
����������
�������

Citation: de Sire, A.; Gallelli, L.;

Marotta, N.; Lippi, L.; Fusco, N.;

Calafiore, D.; Cione, E.; Muraca, L.;

Maconi, A.; De Sarro, G.; et al.

Vitamin D Deficiency in Women with

Breast Cancer: A Correlation with

Osteoporosis? A Machine Learning

Approach with Multiple Factor

Analysis. Nutrients 2022, 14, 1586.

https://doi.org/10.3390/

nu14081586

Academic Editors: Giovanni Adami

and Davide Gatti

Received: 31 March 2022

Accepted: 9 April 2022

Published: 11 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Vitamin D Deficiency in Women with Breast Cancer: A
Correlation with Osteoporosis? A Machine Learning Approach
with Multiple Factor Analysis
Alessandro de Sire 1,* , Luca Gallelli 2,3 , Nicola Marotta 1 , Lorenzo Lippi 4,5 , Nicola Fusco 6,7 ,
Dario Calafiore 8 , Erika Cione 9 , Lucia Muraca 10, Antonio Maconi 4, Giovambattista De Sarro 2,3 ,
Antonio Ammendolia 1 and Marco Invernizzi 4,5

1 Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of
Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; nicola.marotta@unicz.it (N.M.);
ammendolia@unicz.it (A.A.)

2 Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Department of Health Science,
University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; gallelli@unicz.it (L.G.);
desarro@unicz.it (G.D.S.)

3 Research Center FAS@UMG, Department of Health Science, University of Catanzaro “Magna Graecia”,
88100 Catanzaro, Italy

4 Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera
SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; lorenzolippi.mt@gmail.com (L.L.);
amaconi@ospedale.al.it (A.M.); marco.invernizzi@med.uniupo.it (M.I.)

5 Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
6 Department of Oncology and Hemato-Oncology, University of Milan, 20126 Milan, Italy;

nicola.fusco@unimi.it
7 Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
8 Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma,

46100 Mantova, Italy; dario.calafiore@asst-mantova.it
9 Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022,

University of Calabria, 87036 Rende, Italy; erika.cione@unical.it
10 Department of General Medicine, ASP 7, 88100 Catanzaro, Italy; lalumuraca@gmail.com
* Correspondence: alessandro.desire@unicz.it; Tel.: +39-0961712819

Abstract: Breast cancer (BC) is the most frequent malignant tumor in women in Europe and North
America, and the use of aromatase inhibitors (AIs) is recommended in women affected by estrogen
receptor-positive BCs. AIs, by inhibiting the enzyme that converts androgens into estrogen, cause
a decrement in bone mineral density (BMD), with a consequent increased risk of fragility fractures.
This study aimed to evaluate the role of vitamin D3 deficiency in women with breast cancer and
its correlation with osteoporosis and BMD modifications. This observational cross-sectional study
collected the following data regarding bone health: osteoporosis and osteopenia diagnosis, lumbar
spine (LS) and femoral neck bone mineral density (BMD), serum levels of 25-hydroxyvitamin D3
(25(OH)D3), calcium and parathyroid hormone. The study included 54 women with BC, mean age
67.3 ± 8.16 years. Given a significantly low correlation with the LS BMD value (r2 = 0.30, p = 0.025),
we assessed the role of vitamin D3 via multiple factor analysis and found that BMD and vitamin
D3 contributed to the arrangement of clusters, reported as vectors, providing similar trajectories of
influence to the construction of the machine learning model. Thus, in a cohort of women with BC
undergoing Ais, we identified a very low prevalence (5.6%) of patients with adequate bone health and
a normal vitamin D3 status. According to our cluster model, we may conclude that the assessment
and management of bone health and vitamin D3 status are crucial in BC survivors.

