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In the current study, a modern implementation of intelligent numerical computational solver
introduced using the Levenberg Marquardt algorithm based trained neural networks (LMA-TNN) to
analyze the wire coating system (WCS) for the elastic-viscous non-Newtonian Eyring-Powell fluid
(EPF) with the impacts of Joule heating, magnetic parameter and heat transfer scenarios in the
permeable medium. The nonlinear PDEs describing the WCS-EPF are converted into dimensionless
nonlinear ODEs containing the heat and viscosity parameters. The reference data for the designed
LMA-TNN is produced for various scenarios of WCS-EPF representing with porosity parameter, non-
Newtonian parameter, heat transfer parameter and magnetic parameter for the proposed analysis
using the state of the art explicit Runge-Kutta technique. The training, validation, and testing
operations of LMA-TNN are carried out to obtain the numerical solution of WCS-EPF for various cases
and their comparison with the approximate outcomes certifying the reasonable accuracy and precision
of LMA-TNN approach. The outcomes of LMA-TNN solver in terms of state transition (ST) index,
error-histograms (EH) illustration, mean square error, and regression (R) studies further established
the worth for stochastic numerical solution of the WCS-EPF. The strong correlation between the
suggested and the reference outcomes indicates the structure’s validity, for all four cases of WCS-EPF,
fitting of the precision10~>t0 10~ is also accomplished.

Nomenclatures

LMA Levenberg-Marquardt algorithm
NN Neural network

w Velocity component

Q Heat generation parameter
D,B*,O Viscosity parameter for Vogel’s

m Viscosity parameter for Reynolds
n, o The Eyring-Powel fluid parameters
Kp Porous parameter

B, Brinkman number

Bn Non-Newtonian parameter

c Constant of material

0 Temperature

o Density

WCS Wire coating system

A-E Absolute error
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u Dimensionless velocity
rZ Space coordinates

Qo Rate of volumetric thermal generation
Ry Die radius

Rw Wire radius

L Length

04 Saturated temperature
Ow Wire temperature

Uy Fluid velocity

B, Magnetic field

n Shear viscosity

Wire coating covers an electrical conductor with a layer of dielectric material through a process called the Extru-
sion Process. This process is one of the most important and accurate production processes manufacturing the
insulated wires and cables usually used in polymer melt industries. The system model operations for WCS-EPF
are shown below in Fig. 1. In this process, the coating material, which is in the shape of granules, is melted that
introducing this material into the Extruder, where the high temperature and pressure are appropriate to meet
the material and deliver it to the required state. Then the material reaches so-called Extruder Head, which guides
the liquid material through the tip and dies to give the desired tube shape and the required thickness. Then the
material comes out from the Head’s core to stick to the wire directly and form according to the wire’s shape.
Immediately after that, the water-cooling stage comes inside a stream of water that the coated wire passes through
for a certain distance and then dried with direct air. Then it is rolled onto a drum. The wire coated, regardless
of its shape or content, by two types of separate dies, one in the form of a tube and the other pressure die like a
ring. The flow through this mold is identical to the flux by the guttural area consisting of two molds, one is fixed
externally, and the other internal is dynamic moving in the flow path. Depending on the die geometry, dynamic
velocity, and heat of the wire and melt polymer, various kinds of liquids are used for wire coating.

The study of WCS in Newtonian fluids systems has attracted the research community with their broad interest.
Fluidic systems are classified into two types depending on the viscosity: Newtonian fluids as water, honey, oil, and
alcohol, and non-Newtonian fluids as butter, ketchup, mayonnaise, milk, and blood. The non-Newtonian fluidic
systems with the variable viscosity havind wide range of applications in industry and fluid mechanics. Many
researchers'™ have used different non-Newtonian fluid models for materials of wire coating along with the affects
of joule heating and hall current.A magnetic field provides an influencing source in the magnetic hydrodynamic
(MHD) process and significantly impacts fluid movement in the wire coating processes. WCS analyses involving
MHD have been extensively exploited by scholars in the latest years due to its widespread implementations in
the industrial system, such as glazier processing and attractive-materials. Many researchers®”’ studied the MHD
process with the impact of an applied magnetic field for the dynamics of WCS.

