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Abstract: In the contrary to surface oil slicks, dispersed oil pollution is not yet detected or monitored
on regular basis. The possible range of changes of the local optical properties of seawater caused
by the occurrence of dispersed oil, as well as the dependencies of changes on various physical and
environmental factors, can be estimated using simulation techniques. Two models were combined
to examine the influence of oceanic water type on the visibility of dispersed oil: the Monte Carlo
radiative transfer model and the Lorenz–Mie model for spherical oil droplets suspended in seawater.
Remote sensing reflectance, Rrs, was compared for natural ocean water models representing olig-
otrophic, mesotrophic and eutrophic environments (characterized by chlorophyll-a concentrations of
0.1, 1 and 10 mg/m3, respectively) and polluted by three different kinds of oils: biodiesel, lubricant
oil and crude oil. We found out that dispersed oil usually increases Rrs values for all types of seawater,
with the highest effect for the oligotrophic ocean. In the clearest studied waters, the absolute values
of Rrs increased 2–6 times after simulated dispersed oil pollution, while Rrs band ratios routinely
applied in bio-optical models decreased up to 80%. The color index, CI, was nearly double reduced
by dispersed biodiesel BD and lubricant oil CL, but more than doubled by crude oil FL.

Keywords: radiative transfer; oil pollution; dispersed oil detection; remote sensing reflectance;
chlorophyll-a; color index

1. Introduction

In near-shore areas, the majority of oil products that enter the sea because of human
activity come from typically small but frequent and widespread releases, such as river
inflows, containing industrial and agricultural runoff, or daily shipping activities [1,2]. On
the other hand, open ocean oil pollution is usually caused by oil spills (whether accidental
or operational) [3]. Dispersed oil in the water column is one of the long-term results of oil
spilled on the ocean surface caused both by natural dispersion induced by wave action [4,5]
and chemical dispersant treatments e.g., [6–8]. While natural dispersion occurs within days
to months after an oil spill depending on oil type, wave action and some environmental
conditions [5], chemically induced oil dispersion occurs much faster, usually within hours
to days after spillage [9,10]. In both cases, the process of dispersion occurs in a vertical
direction and it involves oil droplets of sizes smaller than ~100 µm [2].

Dispersed oil pollution is no less a threat to the marine life than oil spilled on the sea
surface. It affects filter-feeding organisms and their primary consumers e.g., [11–13], sea
bottom fauna and their consumers [14,15] as well as plankton composition [16,17]. As a re-
sult, it reduces biodiversity and consequently accelerates the eutrophication process [18,19].
Despite the widely researched spilled oil including in situ, ship-borne, airplane and space-
borne techniques [20,21], the fates of dispersed oil in seawater are much less known and are
not monitored on a regular basis. Recently dispersed oil gained attention in marine research;
however, most studies focus on its biological and ecological impact [22,23], chemical and
microbiological consequences [24–26] or on oil spill modeling [27–29]. Few studies focus
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on optical properties of dispersed oil demonstrating the significance and potential utility
of optical sensing of oil droplets using both active and passive remote techniques [30–33].

Remote sensing of dispersed oil is not yet practiced, although satellite and airborne
remote assessment of surface oil slicks has been practiced for many years [21,34,35]. Tech-
niques commonly applied to monitor oil slicks, such as microwave radars, laser fluorosen-
sors or radiometers, have never demonstrated their applicability to dispersed forms of oil.
One reason is the lack of sufficient technical possibilities; another is the lack of appropriate
models and algorithms. The first reason is likely to be removed as the new generations
of satellite and airborne sensors become more sensitive and have wider spectral ranges.
Nevertheless, there is still need for methods and algorithms to provide quantitative assess-
ments of the dispersed oil products remaining in seawater. Quantification of dispersed oil
pollution can enable corresponding preventive and clean-up actions.

