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ABSTRACT

KERR, J., J. CARLSON, S. GODBOLE, L. CADMUS-BERTRAM, J. BELLETTIERE, and S. HARTMAN. Improving Hip-Worn

Accelerometer Estimates of Sitting Using Machine Learning Methods. Med. Sci. Sports Exerc., Vol. 50, No. 7, pp. 1518–1524, 2018.

Purpose: This study aimed to improve estimates of sitting time from hip-worn accelerometers used in large cohort studies by using

machine learning methods developed on free-living activPAL data. Methods: Thirty breast cancer survivors concurrently wore a hip-

worn accelerometer and a thigh-worn activPAL for 7 d. A random forest classifier, trained on the activPAL data, was used to detect

sitting, standing, and sit–stand transitions in 5-s windows in the hip-worn accelerometer. The classifier estimates were compared with the

standard accelerometer cut point, and significant differences across different bout lengths were investigated using mixed-effect models.

Results: Overall, the algorithm predicted the postures with moderate accuracy (stepping, 77%; standing, 63%; sitting, 67%; sit-to-stand,

52%; and stand-to-sit, 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of

2 min or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts

and underestimating long bouts. Conclusions: This is among the first algorithms for sitting and standing for hip-worn accelerometer

data to be trained from entirely free-living activPAL data. The new algorithm detected prolonged sitting, which has been shown to be themost

detrimental to health. Further validation and training in larger cohorts is warranted. Key Words: SEDENTARY BEHAVIOR, STANDING,

RANDOM FOREST CLASSIFIER, FREE-LIVING

T
here has been increasing interest in the relationship
between sedentary behavior and health (1). Although
most studies have shown relationships between self-

reported measures of sitting time and mortality (2), a few
studies have also used sensor-based accelerometer estimates of
sedentary behavior and health outcomes such as diabetes and
cardiovascular disease (3–5). Most large cohort studies with
high-quality prospective follow-up of health outcomes and

objective measures have used hip-worn accelerometers because
of their ability to accurately measure physical activity (6).

Hip-worn accelerometers have also been used to assess
sedentary behavior. A hip-worn accelerometer with an absolute
threshold of 100 counts per minute on the vertical axis to
assess sitting time is most often used in studies but has also
been shown to be problematic (7). Compared with person-worn
camera data that can be annotated for different sitting behav-
iors, the 100-counts per minute cut point has been shown to
misclassify standing as sitting and to misclassify sitting while
in a vehicle as physical activity (8). Compared with a thigh-
worn inclinometer, the hip-worn 100-count threshold has been
shown to underestimate standing time and overestimate the
number of sit-to-stand transitions (9). Some studies have
suggested new cut points for the hip accelerometer, ranging
from 25 to 300 counts per minute (10), but such absolute cut
points may not always distinguish between sitting still and
standing still or moving while sitting and moving while
standing (11). Cut points also do not make full use of differ-
ences in patterns in the accelerometer signal (beyond counts)
across activities, for example, that can be seen in vehicle travel.
The presence of errors, however, is cause for concern and
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could mask or exaggerate relationships with health that have
been observed in the large epidemiological studies to date. To
improve our understanding and confidence in the findings,
better classification techniques for sitting time estimates for the
existing hip accelerometer data from the large prospective
health studies are needed.

New computation algorithms for hip-worn accelerometers
that show promise in improving estimates of physical activity
could also perhapsminimize the error seen in the existing cut-point
approach to sedentary behavior (12). Many studies developing
computational techniques, however, have collected training
data for new classifiers in the laboratory setting. Although the
laboratory setting allows investigators to observe and control
the type of sitting behaviors (e.g., sitting at a desk and sitting
in a lounge chair), these behaviors are not performed in free
living, and thus, classifiers developed in the laboratory may
not perform well in other settings. In particular, laboratory
studies have not included sitting in a vehicle, which some
populations do for several hours a day. To improve upon such
approaches, we have developed behavior classifications based
on annotated images from person-worn cameras with up to 12 h
of data on multiple days (13). We have shown that such clas-
sifiers can detect sitting and standing with greater than 90%
accuracy at the minute level. However, when compared with
the activPAL, such algorithms only detect 33% of sit–stand
transitions, a key sedentary pattern variable, because a transition
defines the beginning and end of a sedentary bout.