Keywords: vitamin D; breast cancer; osteoporosis; bone mineral density; machine learning; multiple
factor analysis; cluster analysis

Nutrients 2022, 14, 1586. https://doi.org/10.3390/nu14081586 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14081586
https://doi.org/10.3390/nu14081586
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-5541-8346
https://orcid.org/0000-0003-0858-7902
https://orcid.org/0000-0002-5568-7909
https://orcid.org/0000-0001-9035-1485
https://orcid.org/0000-0002-9101-9131
https://orcid.org/0000-0001-9221-2497
https://orcid.org/0000-0002-0562-0597
https://orcid.org/0000-0002-7629-6579
https://orcid.org/0000-0002-2828-2455
https://orcid.org/0000-0001-5141-0681
https://doi.org/10.3390/nu14081586
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14081586?type=check_update&version=2


Nutrients 2022, 14, 1586 2 of 15

1. Introduction

Breast cancer (BC) is the most common malignancy in women and one of the leading
causes of cancer-related death worldwide [1]. However, early detection of this tumor
and the recent advances in cancer therapies have significantly improved patient overall
survival, with a consequent rapid increase of BC survivors [2]. In this scenario, a critical
issue described in the current literature is represented by the long-term consequences, with
recent evidence focusing on physical and psychological sequelae affecting the quality of
life of BC survivors [3,4].

In particular, osteoporosis is highly prevalent in post-menopausal BC survivors due its
strict association with cancer treatments [5–9]. This specific condition is currently defined as
cancer treatment-induced bone loss (CTIBL) and might be related to the hormone therapy
that negatively affects bone mineral density (BMD) due to the reduction of residual serum
endogenous estrogenic levels [5,8,10–12]. Moreover, chemotherapy has been related to an
unspecific increase in bone resorption and a higher risk of fragility fractures [13–15]. There-
fore, specific treatments preventing bone loss and reducing the risk of fragility fractures
are strongly recommended to improve the long-term outcomes and management of BC
patients [5,16].

A healthy lifestyle, including physical activity and a nutritional approach, is the
cornerstone of a proper osteoporosis management [17,18]. On the other hand, it is well
known that calcium and vitamin D3 supplementation could play a key role in maintaining
bone health in BC patients [19,20]. Indeed, it has been reported that adequate levels of
vitamin D3 might positively influence the risk of osteoporosis, physical performance and
the risk of falls in older adults [9,20]. Moreover, several clinical trials, systematic reviews,
and meta-analyses [21–25] reported significant advantages of the oral supplementation of
calcium and vitamin D3 in reducing the fracture risk in elderly patients, with a reduction
in the overall fracture risk ranging between 5% and 19%.

Vitamin D is a steroid compound with pleiotropic effects in the human body [26].
Though over 50 distinct vitamin D metabolites have been characterized so far, which has
allowed us to articulate a whole vitamin D metabolome, only 1,25-dihydroxy vitamin D3
(1,25(OH)2D3) has been commonly identified as biologically active [27]. By agreement, the
determination of the total level of 25(OH)D3 has been employed to estimate the vitamin D
reserve. The physiological outcomes of further metabolites are only considered potential,
as their roles in vivo remain disregarded [28]. Therefore, vitamin D status is an promising
tool for predicting BC, dental and neurological diseases, and COVID-19 [29–34].

On the other hand, a few studies assessed the effects of calcium and vitamin D3 in
preventing CTIBL in BC women [16]. According to the National Osteoporosis Foundation,
the U.S. Preventative Services Task Force, the National Academy of Sciences, and the
Institute of Medicine, women over 50 years old should receive 800–1000 IU of cholecalciferol
per day [35], and the same dose is recommended for BC survivors at risk of CTIBL [36,37].
However, vitamin D3 deficiency remains largely prevalent in BC survivors due to both
under-prescription and poor adherence to oral supplementation, with detrimental effects
in terms of calcium homeostasis, skeletal metabolism and immune and cardiovascular
systems’ functions [36].

Nearly half of the women diagnosed with BC are vitamin D-deficient [38], while
prospective cohort studies have reported an inverse association between the serum levels
of 25-hydroxyvitamin D3 (25(OH)D3) and breast cancer prognosis [39–41]. Indeed, low
vitamin D levels have been found to be significantly associated with an increased risk of
distant recurrence and early death in BC patients [42]. The pleiotropic effect of vitamin D,
affecting the expression of at least 200 genes, is well known [43].