On the other hand, the calibration of satellite-based algorithms requires understanding
of the empirical relationships between remote sensing reflectance Rrs and inherent optical
properties (IOPs) of seawater [36], which can be very specific in complex waters. Oil
droplets participate in the process of radiative transfer in seawater as optically significant
components [37,38]. They absorb and scatter light; therefore, they affect both the inherent
and the apparent optical properties in the area of their occurrence [39]. The scope of
their influence can be estimated using numerical modeling based on the radiative transfer
equation, as long as their IOPs are known [40,41]. The IOPs of dispersed oils can be
obtained by application of Lorenz–Mie theory for spherical particles suspended in a non-
absorbing medium [42,43]. Numerical modeling is a convenient tool for understanding the
impact of specific seawater components on the light field. It is widely used in oceanography
in order to perform large-scale analyses where direct measurements cannot be performed
or cannot provide satisfying information e.g., [44–47]. Successful application of radiative
transfer for seawater polluted by dispersed oil droplets opened a source of valuable data
for understanding the impact of various factors on the visibility (potential detectability) of
dispersed oil [48]. It also became a tool for designing field experiments and creating future
algorithms for remote detection of dispersed oil [49].

Optical properties of open ocean waters are determined mostly by chlorophyll-a
concentration (Chl-a), contrary to complex coastal waters [50]. Ocean waters are frequently
classified because of their trophic status in terms of Chl-a concentration: oligotrophic waters
of Chl-a ≤ 0.1 mg/m3, mesotrophic waters of 0.1 < Chl-a ≤ 1.67 mg/m3 and eutrophic
waters of Chl-a > 1.67 mg/m3 [51]. This study is focused on finding dependencies between
chlorophyll concentration and the impact of three kinds of dispersed oils characterized by
different optical properties: crude oil Flotta, cylinder lubricant Cyliten N460 and biodiesel
BIO-100, on the remote sensing reflectance Rrs in open ocean waters. Furthermore, we
analyze the influence of dispersed oils on frequently used reflectance band ratios and band
differences and demonstrate their utility in future algorithms for dispersed oil detection.

2. Materials and Methods
2.1. Optical Model of Oceanic Water

Radiative transfer simulations were conducted for representative types of oligotrophic,
mesotrophic and eutrophic oceanic waters characterized by corresponding chlorophyll-a
concentrations of 0.1, 1 and 10 mg/m3. The model of natural seawater includes the IOPs of
three components: pure water, chlorophyll particles and color-dissolved organic matter
(CDOM), plotted in Figure 1. Pure water spectral coefficients of absorption awater were
adapted from Pope and Fry [52] (solid black line in Figure 1a) and spectral coefficients
of scattering bwater from Morel [53,54] (solid black line in Figure 1b). Chlorophyll-a and
CDOM absorption coefficients, aparticle and aCDOM, respectively, were calculated according
to the formulas proposed by Bricaud and Mobley [54,55]. Particle scattering coefficients
bparticle were chosen after Loisel and Morel [56] with updates of Morel [57]. Figure 1a
shows the total absorption coefficients of all three types of considered ocean waters as well
as their three components for Chl-a = 10 mg/m3. Figure 1b illustrates the total scattering
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coefficients of all ocean water types and pure water. Scattering phase functions for oceanic
waters were calculated after Morel [57] as a function of chlorophyll-a concentration and
wavelength and are presented in Figure 1c on a log-linear plot. In this study we simplified
the model by assuming a constant vertical concentration of Chl-a.
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Figure 1. Inherent optical properties for oceanic water model characterized by chlorophyll-a concentrations of 0.1, 1 and
10 mg/m3: (a) total absorption coefficients atot for three types of oceanic waters and the absorption contribution coming from
chlorophyll particles, aparticle, color-dissolved organic matter, aCDOM, and pure water, awater, for chl-a of 10 mg/m3; (b) total
scattering coefficients for three types of oceanic waters btot and for pure water bwater; (c) log-linear plot of corresponding
scattering phase functions at 555 nm.
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2.2. Optical Model of Dispersed Oil

The study was conducted for three kinds of oil:

1. Biodiesel BIO-100 (hereafter referred to as BD), commercially available at PKN Orlen.
It consists of over 96% of fatty acid methyl esters, and it is the most common type of
biodiesel in Europe. The fuel is made from vegetable oils and can be used in most
diesel engines [58,59].