Owing to the broad reach in engineering science, fluid flow across a porous medium has unparalleled interest
for researchers. Some common permeable media are timber, mineral foams, and crags of the carbonate, etc. Over
time, the study about the application of heat transfer for WCS subjected to non-Newtonian fluids has acquired
popularity owing to its application for different manufacturers. Rehman and Nadeem?® examined transfer of
heating impact on the processing for the motion of multi-directional stagnation flow. MHD along with heating
impacts on the WCS for various types of fluids are investigated by several researchers®'®. All these researches
have so far introduced numerical/analytical of deterministic techniques for the solution of WCS subjected to
different types of Newtonian and non-Newtonian fluids. In contrast, artificial intelligence-based numerical soft
computing solver is relatively less discovered/exploited in the field of computing fluid mechanics problems,
especially for WCS in different flow dynamics.

The approximate numerical solutions based on stochastic techniques are obtained primarily by modeling arti-
ficial neural networks (ANN) and optimizing them with both the mixture of global and local search approaches
for solving a range of problems based on ordinary and partial differential systems. Recent applications of stochas-
tic numerical computing solvers include nonlinear systems emerging in astrophysics'” !¥, nanotechnologies',
fluid mechanics?*~*, plasma physics® %, fuel catching fire model?’, magneto-hydrodynamics®® %, electrical con-
duction solids™, energy’!, rotating electrical devices®’, thermodynamics®, heat conduction®, electromagnetic®,
bioinformatics®, and COVID-19 virus spread model*’* are few important examples of such solutions. These
facts motivate the researchers to explore and use soft-computing stochastic methods to create an effective, alter-
native, and feasible computing model for solving the fluid dynamics systems associated with the wire coating
operation.

Throughout this research study, the innovative ideas about the proposed problem and soft computational
model are illustrated as follows:

® A new implementation of intelligent computational system of the artificial intelligence is introduced by
incorporating the solver LMA-TNN for interpreting the fluidic system WCS-EPF along with the impacts of
Joule heating, applied magnetic field and transfer of heat in the permeable medium for different scenarios.

e The mathematical formulation is introduced with nonlinear differential equations systems for WCS-EPF,
which are converted into dimensionless nonlinear ODEs representing the mathematical modeling of heat-
based changing viscosity.

® A set of data for suggested LMA-TNN is produced for WCS-EPF on the in terms of physical quantities such
as the porosity parameter, non-Newtonian parameter, magnetic parameter, heat transfer parameter utilizing
the capability of explicit Runge-Kutta technique.
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Figure 1. WCS-EPF for wire processing.
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Figure 2. Graphical representation of fluid flow through a hydrodynamic pressure unit.

e The training, validation, and testing operations of the LMA-TNN are incorporating by designing the con-
stant viscosity, Reynolds, and Vogel’s models for various scenarios and comparing the reference outcomes
to confirm the accuracy of designed solver LMA-TNN.

® The suggested LMA-TNN performance to efficiently solve the WCS-EPF is further verified by using conver-
gence graphs of the fitness-dependent mean square error, histogram error, and regression measure.

The detailed mathematical modeling of the wire coating with the heat-based changing viscosity using Vogel’s
and Reynolds models have described in “Mathematical model” section. The solution methodology along with
the results of the suggested LMA-TNN based on variants of WCS-EPF is briefly explained in “Methodology and
discussions” section. The “Conclusion” section consists of the conclusion of the research study.

Mathematical model

Figure 2 illustrates the structure of the study. Let Ry, be the radius, L is the length of die and the saturated tem-
perature 0, since the viscoelastic Eyring—Powell material is not compressible, therefore the wire temperature
exceeds 6y, the radius is equivalent to R,, and the velocity Uy, in the porous medium. After that, the wire is
dragged across the center length in the fixed stress mold. The outflow liquid is concurrently dominated by the
unified differential stress % across the axial direction with the attractive strength B,. The magnetic force is verti-
cal along the path of the incompressible non-Newtonian Eyring—Powell fluid flow. We used the concept of low
Reynolds number in our study to minimize or ignore the disturbance in the magnetic field.