Despite the mechanisms underpinning CITBL in BC survivors being far from full
understanding, vitamin D3 could represent a molecular target in the complex patho-
logical framework of BC osteoporosis [44,45]. The list of target genes that is common
across cell models seems to be short, and the most clearly shared target is Cytochrome P
(CYP24A1) [44]. High parathyroid hormone levels and hypercalcemia induce 1,25(OH)2D3
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synthesis, stimulating the transcription of CYP27B1 and increasing 1,25(OH)2D3 activ-
ity, with consequent down-stream action of CYP27B1 and suppression of parathyroid
hormone [46]. Moreover, the up-stream 1,25(OH)2D3-upregulated protein 1 attaches the
disulfide-reducing protein thioredoxin and represses its capacity to inhibit reactive oxygen
species. This unsuccessful inhibition of reactive oxygen species might in turn lead to stress-
induced apoptosis [44,45,47], via B-cell lymphoma 2 (BCL-2), MYeloCytomatosis (Myc),
and Chromodomain-Helicase DNA-binding (CHD) pathways, as depicted in Figure 1.

Figure 1. Differences in cholecalciferol pathways in breast cancer survivors. Gene abbreviation:
BCL-2: B-cell lymphoma 2, CHD: Chromodomain-Helicase DNA-binding, CYP: Cytochrome P, ER:
Estrogen receptor, MYC: MYeloCytomatosis, PTGER: Prostaglandin E Receptor.

The BCL-2 family consists of three subgroups: apoptotic promoters, apoptotic effec-
tors, and anti-apoptotic proteins; indeed, their expression level and shifting status might
determine a cell fate. These proteins, specifically BCL-2, BCL-XL, and MCL-1, have been
associated with progression, chemoresistance, and metastatic potential in a range of can-
cers, including breast cancer [48,49]. Salehi-Tabar et al. demonstrated that 1,25(OH)2D3
could suppress the expression of c-Myc in vivo, and c-Myc protein levels were elevated in
Vitamin D receptor (VDR)-deficient cells [50].

A growing interest in precision medicine approaches has been rising to treat several
cancer conditions. More in detail, machine learning studies have successfully improved
diagnostic capabilities in a wide range of medical applications [51,52]. To better understand
the role of different variables in a statistical model, machine learning algorithms could
need a more sophisticated approach [53]. Machine learning methods, such as k-Nearest
Neighbors and Neural Networks, have been developed in recent years [54,55].

In this context, Multiple Factor Analysis (MFA) is considered a novel multivariant
statistical approach allowing the analysis of several groups of continuous variables of differ-
ent nature by clustering the study participants through a machine learning model [56,57].
Indeed, it weighs each variable with respect to the others and allows for clustering by
diversifying individuals into different groups.

These advances in machine learning might improve patient-tailored frameworks in
both cancer diagnosis and treatment [58,59]. However, to date, few studies integrated
emerging technologies for the patient-centered assessment of BC-related sequelae [60,61],
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and to the best of our knowledge, studies integrating machine learning approaches to
evaluate the correlation of vitamin D3 and osteoporosis in BC women are lacking.

Our hypothesis is that in in BC patients, in addition to a high frequency of vita-
min D deficiency, there may be significant correlations of vitamin D deficiency with
osteoporosis parameters.

Therefore, in this study, we sought to assess the correlation between vitamin D de-
ficiency and osteoporosis in BC women using a machine learning approach to deeply
characterize the characteristics of BC survivors.

2. Materials and Methods
2.1. Study Participants

This observational cross-sectional study recruited women with BC referred to the
Outpatient Service for Cancer Rehabilitation of the Physical Medicine and Rehabilitation
Unit of the Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria,
Italy. Patients were recruited over a 12-month period, from April 2021 to March 2022.
The inclusion criteria were the following: (a) women in post-menopausal status, with a
diagnosis of BC ER+; (b) hormone therapy; (c) surgery performed at least 12 months earlier.
The exclusion criteria were the following: (a) T stage > 3; (b) age < 50 years; (c) evidence
of major concurrent diseases; (d) patients undergoing treatment with corticosteroids, im-
munoglobulin or immunosuppressive drugs, and chemotherapy; (e) previous fragility
fractures; (f) previous vitamin D3 supplementation. The study respected the Declaration
of Helsinki and was approved by the local Ethical Committee (677/2021). All partici-
pants were asked to carefully read and sign an informed consent, taking precautions to
protect the privacy of patients. Moreover, the study was performed in accordance with
the “Strengthening the Reporting of Observational Studies in Epidemiology” (STROBE)
Guidelines (https://www.equator-network.org/wp-content/uploads/2015/10/STROBE_
checklist_v4_cross-sectional.pdf; accessed on 1 April 2021).