2. Cylinder lubricant oil Cyliten N460 (CL), commercially available at LOTOS S.A.,
formulated upon deeply refined, dewaxed and hydrorefined mineral oils (>80%)
with low susceptibility to coking, and greased with vegetable oil (<20%) to improve
lubrication properties [60]. It is designed for lubrication of high-pressure compressors
and other special applications as low-speed gears, e.g., in marine ship engine systems.

3. Crude oil Flotta (FL), extracted offshore in the North Sea in the British exclusive
economic zone. It is a mixture of thousands of hydrocarbons of paraffin-naphthene
base [2,61], characterized by an API gravity of 36.6, total sulfur content of 0.66% wt
and total wax content of 6.75% wt.

The IOPs of dispersed oil cannot be measured directly due to absorption values
below the detection limit of commercially available spectrometers; therefore, they were
calculated using Lorenz–Mie theory for spherical particles suspended in a non-absorbing
medium (pure water) with correction for the saline water absorption [43]. Input data for
Mie modeling include a spectrum of the complex refractive index of light in pure oil and
oil droplet size distribution.

The real parts of refractive indices of original oils for this study were measured us-
ing an automatic critical-angle dispersion multi-wavelength refractometer DSR-λ (2010,
Schmidt + Haensch GmbH & Co, Berlin, Germany) for nine wavelengths in the VIS range
at 20 ◦C according to the methodology from [62]. Droplets of oil were assumed to be
suspended in natural saline water (i.e., medium) characterized by refractive indices given
by [63] for salinity of 35 PSU and temperature of 20 ◦C. Obtained multispectral data were
further approximated by fourth-order polynomial functions, plotted in Figure 2a. Imag-
inary parts of the complex refractive index of light for pure oils are shown in Figure 2b.
They were calculated from absorption measurements performed with the use of Perkin
Elmer Lambda 850 dual-beam spectrophotometer (PerkinElmer Inc., Waltham, MA, USA)
equipped with a 15-cm integrating sphere (Labsphere Inc., North Sutton, NH, USA) ac-
cording to the methodology described in [64]. Absorption measurements were collected
within the spectral region of visible light from 400 to 700 nm at 1-nm intervals.

To further take a step forward compared to previous studies [37,38,40,48], we applied
droplet size distributions derived from measurements conducted using LISST-100X in the
stationary mode. Oil-in-water dispersions were prepared in the laboratory by means of
mechanical mixing. First, selected oils were homogenized in demineralized water in the
volume concentration of (2 ± 0.3) × 103 µL/L using a laboratory homogenizer MPW-120
(run parameters: time—10 min, rotation speed—10,000 rps, giving the energy dissipate
rate per volume of 2.083 × 105 J/m3s.). In the second step, oil dispersions were diluted in
demineralized water to the final volume concentration of 10 ppm. This procedure ushered
the way to obtain stable oil-in-water dispersions which were stored in glass bottles. All
droplet size distributions were obtained every 3 s by operating the LISST-100X in real-
time operation mode. Each measurement comprised the average of min 100 scans and
was repeated 3 times for each oil sample in order to minimize potential heterogeneity
uncertainties. In this study, we used size distributions for dispersed oils collected on the
day of preparation. The results are plotted in Figure 2c.
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2.3. Radiative Transfer Simulation Setup

Radiative transfer simulations were conducted using the Monte Carlo code created
and made available by Prof. Jacek Piskozub [65] and applied also by the authors of [66–70].
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We adapted the model for studies of remote sensing of dispersed oil in seawater described
previously in [39,40,49].