For this study, the governing system of the suggested wire coating as follows'®:
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with boundary conditions
wRy) = Uy, w(Rg) =0, O0(Ry) =6y, ORq) =060 (3)

where w and 6 represent the velocity and temperature variables in the trend of 7, respectively, Q, represents the
level of heat generation through volume, and ¢ denotes the constant of matter.
Using the dimensionless variables and parameters, we get three mathematical models given in as follow:

Constant viscosity:
(14 1) d2u+du du 3+3 du\*d*u K 0
nir—+—|—af||— r{ — ) == | — Kpur =0,
drz  dr dr dr ) dr? ? @
dz—e+ld—9+3(1+ ) du 2+ B, (% 4+Q9—0 (5)
drz " rdr T W\ ar o ar v
with the following boundary conditions
u(l)=1, 6(1)=0, u@)=0, 6 =1. (6)
Vogel’s model:
Pul (| D\, 3du2+du1 D N\g. D d du)’?
— | -— rm—3roa| — — - n— ——rQ—| —a| —
dr? (B)? dr dr (B*)? B dr] Y\
— Kpur =0,
7)
PO 18 o (20 ) (Y (Y (s aB, 4 =0 (8)
— - = — — — | n+a)B, =0,
ar2 = rdr "\ (B*)? dr dr
with boundary conditions
u(l)=1, 6(1)=0, u@ =0, 60©) =1 9)
Reynolds model:
dzu(1ﬂ9)+ ; du2+du1ﬁ9+ P du)’
— |r(1 — Bum rm—3ra| — — |1 —Bymb +n— Bymr— | —a| —
dr? ! dr dr " " dr dr (10)
—Kpu?’ZO,
d2—0+1d—9+(1 6)B du 2+B du 2( +a)+Q8=0 (11)
dr?  rdr Puim6)Br dr \ar) "7 v
with boundary conditions as
u(l)y)=1, 61)=0, u)=0, 6() =1 (12)

Methodology and discussions
In artificial intelligence (AI), supervised machine learning relates to a category of algorithms and paradigms that
describe a predictive model utilizing datasets with known outputs. The approach is learned via an effective teach-
ing algorithm such as artificial neural networks that usually use optimization procedures to reduce error function.

Here, the technical solution involves two steps: the first part includes the required explanation for the design
of LMA-TNN data sets; the second part describes the process for applying LMA-TNN. The complete typical
procedure is shown in Fig. 3, whereas the suggested solver as a single neural paradigm is illustrated in Fig. 4.
Numerical treatment with LMA-TNN is performed for the heat-based changing viscosity paradigm provided in
Eqgs. (4)-(12). The suggested LMA-TNN is introduced for different scenarios, i.e., S-1 to S-5 corresponding each
case of Reynolds model whereas S-1 to S-4 corresponding each case of Constant Viscosity and Vogel’s models,
as shown in Tables 1, 2 and 3, respectively.

The reference data for LMA-TNN is obtained by employing the Runge-Kutta technique with the help of
NDSolver in Mathematica. The suggested LMA-TNN is employed in the form of data sets; the output toward
a single input is integrated with the assist of ‘nftool” in the toolbox of the neural network through MATLAB
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I. Geometry of the problem

II. Mathematical Models
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Figure 3. Scheme operation of the suggested LMA-TNN for the wire coating system.

software (R2020b Update 5 (9.9.0.1592791), https://www.mathworks.com/academia/tah-portal/king-abdulaziz-
university-40773215.html). Total 1001 given data points for each variable (u(r), 6(r)) is determined between 1
and é = 2 by keeping the step size 0.001. Then this data is divided into three datasets: the testing, the validation,
and the training, in different proportions to determine the percentage that gives a better convergence. These
datasets have been generated by reference standard solutions for the system of non-linear higher-order differ-
ential equations interpreting the elastic-viscous Eyring—Powell fluidic system WCS-EPF along with the impacts
of Joule heating, applied magnetic field, and transfer of heat in the permeable medium for different scenarios.
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Figure 4. A single neural network model architecture.