2.2. Outcome Measures

The following demographic and anamnestic data were collected: sex, age, body mass
index (BMI), smoking habit, BC situs (right/left), BC grading, type of breast surgery (con-
servative/mastectomy), adjuvant hormone therapy (tamoxifen or aromatase inhibitors).
The following data regarding bone health were also assessed: lumbar spine (LS) BMD, LS
Tscore, LS Zscore, femoral neck (FN) BMD, FN Tscore, FN Zscore, diagnosis of osteoporo-
sis, diagnosis of osteopenia, serum levels of 25(OH)D3 (ng/mL), calcium (mg/dL), and
parathyroid hormone (PTH) (pg/mL).

2.3. Multiple Factor Analysis

MFA is a multivariant statistical technique that allows the analysis of several groups
of continuous variables of different nature, allowing the clustering of individuals via a
machine learning model. It adopts a geometric approach based on a set of variables,
vectorizing the inertia of each factor on the abscissa axis (dimension 1) and on the ordinate
axis (dimension 2) [56]. The importance of the dimensions is given by the eigenvalue that
indicates the highest percentage of variance on the Cartesian plot [62].

Once the nature of the dimensions with greater variance and inertia has been assessed,
it is possible to evaluate how certain individual clusters are represented on a Cartesian
model, formed by the aforementioned dimensions [63,64].

Based on this model, each study participant was positioned and classified into a
definite group. Then, through the K-means clustering, we assigned the individuals to one of
the groups (called clusters) based on the characteristics of the dataset, weighing the distance
of each point using a Euclidean model applied to the machine learning approach [65].
Therefore, MFA might be considered as a factorization method in which bone health and
anthropometric parameters influence the position of individuals, weighting their distance,

https://www.equator-network.org/wp-content/uploads/2015/10/STROBE_checklist_v4_cross-sectional.pdf
https://www.equator-network.org/wp-content/uploads/2015/10/STROBE_checklist_v4_cross-sectional.pdf
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characterizing certain clusters (osteoporosis, osteopenia, and normal bone health), and
defining their vectors of influence a posteriori [57].

2.4. Data Management and Statistical Analysis

Statistical analysis was performed using R (v3.5.2 R Core Team, Vienna Austria). The
continuous variables are presented as means ± standard deviations, and the categorical
variables as medians and interquartile ranges. The Shapiro–Wilk test was performed
to assess the distribution of all continuous data. Pearson’s correlation coefficients and
regression analyses on parametric data assessed associations and correlations regarding
the bone health status of the study participants and clinical and demographic features. A
cut-off p-value of 0.05 was considered statistically significant.

MFA was conducted in R–statistics software with “FactomineR” and “factoextra” pack-
age [66,67]. To validate MFA clustering, we performed K-means clustering as a machine
learning algorithm, weighing each distance between two observations and evaluating the
reliability of the definition of the different clusters [68]. By using the statistical software
JASP v0.16 (JASP Team, Amsterdam, The Netherlands), we obtained the following scores:
R2, a score that indicates the amount of variance explained by the model; the Akaike
Information Criterion (AIC), where lower values represent better clustering outputs; the
silhouette score, with value ranging from −1 to 1, where 1 represents dense clusters and
well-separated data.

3. Results

Of the 58 subjects recruited, 4 did not match the inclusion/exclusion criteria and were
excluded; thus, 54 BC women (mean age 67.3 ± 8.16 years) were included in the final
analysis. The clinical characteristics of the patients enrolled are summarized in Table 1.

Table 1. Study population characteristics (n = 54).