Figure 3 shows the model scheme, where blue boxes indicate the inherent optical
properties of oceanic water constituents (described in Section 2.1 of this paper), brown
boxes display data related to dispersed oil (described in Section 2.2), yellow boxes frame
the boundary weather and sea bottom conditions (described in this section below) and the
green box illustrates model output data. The output remote sensing reflectance Rrs is the
water-leaving radiance (Lw, W m−2 nm−1 sr−1) normalized by the downwelling irradiance
(Ed, W m−2 nm−1) just above the sea surface (0+).
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Figure 3. Scheme of the model of radiative transfer in seawater polluted by dispersed oil: yellow boxes mark the input
boundary conditions, blue boxes illustrate the input optical properties of natural seawater; data related to dispersed oil
droplets are in brown boxes, and model output data are in the green box.

The experiment design is visualized in Figure 4. All simulations were conducted for
27 wavelengths from visible light range (400–700 nm), typical for the most common remote
sensors. The Monte Carlo simulation was set to trace the pathways of 2 × 109 photons at
each wavelength. Calculations were performed for clear sky conditions with sun height
of 30◦ (from zenith) and the wavelength-dependent atmosphere diffusivity was averaged
from the available data for low and medium atmosphere turbidity after [71].

Ocean depth was set at 1000 m. Ocean bottom was assumed to be of Lambertian
type with 2% mirror reflection and 8% diffusive reflection; however, the depth of 1000 m
ensured that the bottom parameters did not affect the Rrs results. The sea surface was
parameterized by the wave slope Cox–Munk distribution for a gentle wind of 5 m/s.
The simulated receiver half-angle was 3.5◦, which is typical for commercially available
radiometers (e.g., Ramses, TriOS GmbH, Rastede, Germany). The receiver was placed just
above sea surface (0+). Dispersed oil was assumed to be present in the surface mixed layer
of 30 m in constant concentration of 1 ppm (part per million).
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3. Results

The results of our two-step modeling series include Mie calculations of the inherent
optical properties of three kinds of dispersed oils, as well as their further involvement in
the radiative transfer simulation for three types of oceanic seawater characterized by Chl-a
concentrations of 0.1, 1 and 10 mg/m3.

3.1. Dispersed Oil Optical Properties

So far, there are few complete datasets for Mie modeling of dispersed oils. Examples
of such data are those collected in the 1990s [72,73], that were made using a self-adapted
spectrophotometer for two kinds of crude oils characterized by extremely different optical
properties: Petrobaltic and Romashkino. In this study we applied new data from direct
measurements for three different types of oil: biodiesel BD, lubricant oil CL and crude oil
FL. All oils have the real part of the refractive index of 1.45–1.53 (see Figure 2a), higher
than seawater (~1.34).

As a result of Mie modeling, we obtained the IOPs of each kind of oil dispersions.
They include absorption and scattering coefficients for 27 wavelengths from the visible
spectral range (400–700 nm) and angular phase functions of the volume scattering function
in the same spectral range. Figure 5a shows the impact of dispersed oil absorption to the
total oligotrophic ocean water absorption (Chl-a = 0.1 mg/m3), expressed in %. The impact
of dispersed crude oil FL was about 10 times higher than for dispersed BD and CL. This is
because the absorption coefficient of the dispersed FL was about two orders of magnitude
higher than for the other oils. Moreover, FL and CL had a similar shape of absorption
spectrum, decreasing exponentially with increasing wavelengths (see Figure 2b). The
absorption spectrum of BD had a different polynomial shape with three local maxima. The
impact of dispersed oil to the oceanic absorption was the most significant in the blue to
green spectral range. The maximal impact varied from 0.3% for CL, 0.4% for BD and 12%
for FL for the eutrophic ocean, reaching up to 4.6% for CL, 7.3% for BD and 68% for FL for
the oligotrophic ocean.
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Figure 5b similarly illustrates the impact of dispersed oils to the total scattering
coefficient of oligotrophic water. It reached up to 88% for CL, 91% for FL and almost 93%
for BD. However, for eutrophic ocean it was much lower and varied from 17% (CL) to 25%
(FL). While the process of light absorption directly causes the decrease of Rrs by reducing
the upwelling light flux, the process of light scattering is more complex [74]. It requires
the knowledge of its angular characteristics in the form of the volume scattering function.
Phase functions of the volume scattering function of dispersed oils are presented in Figure 6.
We also considered their spectral dependence, which is rarely practiced, although very
significant (especially in optically complex waters). Scattering phase functions describe
the probability of scattering an incident photon in a certain direction (scattering angle).
In comparison to phase functions of natural ocean waters, phase functions obtained for
dispersed oils (see Figures 1c and 6) have a characteristic peak around 90–100◦. Moreover,
their values increase for large scattering angles near 180◦. Phase functions for dispersed
CL and FL have a similar shape for large angles, while phase functions for dispersed BD
have lower values in the same angular range. This is the result of different size structure
and lower refractive index of BD.