Physical amounts of
significance
Scenarios Cases | B, [Q Kp |a n
1 0.1 |06 |05 |0.01 |0.2
(1) 2 05 [06 |05 |001 |02
Variation in
B, 3 08 |06 |05 |0.01 [0.2
4 1.1 |06 |05 |0.01 |[0.2
1 0.1 (05 |05 |15 0.2
(2) 2 01 [15 |05 |15 |02
Variation in
3 0.1 |25 |05 |15 0.2
4 0.1 |35 |05 |15 0.2
1 02 (07 |01 |15 0.2
(3) 2 02 |07 [03 |15 |02
Variation in
Kp 3 02 (07 |07 |15 0.2
4 02 |07 |1 1.5 0.2
1 1.1 |03 |03 |0.01 |0.1
(4) 2 11 |03 |03 |09 |01
Variation in
o 3 1.1 |03 (03 |15 0.1
4 1.1 |03 |03 |2 0.1

Table 1. Variants of WCS-EPF for constant viscosity.

The training, validation, and testing processes for Levenberg—Marquardt backpropagation neural networks are
divided as follow:

® 80% of the dataset are assigned for the training.
® 10% of the dataset are assigned for the validation.
® 10% of the dataset are assigned for the testing.

After performing several tests to obtain optimum measurement accuracy using some hidden neurons, the best
is 50 neurons, whereas training the weights of neural networks requires the Levenberg Marquardt based back-
propagation. The design of the suggested network can be seen in Fig. 5.

As shown in the above figure, the best artificial neural network structure for the data under study is (1 50 2),
i.e., one input layer and a hidden layer containing 50 processing elements with two outputs. Using the neural
network under supervision, the set of data consisting of 1001 points for each output treated according to dif-
ferent scenarios of all four cases, as shown by Tables 1, 2 and 3. The efficiency and precision investigation of the
LMA-TNN process for All the scenarios of cases 2, 2, and 4 in Constant Viscosity, Vogel’s, and Reynolds models,
respectively, is achieved graphically in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20. The comparison
of all numerical and random data that contains performance, Gradient, Mu, epochs, time, and mean squared
error for testing, validation, and training for all four cases of every scenario as shown in Tables 4, 5 and 6.

Figures 6, 11 and 16 describe the mean squared error (MSE) based on training, testing, and validation opera-
tions for all scenarios in Constant Viscosity, Vogel’s and Reynolds models, respectively, for measuring neural
network performance for predicting and relying on results while ensuring predictive accuracy. As in Fig. 6a-d, it
clear that have the best accuracy and performance along with MSE about (10712,107 13,10 " t0 10712, and 101!
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Physical amounts of significance
Scenarios Cases |B, |Q D Q Kp | B n
1 03 [03 |06 |1 02 |1 0.3
(1) 2 05 |03 [06 |1 02 |1 0.3
Variation in
B, 3 0.7 103 [06 |1 02 |1 0.3
4 09 |03 [06 |1 02 |1 0.3
1 02 |01 [06 |1 02 |1 0.3
(2) 2 02 |05 [06 |1 02 |1 0.3
Variation in
Q 3 02 |1 0.6 |1 02 |1 0.3
4 02 [1.5 |06 |1 02 |1 0.3
1 06 |03 [04 |1 04 |03 |05
(3) 2 06 |03 [06 |1 |04 |03 |05
Variation in
D 3 06 |03 [08 |1 04 |03 |05
4 0.6 |03 |1 1 04 |03 |05
1 03 |05 [05 |01 |05 |03 |04
(4) 2 03 05 [05 |07 |05 |03 |04
Variation in
Q 3 03 [05 [05 |12 |05 |03 |04
4 03 |05 [05 |15 |05 |03 |04

Table 2. Variants of WCS-EPF for Vogel’s model.

Physical amounts of significance
Scenarios Cases | B, [Q n Kp |« Bn |m
1 03 |02 [01 |01 |09 [01 |01
(1) 2 05 |02 [01 {01 |09 [01 |01
Variation in
B, 3 07 |02 |01 |01 |09 |01 |01
4 09 |02 [01 |01 |09 [01 |01
1 05 |05 [12 |01 |02 |21 |02
(2) 2 05 |1 12 (01 |02 |21 |02
Variation in
Q 3 05 |15 [12 |01 |02 |21 |02
4 05 |25 [12 |01 |02 |21 |02
1 01 |03 [4 |02 |03 |12 [0.13
(3) 2 01 |03 [6 |02 |03 |12 [013
Variation in
n 3 01 |03 [8 |02 |03 |12 [013
4 0.1 |03 [10 |02 |03 |12 |0.13
1 01 |02 [01 |03 |1 0.1 |04
(4) 2 01 [02 |01 |05 |1 |01 |04
Variation in
Kp 3 0.1 |02 [01 |07 |1 0.1 |04
4 0.1 |02 [01 |09 |1 0.1 |04
1 05 |01 [03 |04 |01 [1.2 |01
(5) 2 05 |01 [03 |04 |04 |12 |01
Variation in
o 3 05 |01 [03 |04 |07 [1.2 |01
4 05 |01 [03 |04 |1 12 (0.1

