize severe LN. Furthermore, while
the focus of this paper is on MCs, it should be mentioned that
antigens could be displayed by other glomerular cells as well,
including podocytes. As a consequence, the pathogenicity of
these Abs would be enhanced by targeting more than one cell
type.
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