Mean age (years) 67.29 ± 8.16
BMI (kg/m2) 24.4 ± 4.24
Smokers (n, %) 17 (31.48)
Grade 1 (n, %) 9 (16.66)
Grade 2 (n, %) 34 (62.96)
Grade 3 (n, %) 11 (20.37)
Surgery
Quadrantectomy (n, %) 40 (72.07)
Nodulectomy (n, %) 1 (1.85)
Lumpectomy (n, %) 3 (5.55)
Mastectomy (n, %) 10 (18.51)
Radiotherapy (n, %) 43 (79.62)
Family history for osteoporotic fracture (n, %) 10 (18.51)
FN BMD (g/cm2) 0.744 ± 0.10
FN T-score −1.8 ± 0.88
FN Z-score −0.4 ± 0.82
LS BMD (g/cm2) 0.930 ± 0.17
LS T-score −1.9 ± 1.25
LS Z-score −0.4 ± 1.23
Osteopenia (n, %) 23 (42.59)
Osteoporosis (n, %) 28 (51.85)
[25OH-Vit.D] (ng/mL) 19.7 ± 7.20
[25OH-Vit.D] <10 ng/mL (n, %) 6 (11.11)
[25OH-Vit.D] <20 ng/mL (n, %) 27 (50.00)
[25OH-Vit.D] <30 ng/mL (n, %) 52 (96.29)
Calcemia (mg/dL) 9.3 ± 0.48
PTH (pg/mL) 44.7 ± 12.94

Note: Continuous variables are expressed as means ± standard deviations, categorical variables are expressed as
counts (percentages). Abbreviation: BMI = Body Mass Index, BMD = Bone Mineral Density, FN = Femoral Neck,
LS = Lumbar Spine.
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Regarding the bone health assessment, the mean LS BMD was 0.93 ± 0.17 g/cm2,
whereas the mean FN BMD was 0.744 ± 0.10 g/cm2; 51.8% of the women with BC had a
diagnosis of osteoporosis, and 42.6% had osteopenia. Furthermore, the mean serum level
of 25(OH)D3 was 19.7 ± 7.2 ng/mL, and 52 patients (96.3%) reported hypovitaminosis D
([25(OH)D3] < 30 ng/mL).

BC patients were stratified in four groups according to their 25(OH)D3 serum levels:
6 subjects with serum levels of [25(OH)D3] ≤ 9.9 ng/mL, 21 ones with serum levels of
[25(OH)D3] between 10 and 19.99 ng/mL, 25 subjects with serum levels of [25(OH)D3] ≤
9.9 ng/mL, and 2 patients with normal serum levels of [25(OH)D3] ≥ 30 ng/mL. Given
these results, only 3.71% of the subjects demonstrated an optimal value of serum vitamin
D3; curiously, patients with vitamin D3 below 30 ng/mL were normally distributed around
the mean of 19.7 ng/mL. There were no significant differences among the four groups in
all the variables considered, albeit a positive trend in terms of LS BMD (see Table 2).

Table 2. Study population characteristics according to 25(OH)D3 serum levels.

Overall
(n = 54)

[25(OH)vit.D]
≤9.9 ng/mL

(n = 6)

[25(OH)vit.D] =
10–19.99 ng/mL

(n = 21)

[25(OH)vit.D] =
20–29 ng/mL

(n = 25)

[25(OH)vit.D]
≥30 ng/mL

(n = 2)

Osteopenia (n, %) 23 (43) 1 (2) 12 (22) 8 (15) 2 (4)
Osteoporosis (n, %) 28 (52) 5 (9) 8 (15) 15 (28) 0 (0)
FN BMD (g/cm2) 0.744 ± 0.10 0.737 ± 0.12 0.720 ± 0.12 0.762 ± 0.08 0.798 ± 0.01
FN T-score −1.8 ± 0.88 −2.3 ± 0.54 −2.1 ± 0.97 −1.7 ± 0.87 −1.5 ± 0.45
FN Z-score −0.4 ± 0.82 −1.2 ± 1.04 −0.5 ± 0.75 −0.2 ± 0.80 −0.4 ± 0.35
LS BMD (g/cm2) 0.930 ± 0.17 0.740 ± 0.22 0.938 ± 0.17 0.967 ± 0.15 0.965 ± 0.30
LS T-score −1.9 ± 1.25 −2.4 ± 0.79 −1.96 ± 1.41 −1.7 ± 1.23 −1.6 ± 0.50
LS Z-score −0.4 ± 1.23 −1.7 ± 0.83 −0.18 ± 1.21 −0.1 ± 1.19 −0.3 ± 0.01
25OH-Vit.D T0
(ng/mL) 19.7 ± 7.20 7.1 ± 1.96 15.6 ± 2.83 25.1 ± 2.73 32.4 ± 0.07