For specific public health recommendations on sitting, it
is important to understand how often we should transition
from sitting to standing and what length of sitting bout is
related to poor health outcomes. ActivPAL devices, worn on
the thigh, detect sit-to-stand transitions by inferring posture
from the orientation of the thigh (i.e., thigh is vertical when
standing, horizontal when sitting). The accuracy of activPALs
has been demonstrated in multiple trials compared with gold
standard direct observations with greater than 95% accuracy
for sitting (14–17). Although intervention studies have used
activPALs to accurately assess changes in sitting time, very
few large cohort studies have yet to use this device (6). The
infrequent use of activPAL and frequent use of hip-worn
accelerometers in large studies warrant the development of
new processing methods for hip-worn accelerometers to im-
prove the quality of sedentary behavior and health research.
Use of the activPAL as the ‘‘ground truth’’ for algorithm
development in detecting postural transitions is beneficial not
only because it is valid for this purpose, but also it can be worn
for multiple days and hours representing typical free-living
behavior and does not depend on a human observer for pos-
tural coding. Currently, most algorithms that include sitting
classifiers are not trained to specifically detect postural tran-
sitions and algorithms or cut points that have been developed
from laboratory studies do not include free-living behaviors
such as sitting in a vehicle (18,19). Algorithms developed
from free-living annotated image data may be limited by the
frequency of image capture, which can miss some transitions,
and the costs involved in accurate image annotation by human

observers may be prohibitive (8). In contrast, the activPAL
automatically classifies postures in the standard software
package without the need for human observers.

This analysis used a convenience sample of data from 30
breast cancer survivors who concurrently wore a hip-worn
accelerometer and a thigh-worn activPAL for 7 d. This study
aimed to develop and test a machine learning classifier of
posture for the hip-worn accelerometer by using multiple days
of the activPAL data as the ‘‘ground-truth’’ training data. We
assessed the ability of the classifier to detect sitting, standing,
and sit–stand transitions. Because longer bouts of sitting may
beworse for health, we also compared estimates of the number
of and minutes in sedentary bouts across different sitting bout
lengths with the existing 100-counts per minute cut point.

METHODS

Participants and Procedures

Breast cancer survivors were enrolled in this cross-sectional
pilot study. Eligible participants were women diagnosed with
stage I–III breast cancer within the past 5 yr who had completed
active treatment (e.g., radiation and chemotherapy) and were
fluent in English. Women were excluded if they had a primary
or recurrent invasive cancer within the last 10 yr (other than
nonmelanomic skin cancer or carcinoma of the cervix in situ),
were older than 85 yr, recently had bariatric surgery, were
taking insulin or corticosteroid medications, or were diabetic.
All participants provided written informed consent. Ethical and
institutional review board approval for the study was obtained
by the University of California, San Diego.

Participants wore the activPAL (PAL Technologies,
Glasgow, Scotland), a small and lightweight inclinometer
(uniaxial accelerometer) worn on the anterior aspect of the
thigh for 24 h for 7 d. Data were processed using activPAL
software version 7.2.32. Participants also wore the Actigraph
GT3X+ accelerometer for 7 concurrent days but for waking
hours only. Raw accelerometer data at 30 Hz were collected
on three axes.

We used a postural classification procedure that uses
machine learning algorithms to classify the five activPAL
postural categories from raw Hertz level triaxial accelerom-
eter data: stepping, standing, sitting, sit-to-stand transition,
and stand-to-sit transition. We have developed and tested a
similar system to classify activities in three other data sets
based on SenseCam images, but the frequency of the image
capture may have missed brief sit–stand (13). The classifier
is developed using supervised machine learning algorithms:
a computational technique that makes use a data set with
known labels (i.e., ground truth) to learn associations be-
tween features in the data and categories of interest. For this
study, we trained the classifier on the current data set of
breast cancer survivors, using the matched activPAL postures
as the ground truth. We considered the activPAL a suitable
ground truth because previous studies have shown the validity
of the device and classifier for postural transitions compared
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with gold standard observations (14–17). Postural categories
were assigned every 1 s using the activPAL event file. For the
training phase, only 5-s windows with a single postural cat-
egory were used. For the testing phase, all data were included.
Our procedure predicts a posture label (stepping, standing,
sitting, sit-to-stand transition, and stand-to-sit transition) for
each 5 s of accelerometer data. The posture classification process
is composed of three steps: feature extraction, 5-s-level classifi-
cation, and time filtering. A detailed description of the first two
steps can be found in our previous publications (20–22). A short
summary is provided here.