3.2. Remote Sensing Reflectance of Oceanic Water Polluted by Dispersed Oils

As a result of radiative transfer simulations conducted for 27 wavelengths in the
visible light range (400–700 nm) for three ocean water types unpolluted and polluted by
three kinds of dispersed oil, we received a set of multispectral remote sensing reflectance
Rrs data. In Figure 7, one can see all the obtained Rrs spectra grouped by the type of ocean
water and drawn with a smoothed line.
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As expected based on previous studies, the highest impact on Rrs was observed for the
oligotrophic ocean waters, reaching over a 2-fold increase in the blue bands of visible light
spectrum, a 3–4-fold increase in the green bands and over a 5-fold increase in the red bands
for CL. Interestingly, the maximal increase of Rrs shifted from the blue region (~410 nm)
for the oligotrophic ocean through the green region (~490 nm) for the mesotrophic ocean
to the yellow region (~560 nm) for the eutrophic ocean. Because of the high shortwave
absorption, dispersed crude oil FL caused significant Rrs increase in the central and long
wave bands, reaching 1.3-fold for eutrophic waters and 5.8-fold for oligotrophic waters. On
the other hand, the presence of dispersed BD increased the Rrs only 10–18% for eutrophic
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ocean waters, 33–66% for mesotrophic waters and up to 2.9-fold for oligotrophic waters.
Table 1 illustrates a color scale of increased Rrs values caused by all kinds of considered
dispersed oils in all oceanic water types. While CL and FL more significantly affected the
green and red bands, the maximum BD impact was placed in the green and blue bands.
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Table 1. Color scale illustration of the increase of Rrs in three typically considered spectral bands of visible light obtained
through radiative transfer modeling for three types of ocean waters and three kinds of dispersed oils. Blue bands:
400–510 nm, green bands: 510–590 nm, red bands: 590–700 nm.

BD CL FL

Blue
Bands

Green
Bands

Red
Bands

Blue
Bands

Green
Bands

Red
Bands

Blue
Bands

Green
Bands

Red
Bands

oligotrophic water
(Chl-a 0.1 mg/m3) ~2-fold ~3-fold ~2-fold ~3-fold ~4-fold ~5-fold ~2-fold ~4-fold ~6-fold

<20%
30–45%mesotrophic water

(Chl-a 1 mg/m3) 50–80% 50–80% 30–45% 80–100% ~2-fold ~2-fold
50–80%

~2-fold ~2-fold

eutrophic water
(Chl-a 10 mg/m3) <20% <20% <20% 20–30% 20–30% 20–30% <20% 20–30% 20–30%

4. Discussion

In order to address the challenge of remote sensing of oil products dispersed in oceanic
waters, we calculated some indicators routinely applied to ocean color. First, we discuss
below how dispersed oil can affect remotely sensed ocean parameters in each type of
oceanic water. Then, we undertake an attempt to point to the best expressions possible to
differentiate oil-polluted ocean water from the unpolluted water.