Table 3. Variants of WCS-EPF for Reynolds model.

to10712) at 110, 85, 104, and 95 epochs, respectively, Also Fig. 11a—d display the MSE is about (10712 to 10713,
1071 t010712,107 " t0 107!2, and 107! to 107!2) at 101, 97, 94, and 119 epochs, respectively and Fig. 16a—e
show the MSE is about (10~ t010712,107 1 t010712,10" 2 t010713,107 2 t0 10 3 and 101 to 10~ 1?) at 111,
122,92, 88 and 97 epochs, respectively. Fig. 7a-d explain the particular values of Gradient and Mu case 2 against
four scenarios in Constant Viscosity are about (9.79 x 107%,9.81 x 107%,9.84 x 107%,and 9.73 x 107%) and
(10714,10715,10713, and 10~13), while the particular values of Gradient and Mu of case 2 for four scenarios in
Vogel’s model are about (9.76 x 107%,9.87 x 1079,9.78 x 107%, and 9.94 x 107%) and (1074,10713,10713,
and 10713) as seen in Fig. 12a-d. Moreover, Fig. 17a-e display the Gradient and Mu of case 4 for five scenarios
in Reynolds model are about (9.96 x 107%,9.82 x 107%,9.75 x 1079, 9.92 x 107%, and 9.93 x 107%) and
(10713,10713,107 14,1074, and 10~ 13).
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Figure 5. Design of suggested neural networks.
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Figure 6. Performance of the LMA-TNN for testing, validation, and training procedures of Case 2 in constant

viscosity.

Error-histograms further analyze the error dynamics for every input data, and the outputs are shown in
Figs. 8, 13 and 18 for the proposed problem WCS-EPE The zero axis along with error box for all four scenarios
in case 2 of Constant Viscosity is about 1.25 x 1077, — 1.5 x 107%,1.65 x 107%7, and — 1.2 x 10~%, as shown
in Fig. 8a-d, respectively. Whereas, Fig. 13a-d display the zero axis along with error box of reference for all
four scenarios in case 2 of Vogel’s model is about — 2 x 10797, -5 x 1079, —3.2 x 107%, —2.3 x 1079, and
— 8.1 x 1079, Besides, Fig. 18a—e illustrate the zero axis along with error box of reference is about1.42 x 107%,
462 x 10798, -9.7 x 1079 and — 6.1 x 10~% of case 4 for all five scenarios in Reynolds model. To judge the
efficiency of training, validation, and test, from Figs. 9, 14 and 19, it clear that the correlation function of the
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(d) The ST plot of S-4 for WCS-EPF.

Figure 7. The state transition (ST) for Case2 in constant viscosity.

resulting errors indicates the efficiency of training the network, which is confirmed by the correlation coefficient
R = 1, which illustrates the precision of LMA-TNN to solve the WCS-EPFE.

In Figs. 10, 15 and 20, comparative study based on the performance of outputs produced by LMA-TNN with
numerical reference outcomes of the Runge-Kutta technique for the WCS-EPF, along with the dynamics of input
error between 1 and 2 with step-size 0.001. Figures 10a—d show the maximal error achieved by the suggested
LMA-TNN for validation, train, and test data is less than 5 x 10~ for all four scenarios in case 2 of Constant
Viscosity. While, the maximal error in Fig. 15a—d is less than 4 x 107%,5 x 107%,5 x 1075, and 2 x 107> for
all four scenarios in in case 2 of Vogel’s model. Also, in Fig. 20a-e, it clear that the maximal error is less than
5x 107°,5x 107>,2 x 107%,1 x 107%,and 5 x 10~% of case 4 for all five scenarios in Reynolds model.