Feature extraction. The raw (unfiltered) triaxial ac-
celerometer data were split into 5-s windows. For each 5-s
window, 41 feature vectors were calculated. For each sample
in a data window, the vector magnitude (VM) of the acceler-
ation signal was calculated; that is, v = (x2 + y2 + z2)1/2. The
following basic statistical descriptors of the VM were calcu-
lated over the data window: mean; SD (sd); coefficient of
variation (coefvariation); minimum (min); maximum (max);
and 25th, 50th, and 75th percentiles (25thp, median, 75thp).
The 1-s lag autocorrelation (autocorr) of the VM and the
correlation between each axis were computed (corrxy, corrxz,
corryz). For each sample in the window, the roll, pitch, and
yaw angles of the direction of acceleration were computed, as
roll = tanj1(y, z), pitch = tanj1(x, z), and yaw = tanj1(y, x).
The average (avgroll, avgpitch, avgyaw) and SD (sdroll,
sdpitch, sdyaw) of these angles were computed over the
window. A low-pass filter with a cutoff frequency of 0.5 Hz
(preliminary experiments tested a few cutoff frequencies and
found 0.5 Hz to perform best) was applied to the data window
to estimate the average direction of gravity, and the roll, pitch,
and yaw angles of this direction were computed (rollg, pitchg,
yawg) (20). The fast Fourier transform was applied to the VM
to decompose the time domain signal to its frequency com-
ponents. The resulting power spectrum describes the contri-
bution of a given frequency to the measured acceleration
signal. The dominant frequency of the signal (fmax), that is,
the frequency with the highest power, and corresponding
maximal power (pmax) were computed from the power
spectrum. A similar calculation was done between the frequency
bands of 0.3 and 3 Hz (fmaxband, pmaxband). The entropy of
the frequency domain signal was computed. Finally, the
power in each frequency band between 1 and 15 Hz (fft1–fft15)
was computed.

Five-second–level classification. Next, each feature
vector was input into a random forest classifier. A random
forest classifier is a commonly used machine-learned algorithm
made up of an ensemble of randomized decision trees, each of
which is learned from a random sample of training data and a
random sample of features. The decision tree outputs a proba-
bility of each posture label for each feature vector. Chunks of
data are classified by averaging the output probabilities from
each decision tree in the forest. We used 500 decision trees;
each tree is learned from a random sample of 15% of features.

Time filtering. After applying the random forest to ac-
celerometer data, a sequence of probabilities of posture labels

over time results. Filtering makes use of the probabilities
assigned to each activity class by the random forest algorithm.
The algorithm first assigns the most probably class to each 5-s
window. Then there are two filtering passes. The first pass
filters out cases where there are two transitions (sit-to-stand or
stand-to-sit) in a row. The 5-s windowwith the lower probability
of transition is reassigned to the next most likely nontransition
activity (sit, stand, or step). The second pass filters transitions
that do not have the correct activities in the preceding and
subsequent 5-s windows (e.g., sit-to-stand preceded by stand
and followed by step). These 5-s windows are reassigned to
the next most likely nontransition activity (sit, stand, or step).
This process removes many false-positive transitions, and we
found that it improved overall accuracy. After filtering, a final
sequence of postures is obtained by selecting the most likely
posture at each point in time.

Evaluation. We evaluated the performance of our pos-
ture classification algorithms using leave-one-participant-out
cross-validation. This means that each participant was
used as the test subject in turn, using the remaining participants
to train the classification algorithm. Sensitivity, specificity, and
balanced accuracy (the mean of sensitivity and specificity) were
averaged over each test participant at the 5-s level for each
posture (stepping, standing, sitting, sit-to-stand transition, and
stand-to-sit transition).