4.1. Influence of Water Type on the Visibility of Dispersed Oil—Analysis of Ocean Color Rrs Band
Ratios and Band Differences

The most widely used empirical algorithms for the retrieval of chlorophyll concentra-
tion in the open ocean are based on blue-to-green Rrs band ratios [75,76]. They contain the
ratio of the greatest Rrs(λblue) value chosen between 443 and 520 nm to Rrs(λgreen) closest to
555 nm. In an area contaminated with oil droplets such ratios can increase or decrease in
comparison to surrounding natural seawater. Some other operational algorithms based on
Rrs band differences [77] can also be affected by the occurrence of dispersed oil. NASA’s
standard [Chl] product merges two approaches based on the Rrs band ratio and band
difference [77,78].

The impact of dispersed oils on selected Rrs band ratios and band differences is shown
in Table 2, where the values for oil-polluted areas are expressed as percentage difference
relative to the unpolluted ones. The greatest impact of dispersed oils on these ratios was
noticed on the background of oligotrophic ocean water, which is the vast majority (78%) of
the global ocean, that in our paper is represented by a Chl-a concentration of 0,1 mg/m3.
Ocean color Rrs band ratios decreased up to 27% for dispersed BD, up to 49% for dispersed
CL and up to 79% for dispersed FL. Such a decrease was a result of the addition of only
1 ppm of oil droplets present in the surface mixed layer of 30 m. Mesotrophic ocean waters,
represented in our study by Chl-a = 1 mg/m3, cover areas in between continents and near-
shore open ocean waters. In this type of water, only crude oil FL decreased blue-to-green
ratios in a significant degree (up to 39%). Moreover, the majority of ocean color-based
algorithms (e.g., NASA’s OCx) include decimal logarithms of Rrs band ratios and their
powers, which differ even more between natural seawater and water polluted by dispersed
oil. In eutrophic ocean waters with a Chl-a = 10 mg/m3, we did not notice any substantial
changes of blue-to-green Rrs band ratios caused by dispersed oils; the highest was a 6%
decrease noticed for FL. Polar plots of the most highly affected Rrs band ratios in Figure 8
show the magnitude of their decrease or increase related to the natural ocean water.
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Table 2. Percentage relative differences between Rrs band ratios and band differences received for
unpolluted ocean waters and polluted by three kinds of dispersed oils: biodiesel BD, lubricant oil CL
and crude oil FL.

Oligotrophic Mesotrophic Eutrophic

BD CL FL BD CL FL BD CL FL

Rrs band ratios, relative difference, %

410/560 −27 −49 −79 −3 −12 −39 3 3 −6
440/550 −19 −38 −64 0 −5 −23 1 3 −2
490/550 −4 −22 −39 2 −3 −14 0 1 −2
550/680 28 −19 −22 21 −3 −8 5 −2 −5
420/665 −10 −56 −80 18 −11 −39 7 1 −9

Rrs band differences, relative difference, %

550–440 112 132 −18 59 24 −250 15 18 22
665–440 128 174 52 66 92 46 22 28 12
680–490 174 244 161 69 97 68 17 23 15

Earlier in [48], we evaluated the possible influence of dispersed Petrobaltic light crude
oil on some Rrs band ratios in the coastal waters of the Baltic Sea. The effect on the ratio of
Rrs(443)/Rrs(555) depended on the droplet size distribution and reached 18% decrease for
micrometer-sized droplets characterized by the peak diameter of the log-normal function
of 5 µm. Here, in the open ocean waters, biodiesel BD made a similar impact on the
ratio of Rrs(440)/Rrs(550) in oligotrophic waters, and crude oil FL in mesotropic waters.
Droplet size distributions measured for this study had their main maxima at 5 µm for
FL and BD, and 7 µm for CL, although their shape was rather a 2- or 3-mode log-normal
function than a single-mode function. In the recent study [70] conducted for dispersed light
crude Petrobaltic and heavy crude Romashkino oils, Baszanowska proposed two Rrs band
ratios: 555/412 and 650/412 (respectively) as the best for future algorithms for dispersed
oil detection. Although their conclusions were made on a different background coastal
water type in the Gulf of Gdansk, and thus, they considered a much higher oil droplet
concentration of 10 ppm, this is consistent with the findings of our study. Some kinds
of oils tend to affect Rrs blue-to-green ratios, and some others give a higher change to
the red-to-blue ratios; however, these effects also depend on water type and oil droplet
size distribution.