The outcomes of WCS-EPF in the non-Newtonian flow by the solver LMA-TNN for solving every case of
different scenarios are listed in Tables 4, 5 and 6. The performance of LMA-TNN is about 107 2t010713,10 12 to
10714,10712, and 10~ 2 for all four scenarios of Constant Viscosity, respectively, as shown in Table 4. Moreover,
the Table 5 illustrates performance of LMA-TNN is about 107!% to 10713, 107!2,10712, and 10~!2 for all four
scenarios of Vogel's model, respectively and Table 6 provides the performance of LMA-TNN for all five scenarios
of Reynolds model is about 1071210712, 1072 t010713,107 2 to 10713, and 103 to 10712, respectively. These
outcomes show the harmonious performance of proposed solver LMA-TNN for the analysis of WCS-EPE

The outcomes obtained by LMA-TNN are analyzed for the temperature distribution 6 (r) for different sce-
narios based on parameter of interest, as shown in Figs. 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and 33. The
outcomes of the solver LMA-TNN corresponding to the numerical solutions of the Runge-Kutta method for
every scenario. Thus absolute error from the reference solutions is calculated to reach the accuracy criteria. In
Figs. 21b, 22b, 23b and 24b indicate the absolute error(AE) is about 102t0107°,10 % t01072,10~7 to 10~ >, and
1072to 10~ for S-1, S-2, S-3, and S-4, respectively of Constant Viscosity. while, Figs. 25b, 26, 27 and 28b observe
that AE is about 1078 t0107>,1078t0107>,1077 t0 107>, and 10 8 t0 10> for S-1, S-2, S-3, and S-4, respectively
of Vogel’'s model. In addition the AE is about 1077 t01072,103t0107>,10 8t0107°,10 8 t0 10~°, and 10~? to
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Figure 8. Error-histogram (EH) views of LMA-TNN for case 2 in constant viscosity.

105 for S-1, S-2, S-3, S-4, and S-5, respectively of Reynolds model as shown in Figs. 29b, 30, 31, 32 and 33b.
Numerical and graphical diagrams show the performance measures based on better precision, convergence
analysis for the proposed computational technique LMA-TNN used to solve the impacts of WCS-EPF in the
field of fluid dynamics.

Conclusion

In this work, soft computing artificial intelligence is introduced using the LMA-TNN for solving the mathemati-
cal model describing the WCS-EPF with a transfer of heat and non-Newtonian Eyring-Powell fluid flow past a
porous medium under the impacts of Joule heating and the magnetic field for different scenarios. Findings in
brief are listed below:

ing viscosity framework.

The nonlinear PDEs for the WCS-EPF are converted into nonlinear ODEs containing the heat-based chang-
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Figure 9. Regression (R) analysis of LMA-TNN for Case 2 in constant viscosity.

the fluid mechanics’ problems dynamics

Runge-Kutta numerical solver is used to produce reference data for the proposed WCS-EPF in the fluid
dynamics with the impacts of various physical amounts of significance such as the porous parameter, non-
Newtonian parameter, magnetic parameter, thermal transfer.

The 80 %, 10 %, and 10 % of the data set is chosen as validation, testing, and training for LMA-TNN. The
dataset is further validated by the graphical and numerical representations in terms of convergence of the
outcomes by the mean square error, the dynamics of state transition, error histograms, and regression analysis
plots.

The strong correlation between the suggested and the reference outcomes indicates the structure’s validity
for all four cases of WCS-EPE, fitting of the precision 10~ to 10~ is also accomplished.

We observed that the dimensionless temperature profile increases caused by the rise in the values of param-
eters B, Q, n, o, and Q2 while decreasing by the rise of the parameter D. Besides, the variation in K, does not
have any observable contribution to the temperature distribution.