Calcemia (mg/dL) 9.3 ± 0.48 9.2 ± 0.41 9.2 ± 0.52 9.3 ± 0.52 8.9 ± 0.35
PTH (pg/mL) 44.7 ± 12.94 47.1 ± 12.01 51.4 ± 15.06 39.7 ± 10.16 39.5 ± 6.36

Continuous variables are expressed as means ± standard deviations, categorical variables are expressed as counts
(percentages). Abbreviation: BMI = Body Mass Index, BMD = Bone Mineral Density, FN = Femoral Neck, LS =
Lumbar Spine.

As reported in Table 3, no significant associations were found between mean serum
levels of 25(OH)D3 and the continuous indices examined, except for a significant Pearson’s r
of 0.30 obtained for the correlation with LS BMD. This slight correlation could be explained
by the low BMD value in subjects with severe vitamin D3 deficiency (LS BMD = 0.740 ± 0.22
in patients with vitamin D3 levels ≤9.9 ng/mL).

Table 3. Correlation between 25(OH)D3 serum levels and anthropometric characteristics and bone
health parameters.

r p Value

LS BMD (g/cm2) 0.30 0.025 *
FN BMD (g/cm2) 0.14 0.300
Age (years) −0.01 0.935
BMI (kg/m2) 0.06 0.654
Calcemia (mg/dL) 0.01 0.924
PTH (pg/mL) −0.22 0.092

Note: Continuous variables are expressed as means ± standard deviations, categorical variables are expressed
as counts (percentages). * p < 0.05. Abbreviation: BMI = Body Mass Index, BMD = Bone Mineral Density, FN =
Femoral Neck, LS = Lumbar Spine.

3.1. Machine Learning Results

Despite the low degree of association, to evaluate the nature of the dimensions and
the influence of the variables, represented as vectors, we measured the eigenvalues and
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the variance of the model, contained in two dimensions (Cartesian axes). We reported an
eigenvalue of 2.3 and a variance of 38.2% for Dimension 1 (abscissa) and an eigenvalue of
1.3 with 20.5% variance for Dimension 2 (ordinate); these data suggested that the first two
dimensions explained 58.7% of the total inertia. Indeed, MFA evaluated the quantitative
disposition of the single variables, thus showing a correlation of the analyzed variables on
the two extracted dimensions. Positive factors are depicted on the plot together, whereas
negative ones are arranged on opposite sides of the plot (see Figure 2 for further details.

Figure 2. Correlations between quantitative variables and dimensions. The plot depicts the topo-
graphical influence in the arrangement of the variables on the graph along the abscissa (Dim1) and
the ordinate (Dim2). Thus, we evaluated the weight of the single variables through crossed linear
regressions, representing them two-dimensionally on a Cartesian plane. Therefore, the variables,
indicated as vectors, according to the position in the represented circle, influence the spatial position
of the individuals and consequently their clustering into groups. Abbreviation: BMD = Bone Mineral
Density, FN = Femoral Neck, LS = Lumbar Spine.

We reported a positive arrangement for age, BMI, and PTH serum levels on dimension 2
(ordinates) and a positive arrangement for the FN BMD and LS BMD, as well as for vitamin
D, on the axis of dimension 1 (abscissa). Therefore, greatest influence was attributed to the
BMD values, whereas the possible positioning of an individual in the highest portion of the
upper quadrant was correlated to an older age and higher BMI values

FN BMD and LS BMD could be considered as factors influencing the dimension 1,
although not in a decisive way (LS: 22% and FN: 21%), as well as 25(OH)D3 serum levels.
On the contrary, age and BMI could influence the position on the ordinates of the plot (see
Figure 3 for further details).
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Figure 3. Contribution to the dimensions 1 and 2 (Cartesian axes). With the bar graphs, the plot
contribution represents the weight of the single variables on the representativeness of the abscissa
axis (Dimension 1) and of the ordinates (Dimension 2). As regards the horizontal axis of the previous
figure, the greatest influence is attributed to the BMD values, while the vertical axis is related to the
age and the BMI values. BMD = Bone Mineral Density, FN = Femoral Neck, LS = Lumbar Spine.