Statistical Analyses of Bouts

After the machine learning performance testing, outlined
previously for the 5-s postural events, additional statistical
procedures were used to compare the cut-point and machine-
learned methods with the activPAL over different sitting
bout durations at the day level. These bout analyses was
performed to uncover where the errors in the predictions
were occurring and to demonstrate that although total sitting
is correlated with existing cut points, there are also errors in
bout-level comparison by these methods. To assess the
existing cut-point approach, the hip accelerometer data were
processed at the minute level in Actilife 6.11, and a G 100
counts per minute cut point applied to the vertical axis. Sit–
stand transitions were identified as the 1-min epoch at or
greater than 100 counts per minute after a sedentary epoch
and vice versa for stand–sit transitions. The periods between
stand–sit and sit–stand transitions were sedentary bouts, and
the minutes spent in bouts of various durations were calcu-
lated for each day and averaged over all wear days. Wear time
was processed using the Choi algorithm in Actilife 6.11, which
assesses 90 consecutive minutes of zero counts as nonwear and
includes a 30-min small window to remove artifactual move-
ment. ActivPAL data for waking hours were matched to the
hip accelerometer wear times, with nonwear times from the
accelerometer excluded from the activPAL data so that a
standard wear time was compared across devices.

Bout durations investigated were G2, 2–5, 5–10, 10–20,
20–30, 30–60, and 60–90 min. Number of daily bouts and
total daily minutes accumulated in these bout durations were
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calculated. Separate generalized estimating equations were
used to make comparisons between methods while accounting
for clustering within individuals (23). Comparisons were
made at the day level. Although these analyses have inherent
bias because the machine-learned algorithms were trained on
the activPAL data and the cut points were not, the analyses
were performed to investigate in which situations (which
types of bouts) the algorithms and cut point points performed
best at the day level. This provides additional information to the
cross-validation at the 5-s level. It was not our aim to develop
new cut points from this data set or show that machine learning
was a better approach than a trained cut-point approach. We
simply wanted to highlight that at the daily bout level there are
differences in where misclassification occurs in the standard
and new methods.

RESULTS

Of the 132 women who were contacted about the study,
30 were eligible and completed the clinic visit. The most
frequent reason for ineligibility was not being able to commit
to study requirements. Participants were a mean (SD) of 62 (8)
yr, and 67% of women had been diagnosed with stage 1 breast
cancer. As indicated by activPAL ground truth, the average
(SD) time spent sitting per day was 499 (83) min, and the
average (SD) time spent standing per day was 248 (74) min.
There were 51.3 (17.7) sit–stand transitions per day. Average
(SD) wear time was 841.4 (54.4) minIdj1.

Table 1 shows the performancemetrics of the newly developed
classifier compared with the activPAL ground truth. The spec-
ificity of the postural random forest classifier was higher than
its sensitivity.

Table 2 shows the confusion matrix of the classifier for
each 5-s epoch, demonstrating that stepping was most often
confused with sitting and standing most often confused with
sitting. The matrix also shows the small number of transitions
that were present in this sample compared with the total
number of 5-s epochs spent sitting.

Because time spent sitting in long or short bouts may be
related to health, regardless of total sitting time (24), sitting bout
durations were calculated for G2, 2–5, 5–10, 10–20, 20–30,
30–60, and 60–90min. Number of daily bouts and total average

daily minutes accumulated in these bout durations were
assessed. Table 3 presents the coefficients and statistical dif-
ferences between the two approaches and the ground-truth
activPAL. The total daily time sitting across devices and
methods (using the accelerometer wear time period, in mean
(SD)) was as follows: activPAL, 488.00 (126.58); accelerometer
machine-learned, 450.00 (139.86), and accelerometer 100-counts
per minute cut point, 507.00 (110.13). The average number of
bouts in the data set per participant per day identified by the
activPALwas48.6 (17.5).Themachine-learnedalgorithmdetected
a total of 32.9 (10.4) bouts and the 100-counts perminute cut point
detected 87.1 (21.6). When the bouts were classified into bouts
lasting G2 min through to bouts lasting 60–90 min, the
machine-learned approach only significantly (P G 0.001)
underestimated the number of bouts lasting G2 min compared
with the activPAL from the generalized estimating equation
analyses. This indicates where the 5-s errors from the cross
validation were most likely to be occurring. The 100-counts per
minute approach was significantly (P G 0.02–P G 0.001) dif-
ferent from the activPAL at all bout durations, but not for total
time. Figure 1 illustrates the number of bouts estimated by each
approach, and Figure 2 shows the total number of minutes of
sitting time averaged across the day from bouts of varying
durations. Up to the 10- to 20-min bouts, the 100 counts per
minute overestimated the number of bouts and time in bouts;
beyond the 20-min bout length, this cut point underestimated
bouts and minutes.