As the blue-to-green Rrs ratios are dedicated to deriving bio-optical parameters of
seawater, we tried to find other “unoccupied” wave bands which could be good indicators
for the presence of dispersed oil. In the previous study [48], we noticed that blue-to-red Rrs
ratios decreased more significantly than blue-to-green ratios for micrometer-sized Petrobaltic
oil dispersions. In this study, blue-to-red ratios (e.g., 420/665) also decreased significantly
for CL and FL in oligotrophic and mesotrophic ocean waters. On the other hand, green-to-
red ratios (e.g., 550/680) demonstrated their potential usefulness for dispersed BD detection
indicating a 28% increase for oligotrophic waters and a 21% increase for mesotrophic waters.
Similarly, the foregoing study revealed that such ratios are the best distinguishing factors
for oil dispersions with a dominance of submicron oil droplets. In eutrophic waters, we
did not find any Rrs band ratio sensitive to dispersed oil in the concentration of 1 ppm;
however, we suppose that the study performed for higher oil concentrations would reveal
wavebands that are the most accurate for oil detection in chlorophyll-rich waters.

It was much easier to find Rrs band differences significantly affected by dispersed
oil droplets. Some red-blue differences were more than doubled in oligotrophic waters,
almost doubled in mesotrophic waters and noticeably increased in eutrophic waters (see
the last line in Table 2). The green-blue Rrs difference increased significantly for dispersed
BD in all types of ocean water and the increase predictably dropped with the growing
Chl-a concentration. This study confirms our conclusions from previous modeling studies
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that Rrs band differences (and their combinations) will be good candidate expressions for
algorithms in the outlook of dispersed oil detection.
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4.2. Color Index in Oligotrophic Ocean Waters

The current implementation for the NASA’s default chlorophyll algorithm employs the
standard OCx band ratio algorithm merged with the color index (CI) of [77]. As described
in that paper, the application of CI is restricted to relatively clear water for chlorophyll
concentrations below 0.25 mg/m3, and is negative by definition for most clear waters. We
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calculated the CI for the oligotrophic ocean water model, both natural and polluted by
three kinds of dispersed oils, according to the following general equation (equation 2.8
in [78]):

CI = Rrs
(
λgreen

)
−

[
Rrs(λblue) +

λgreen − λblue

λred − λblue
·(Rrs(λred)− Rrs(λblue))

]
, (1)

where λblue, λgreen and λred are the instrument-specific wavelengths closest to 443, 555 and
670 nm, respectively. Obtained values of CI for different combinations of λblue, λgreen and
λred are listed in Table 3. The most affected combinations are written in bold. The presence
of dispersed oil droplets significantly affected CI values. Dispersed BD nearly double
reduced CI in comparison to unpolluted oligotrophic water, which means it increased
the distance from Rrs(555) to the linear baseline between Rrs(443) and Rrs(670). As high
negative CI values indicate low Chl-a concentrations, such a result could be misinterpreted
as a much lower Chl-a area. Similarly, dispersed CL decreased CI for ~80%, which can lead
to Chl-a underestimation. On the other hand, dispersed crude oil FL more than doubled
CI values, which can be interpreted as a much higher Chl-a concentration. Hu et al. [77]
noticed that Rrs(443) decreases with increasing Chl-a values, while Rrs(555) and Rrs(670)
remain relatively stable for oligotrophic ocean waters. Our study shows that dispersed oil
pollution disrupts that dependence.

Table 3. Color index (CI) values (multiplied by 103) for oligotrophic ocean waters calculated for different combinations of
λblue, λgreen and λred and compared for natural unpolluted water and polluted by three kinds of dispersed oils: biodiesel BD,
lubricant oil CL and crude oil FL.