Figure 4 depicts on a Cartesian model the disposition of the individuals and the
consequent clusterization in three groups. More in detail, dimension 1 (abscissa) underlines
the caliber of BMD and the serum levels of 25(OH)D3, whereas dimension 2 represents the
negative correlation between age and a good bone health status. As shown in Figure 4, the
non-osteopenic and non-osteoporotic group are positioned in the lower right quadrant of
the graph, influenced by higher BMD and higher vitamin D3 serum levels from dimension
1 and lower age and BMI from dimension 2.

Figure 4. Clustered individual factor map. Each individual is positioned according to the Cartesian
axes and thickens in specific clusters that reflect the influence of size along the horizontal axis for
dimension 1 and along the ordinal axis for dimension 2. Normal subjects cluster at the bottom and
right of the graph for the influence of age, BMI, and BMD, as previously described in Figures 2 and 3.
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3.2. K-Means Clustering Model Analysis

We assessed the cluster quality by fitting the data to a K-means machine learning
approach, obtaining k = 3 clusters for a dataset. Thus, the definition of three groups by
MFA was confirmed through the analysis of the distance of each data point. Moreover, an
R2 value of 0.54 was obtained, demonstrating that the model had a good reliability for a
machine learning analysis. Moreover, an AIC of 976.45 showed a moderate quality of the
model. Lastly, a Silhouette index of 0.34 demonstrated a low clustering trend for overlaps
due to the small sample.

4. Discussion

This study aimed to evaluate the role of vitamin D3 deficiency in women with BC
and its correlation with osteoporosis through a machine learning approach. At a first
analysis of the reported data, there were no significant correlations between the mean
serum level of 25(OH)D3 and bone health parameters and anthropometric data, except for
a low significant positive correlation with the LS BMD value (r = 0.30; p = 0.025).

To date, osteoporosis is a disease characterized by low bone mineral density (BMD)
and an increased risk for fragility fractures [69–71]. Our study reported a low percentage of
patients with good bone health, low BMD indices, and a clear hypovitaminosis, outlining a
prevalent CTIBL picture in these women.

More in detail, 94.4% of our population showed a low BMD (51.8% had osteoporosis,
and 42.6% had osteopenia). These results should be considered in the context of the small
sample size investigated in the present work, although CTIBL is considered one of the most
common long-term adverse events in BC survivors [16,72,73]. In this perspective, BMD
decrease is mainly related to two determinants: hypogonadism onset due to chemotherapy
and endocrine therapies and menopause-associated bone loss.

Taken together, these two factors are responsible for osteopenia or osteoporosis oc-
currence and the increased fragility fractures risk in these women [16,72,74]. Thus, CTIBL
should be early detected and properly treated, especially in BC survivors undergoing
AIs, to prevent fragility fractures and improve the quality of life of these women [5,16,73].
The National Comprehensive Cancer Network (NCCN) guidelines recommend a daily
oral intake of 1200 mg of calcium and 800–1000 IU of vitamin D3 for women at high risk
for developing CTIBL [75]. Furthermore, several studies have recently expanded the ev-
idence about the association of the Apa1 polymorphism of VDR with post-menopausal
osteoporosis and CTIBL [76–79]. This polymorphism could explain the previously ob-
served significant correlation between 25(OH)D3 serum levels and LS BMD, as reported in
this study.

Conventional statistical methods to assess the correlation between variables are quite
reductive. In this context, Pearson correlation coefficient is only a linear correlation co-
efficient to measure the relationship between two variables [80–82], and for this reason,
we decided to perform an MFA. This machine learning-based approach vectorizes all
variables to arrange them on Cartesian axes built on the variable influences by clustering
the individuals via their position along the trajectories [83].