DISCUSSION

This study used the thigh-worn activPAL to provide
training data for a machine-learned classifier to detect postural
changes from a hip-worn accelerometer. The activPAL has
been validated against gold standard observations (14–17) but
is not yet commonly deployed in large cohort studies with
well-adjudicated health outcomes (6). In these studies, hip-worn
accelerometers are most often used, but cut-point approaches
mostly used for hip-worn data are problematic for assessing
postural transitions (9). Developing a machine-learned classifier
from free-living data may improve our estimates of sitting time
and transitions for the existing hip-worn accelerometer data in
these large cohort studies (25).

TABLE 1. Percent of accurately predicted postures at the 5-s interval from the machine-learned training and testing set using leave-one-out cross-validation.

Step Stand Sit Sit-to-Stand Stand-to-Sit

Sensitivity 0.626 0.530 0.642 0.052 0.024
Specificity 0.910 0.737 0.692 0.995 0.999
Balanced accuracy 0.768 0.633 0.667 0.524 0.511

TABLE 2. Confusion matrix showing the number of correctly matched 5-s epochs from the activPAL truth and the machine-learned algorithm.

activPAL Reference

Prediction Step Stand Sit Sit-to-Stand Stand-to-Sit Prediction Total

Step 167,954 86,214 142,947 3226 5764 406,105
Stand 45,321 393,606 519,683 5167 4179 967,956
Sit 54,132 257,624 1,209,340 4786 3588 15,29,470
Sit-to-Stand 673 3596 9564 725 74 14,632
Stand-to-Sit 124 1042 1803 12 330 3311
activPAL Total 268,204 742,082 1,883,337 13,916 13,935

Boldface represents correct predictions.
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The machine learning approach we used was similar to pre-
vious studies, but the classifiers_ overall accuracy ranged from
only 51% to 77%. This is lower accuracy than achieved in other
training data sets (often 980% or 90%) (12,13,26). One reason
for this may be that classifier accuracy is related to the number
of examples in a training set. In free-living populations, there
are few transitions, so the classifier training is limited and the
ability to predict accurately is challenged. More balanced data
sets can be achieved in the laboratory setting, but then the be-
haviors do not represent real life. In contrast, laboratory, pro-
tocol, and even the free-living image annotation studies only
include data when observations are available, which is not al-
ways continuous. If observations are not available, the data are
excluded. In the activPAL, the postural classification is always
available; it does not depend on human observations. When

data are excluded in the laboratory or protocols, natural but
‘‘messy’’ transitions are often missed. Such periods are more
challenging to predict and may have affected our overall algo-
rithm performance compared with ‘‘cleaner’’ data sets (25).

Despite the overall lower accuracy at the 5-s level, the new
machine-learned classifier had very similar estimates to the
activPal for number of bouts and number of minutes spent in
bouts at the day level. In fact, the only period when the machine-
learned classifier performed poorly was in bouts that were less
than 2min long. Further inspection of the data indicated that brief
sitting bouts were difficult to detect when they were surrounded
by brief bouts of movement, for example, when a participant was
frequently getting up and down and moving. Given that the
number of transitions was greatest during the period of G2 min
(almost 20 from the activPAL; see Fig. 1), this time in particular

TABLE 3. Day-level analyses of number of bouts and minutes in bouts compared by machine learning and standard cut point compared with the activPAL.