In the future, modern versions of artificial intelligence integrated heuristics**-*? will be suggested to interpret
43-46
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Figure 10. Reference solution comparison with LMA-TNN based performance view (PW) for case 2 in

constant viscosity.
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Figure 11. Performance (P) of the LMA-TNN for testing, validation, and training procedures of Case 2 in

Vogel's model.
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Figure 12. The state transition (ST) for Case 2 in Vogel's model.
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Figure 13. Error-histogram (EH) views of LMA-TNN for Case 2 in Vogel’s model.
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Figure 14. Regression (R) views of LMA-TNN results for Case 2 in Vogel’s model.
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Figure 15. Reference solution comparison with LMA-TNN based performance view (PW) in Vogel's model.
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Figure 16. Performance (P) of the LMA-TNN for testing, validation, and training procedures of Case 4 in

Reynolds model.
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Figure 17. The State transition (ST) for Case-4 in Reynolds model.
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Figure 18. Error-histogram (EH) representation of LMA-TNN for Case 4 in Reynolds model.
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Figure 19. Regression (R) views of LMA-TNN results for Case 4 in Reynolds model.
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MSE
Scenarios | Cases | Training | Validation | Testing Performance | Grad Mu Epochs | Time
1 1.97E-12 | 2.54E-12 2.59E-12 | 2.54E-12 9.95E-08 1E-13 | 111 0.02
2 7.79E-13 | 8.92E-13 6.41E-13 | 8.92E-13 9.79E-08 1E-14 | 110 0.01
M 3 1.69E-12 | 1.8E-12 1.73E-12 | 1.8E-12 9.992E-08 1E-14 90 0.01
4 4.08E-12 | 4.99E-12 5.54E-12 | 4.99E-12 9.999E-08 1E-13 | 104 0.02
1 2.12E-12 | 5.29E-12 2.74E-12 | 5.29E-12 9.71E-08 1E-13 | 107 0.02
2 8.03E-14 | 9.93E-14 9.28E-14 | 9.93E-14 9.81E-08 1E-15 85 0.02
@ 3 3.21E-12 |4.36E-12 8.87E-12 |4.36E-12 9.91E-08 1E-13 | 105 0.02
4 3.53E-12 |5.27E-12 5.14E-12 |5.27E-12 9.93E-08 1E-13 | 115 0.02
1 2.01E-12 | 2.37E-12 2.46E-12 | 2.37E-12 9.75E-08 1E-13 | 110 0.02
2 2.26E-12 | 3.27E-12 3.06E-12 |3.27E-12 9.9949E-08 | 1E-13 | 104 0.01
®) 3 1.78E-12 | 2.63E-12 2.39E-12 | 2.63E-12 9.90E-08 1E-13 | 123 0.02
4 2.16E-12 | 5.77E-12 3.15E-12 |5.77E-12 9.86E-08 1E-13 | 109 0.02
1 1.84E-12 | 2.63E-12 3.84E-12 |2.63E-12 9.99E-08 1E-13 | 120 0.02
2 3.40E-12 |4.85E-12 4.13E-12 | 4.85E-12 9.73E-08 1E-13 95 0.01
@ 3 4.60E-12 | 6.76E-12 6.62E-12 | 6.76E-12 9.98E-08 1E-13 97 0.01
4 2.02E-12 | 2.50E-12 2.76E-12 | 2.50E-12 9.45E-08 1E-14 | 110 0.02

Table 4. Total numerical analysis of LMA-TNN for constant viscosity.

MSE
Scenarios | Cases | Training | Validation | Testing Performance | Grad Mu Epochs | Time
1 2.28E-12 | 3.73E-12 3.04E-12 | 3.73E-12 9.79E-08 | 1E-13 | 106 0.02
2 1.89E-13 | 5.03E-13 3.07E-13 | 5.03E-13 9.76E-08 | 1E-14 | 101 0.01
M 3 2.39E-12 | 3.46E-12 3.06E-12 | 3.46E-12 9.97E-08 | 1E-13 | 105 0.01
4 3.08E-12 |4.35E-12 3.71E-12 | 4.35E-12 9.89E-08 | 1E-13 | 106 0.01
1 2.10E-12 |2.67E-12 2.96E-12 |2.67E-12 9.91E-08 | 1E-13 | 104 0.02
2 2.35E-12 | 3.21E-12 2.98E-12 |3.21E-12 9.87E-08 | 1E-13 97 0.02
@ 3 2.25E-12 | 2.92E-12 2.67E-12 | 2.92E-12 9.86E-08 | 1E-13 | 100 0.02
4 2.74E-12 | 3.38E-12 4.24E-12 | 3.38E-12 9.95E-08 | 1E-13 | 100 0.02
1 1.63E-12 | 2.07E-12 1.93E-12 | 2.07E-12 9.99E-08 | 1E-13 | 122 0.02
2 2.56E-12 | 3.993E-12 |3.36E-12 |3.993E-12 9.78E-08 | 1E-13 94 0.02
N 3 2.12E-12 | 3.21E-12 323E-12 |3.21E-12 9.88-08 1E-13 | 109 0.02
4 2.45E-12 | 3.33E-12 3.85E-12 |3.33E-12 9.80E-08 | 1E-13 96 0.02
1 1.98E-12 |5.67E-12 3.86E-12 |5.67E-12 9.97E-08 | 1E-13 | 120 0.01
2 1.79E-12 | 2.44E-12 2.79E-12 | 2.44E-12 9.94E-08 | 1E-13 |119 0.02
@ 3 1.64E-12 | 2.33E-12 243E-12 |2.33E-12 9.83E-08 | 1E-13 |119 0.01
4 1.81E-12 |2.16E-12 2.58E-12 |2.16E-12 9.78E-08 | 1E-13 | 116 0.01