The MFA model included about two-thirds of the variance; more in detail, the abscissa
axis comprised 38.2% of the variance, while the ordinate axis comprised 20.5%, suggesting
that, globally, the examined individuals were more influenced by Dimension 1, that is, the
abscissa. This consideration could be described by the high contribution value of BMD
regarding the abscissa axis (Dimension 1), but the 25(OH)D3 variable showed a similar
vector that similarly contributed to forming clusters, as shown in Figure 2. Besides, the
clustering of non-osteoporotic and non-osteopenic subjects could also be influenced by
the contributions of Dimension 2 (ordinate axis), so differing in the lower right quadrant
of Figure 4, compared to the other two clusters for the influence of lower age and lower
BMI. In summary, the disposition of individuals appeared to be greatly influenced by
Dimension 1 and, in particular, by BMD, but also by the serum levels of 25(OH)D3, as they
were similarly arranged on the same clustering trajectory, as shown in Figure 2.



Nutrients 2022, 14, 1586 10 of 15

Decreased bone health and osteoporosis in women with BC are commonly due to
hormonal therapy, and particularly post-menopausal women undergoing AIs are at high
risk of developing osteoporosis [23,84,85]. Normal bone remodeling is under strict control,
while in aging, menopause, and a cancer setting, there is a net loss of bone, sustained by
the clinical mechanical stress of daily life activities on the molecular interactions among
osteoclasts, osteoblasts, osteocytes, as well as by several systemic hormones regulating bone
remodeling [19]. Estrogens are essential components in bone growth, intestinal absorption
of calcium, bone resorption inhibition, and urinary calcium homeostasis and decrease by
up to 90% in postmenopausal women [84,86]. Several studies have focused on identifying
metabolites associated with BMD of different sites or with metabolic profiles of osteo-
porotic and low-BMD individuals categorized according to T-score or Z-score [70,87–89].
In this context, “metabolomics” could potentially provide the keys to understand the patho-
logic mechanism underpinning CITBL, providing new comprehensive CTIBL treatment
approaches starting from prognostic markers such as metabolite changes [89–91]. For
instance, bone loss mediated by estrogen deficiency is associated with the differentiation
and activity of osteoclasts, which are in part related to the increased production of several
cytokines including TNF-α, IL-1, and IL-6 that commonly led to a constant low-grade
inflammation [92–95]. Estrogen receptors are extensively expressed in the gastrointestinal
tract, and estrogens have been reported to increase VDR gene transcript level, protein
expression, and endogenous 25(OH)D3 bioactivity in rat colonic mucosa. These factors
may suggest that some of the estrogen activities in the colonic mucosa could be medi-
ated, at least in part, by an increase in colonic mucosa responsiveness to endogenous
1,25-(OH)2D3 [96–99]. Remarkably, post-menopausal women with a vitamin D3 deficiency
show higher concentrations of citrulline and ornithine than vitamin D3-deficient women
with higher serum concentrations of BCAAs, glucogenic, and AAAs [22,87,92,100,101].
Lastly, both vitamin D3 and estrogen deficiency might have a negative impact on bone
health in post-menopausal women with BC [77,99,102,103].

We are aware that our study has some limitations. First, our sample size was relatively
small for an MFA, though it should be considered that we chose strict eligibility criteria.
Second, any drop in measurement quality can prevent machine learning algorithms from
accurately modeling the nonlinear association between features. However, it should be
noted that we estimated almost two-thirds of the variance for the two dimensions. Third,
several studies have focused on the identification of metabolites associated with low BMD
at different sites or with the most disparate profiles of osteoporotic individuals, but to date
we can only prospect association measures and prediction studies. Lastly, the assessment
of serum vitamin D3 remains tied to an individual’s personal vitamin D3 response index
rather than to the vitamin D3 status alone; there is a lack of data in terms of differences in
the expression of the vitamin D3 receptor among the groups.

5. Conclusions

Taken together, our findings indicated a very low prevalence of patients with adequate
bone health and a normal vitamin D3 status in a cohort of women with ER+ BC treated
with AIs. A multiple factor analysis showed that both BMD and 25(OH)D3 serum levels
influenced the arrangement design of the individuals on the same trajectories and, thus,
in the construction of the clusters. Therefore, by this machine learning model, we may
conclude that bone health and vitamin D3 status should be adequately assessed and treated
to reduce the risk of fragility fractures in women with BC.
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