Machine-Learned Algorithm* 100-Counts per Minute Cut Point

Coefficient SE P Coefficient SE P

Total sedentary time j38.80 17.10 0.02 16.80 15.50 0.28
Time in bouts (G2 min) j8.34 0.79 G0.01 14.74 1.28 G0.01
Time in bouts (2–5 min) 0.14 1.90 0.94 48.89 2.79 G0.01
Time in bouts (5–10 min) j4.34 3.61 0.23 39.19 4.40 G0.01
Time in bouts (10–20 min) j7.43 5.63 0.19 17.69 5.86 G0.01
Time in bouts (20–30 min) j7.71 4.85 0.11 j11.71 5.13 0.02
Time in bouts (30–60 min) j1.12 9.31 0.90 j23.79 9.82 0.02
Time in bouts (60–90 min) j7.19 7.31 0.33 j21.39 6.39 G0.01
Time in bouts (90+ min) j0.92 12.37 0.94 j45.75 8.43 G0.01

Total sedentary bouts j15.44 1.84 G0.01 36.83 2.55 G0.01
No. bouts (G2 min) j13.97 1.05 G0.01 10.39 1.47 G0.01
No. of bouts (2–5 min) 0.03 0.58 0.95 19.72 0.96 G0.01
No. of bouts (5–10 min) j0.51 0.51 0.31 6.72 0.65 G0.01
No. of bouts (10–20 min) j0.51 1.66 0.20 1.67 0.41 G0.01
No. of bouts (20–30 min) j0.32 0.19 0.10 j0.40 0.21 0.06
No. of bouts (30–60 min) j0.05 0.22 0.82 j0.49 0.24 0.04
No. of bouts (60–90 min) j0.10 0.10 0.33 j0.29 0.09 G0.01
No. of bouts (90+ min) j0.08 0.07 0.28 j0.34 0.06 G0.01

*Note the machine-learned approach was trained on the activPAL data so differences are less likely to be significant. Comparisons between the two methods should not be made because
only the machine-learned approach involved training on this specific data set.

FIGURE 1—Average number of daily sitting bouts of varying lengths (see Table 3 for significance values). *Error bars represent SD. CPM, counts per
minute cut point, ML, machine learning.
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affected the overall performance of the machine-learned algo-
rithm. It is possible that different features may be able predict this
specific behavior, or it may be a limitation of the hip location.

The current analyses show that the cut-point estimates
were significantly different from the activPAL, and the direc-
tion of the relationship changed depending on the time in bouts.
It overestimated number and time in bouts less than 20 min and
underestimated the time and number of prolonged bouts greater
than 20 min. This is important because many studies use the cut
point to determine total sitting time or breaks from sitting time
(3,4). The overall number of sit–stand transitions was also
significantly greater, almost double the activPAL estimates. In
contrast, the total minutes of sitting time was not significantly
different. The differences in total and bout-related estimates
indicate that comparisons of total sitting may be hiding im-
portant underlying differences.

This study was limited by a small sample of breast cancer
survivors, and results may not be generalizable. We caution re-
searchers applying algorithms from laboratory studies or a spe-
cific population to more general population studies of free-living
individuals (22). Replication of the performance testing in larger
independent cohorts is needed (27). Given that the public health
evidence points toward the importance of prolonged bouts
(30+ min) (3,4), where this classifier performed best, we believe
that this type of classifier may provide accurate measurement of
sitting in the large cohort studies of hip accelerometer data with
health outcomes. Further training in larger populations withmore

examples of transitions or combining free-living and laboratory
training data may improve the algorithm. Future studies could
include estimates of vehicle time and explore intensity of the
movement to inform the algorithm development. New features
to better capture brief transitions and machine learning ap-
proaches such as recurrent neural networks (which are not tied
to a specific time window) may improve algorithm perfor-
mance. We believe that an algorithm can be sufficiently de-
veloped to address previous cut-point limitations and allow
sitting time to be estimated in the hip location with sufficient
accuracy for epidemiological association studies. This study
provides a proof of concept that an algorithm can be developed
from an activPAL to detect sitting time on a hip-worn acceler-
ometer. Further training in larger samples, validation in inde-
pendent samples, and applications with health outcomes will
progress this field.

This study was funded by pilot funding from the University of
California, San Diego, Department of Family Medicine and Public
Health. The University of California, San Diego, Department of Family
Medicine and Public Health was not involved in the study design,
data collection, analysis, or submission for publication. There were
no conflicts of interest reported by authors of this study.

The analyses and conclusions presented here are those of the
authors and do not reflect those of the funders. In addition, the re-
sults of the study are presented clearly, honestly, and without fabri-
cation, falsification, or inappropriate data manipulation. The results
of the present study do not constitute endorsement by the American
College of Sports Medicine.
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