Wavelengths, nm Color Index CI × 103 Relative Difference, %

λblue λgreen λred BD CL FL Natural Unpolluted Water BD CL FL

440 555 670 −5.95 −5.46 0.67 −3.11 −91 −76 121
440 555 675 −6.18 −5.74 0.51 −3.21 −92 −79 116
440 550 670 −6.03 −5.36 0.81 −3.19 −89 −68 125
440 550 675 −6.25 −5.63 0.66 −3.29 −90 −71 120
445 555 670 −5.59 −5.13 0.45 −2.87 −95 −79 116
445 555 675 −5.82 −5.39 0.30 −2.97 −96 −82 110
445 550 670 −5.66 −5.02 0.59 −2.94 −92 −70 120
445 550 675 −5.87 −5.27 0.44 −3.04 −93 −74 114

We noticed that addition of dispersed oils caused a general Rrs increase in the entire
visible spectral range (with some possible exceptions in the shortwave part, e.g., observed
for FL). There is therefore no simple way to distinguish the presence of dispersed oil from
the measured Rrs spectra only. However, we strongly believe that a CI-like combination
of Rrs band differences and/or band ratios can lead us toward the remote detection of
dispersed oil, starting from the oligotrophic water type. We assume that there is a need to
create specific algorithms or weighting factors for different types of oils grouped on the
basis of their IOPs and size structure. This is why the database of dispersed oil optical
properties shall keep expanding.

5. Conclusions

In ocean waters, chlorophyll-a concentration is the primary factor derived routinely
from satellite remote sensing. Chl-a is an indicator of phytoplankton abundance and
biomass, an indicator of maximum photosynthetic rate and, thus, a measure of water
quality, in terms of both natural and human-induced processes including climate change
and pollution. New generations of sensors involved in such measurements become more
accurate and sensitive to slight changes in the upwelling light flux and then, they are
combined with corresponding methodology results in useful algorithms for the retrieval
of various parameters. However, until now, there have been no methods for the remote
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detection of dispersed forms of oil pollution, which is very significant for the life on our
planet. Visibility (and thus detectability) of oil droplets depends on the knowledge of
the inherent optical properties of dispersed oil as well as the translucency of seawater
(connected to the concentration of its constituents). The available database concerning
optical properties of pure and dispersed oils is relatively small considering the quantity of
human oil consumption nowadays and the scale of human’s ecological impact. This study
demonstrated the importance of collecting complete optical data for oil dispersions and at
the same time searching for the rules in the interaction between oil dispersed in seawater
and light scattered in such a medium. We found out that oil dispersions dominated by
micrometer-sized droplets usually increase the remote sensing reflectance in comparison to
unpolluted ocean water. In the clearest studied waters characterized by Chl-a = 0.1 mg/m3,
the absolute values of the Rrs increased 2–6 times after simulated dispersed oil pollution.
Moreover, standard Rrs band ratios and band differences applied in ocean color algorithms
either decreased up to 27%–80%, or more than doubled, depending on oil kind. Dispersed
biodiesel BD and lubricant oil CL nearly double reduced the color index, while crude oil FL
more than doubled it. This shows that oligotrophic ocean areas make the best background
for studies of the influence of dispersed oil on the upwelling light flux. On the other hand,
we can notice that unknown dispersed oil occurrence can lead to under- or overestimation
of chlorophyll concentration in oligotrophic waters.

Furthermore, we noticed that the high variability of optical properties of oils would
require us to group them in classes due to some characteristics (e.g., absorption or backscat-
tering ratio and/or droplet size distribution) in order to find the best algorithm for remote
detection of dispersed oil forms. As optical studies on dispersed oil in seawater are still
rare, the access to multispectral or even hyperspectral data could take the analyses to
another level. In the outlook, after gathering a larger database, combinations of several Rrs
band differences and/or band ratios (weighted by oil-specific or seawater-specific factors)
may be investigated in order to create an algorithm needed for future testing and validation
as a next step in the attempt to establish routine remote dispersed oil detection.
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