Table 5. Complete numerical study of LMA-TNN for Vogel’s model.
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MSE
Scenario | Cases | Training | Validation Testing Performance | Grad Mu Epochs | Time
1 1.93E-12 | 2.65E-12 2.58E-12 | 2.65E-12 9.72E-08 1E-13 108 0.02
2 1.20E-12 | 1.78E-12 1.91E-12 | 1.78E-12 9.96E-08 1E-13 145 0.02
M 3 2.53E-12 | 3.64E-12 3.07E-12 | 3.64E-12 9.68E-08 1E-13 95 0.01
4 2.70E-12 | 6.47E-12 2.91E-12 | 6.47E-12 9.96E-08 1E-13 111 0.01
1 1.93E-12 | 2.43E-12 2.37E-12 | 2.43E-12 9.97E-08 1E-13 119 0.02
2 1.56E~12 | 2.01E-12 2.91E-12 | 2.01E-12 9.97E-E-08 1E-E-E-13 | 142 0.02
@ 3 3.46E-12 | 5.64E-12 6.10E-12 | 5.64E-12 9.74E-08 1E-13 105 0.02
4 3.67E-12 | 5.78E-12 4.30E-12 |5.78E-12 9.82E-08 1E-13 122 0.02
1 2.11E-12 | 3.05E-12 4.83E-12 | 3.05E-12 9.73E-08 1E-13 105 0.02
2 2.07E-12 | 6.26E-12 3.52E-12 | 6.26E-12 9.86E-08 1E-13 97 0.01
@) 3 2.33E-13 | 3.50E-13 3.04E-13 | 3.50E-13 9.990E-08 1E-14 84 0.01
4 1.95E-13 | 3.90E-13 2.74E-13 | 3.90E-13 9.75E-08 1E-14 92 0.01
1 1.73E-12 | 2.23E-12 3.68E-12 |2.23E-12 9.88E-08 1E-13 121 0.02
2 1.92E-12 | 3.34E-12 4.44E-12 | 3.34E-12 9.65E-08 1E-13 120 0.02
@ 3 1.87E-12 | 2.44E-E-E-E-12 |3.84E-12 |2.44E-12 9.94E-08 1E-13 114 0.02
4 2.10E-13 |2.52E-13 3.05E-13 | 2.52E-13 9.92E-08 1E-14 88 0.01
1 1.73E-12 | 2.53E-12 3.68E-12 |2.53E-12 9.99E-08 1E-13 125 0.02
2 1.92E-12 | 3.34E-12 4.44E-12 | 3.34E-12 9.64E-E-E-08 | 1E-14 85 0.01
© 3 1.87E~12 | 2.44E-12 3.84E-12 |2.44E-12 9.97E-08 1E-13 100 0.01
4 2.10E-13 |2.52E-13 3.05E-13 |2.52E-13 9.93E-08 1E-13 97 0.01

Table 6. Complete numerical study of LMA-TNN for Reynolds model.
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Vogel's model.
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Figure 27. Comparison between suggested LMA-TNN with results of numerical reference for scenario 3 in
Vogel's model.
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Figure 29. Comparison between suggested LMA-TNN with results of numerical reference for scenario 1 in
Reynolds model.
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