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Abstract: Breast cancer commonly affects women of older age; however, in developing countries, up
to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology
literature). Breast cancer in young women is often defined to be aggressive in nature, usually of
high histological grade at the time of diagnosis and negative for endocrine receptors with poor
overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique
biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to
review published work addressing somatic mutations, chromosome copy number variants, single
nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of
early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct
biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic
cases. However, further research is needed to determine and validate specific novel markers, which
may help in customizing therapy for this group of patients.

Keywords: early-onset breast cancer; differential gene expression; somatic mutations; breast cancer
in young age; copy number variants; gene methylation; extracellular matrix protein-coding genes

1. Introduction

Breast cancer has been identified as the most common cancer among women world-
wide with an estimated two million new cancer cases diagnosed in 2018, accounting for
23% of all cancer types [1]. Breast cancer is a disease characterized by having diverse
clinical behaviors and different biological characteristics, making the process of prediction
and management more challenging for physicians, breast surgeons, and oncologists [2].
Advancement in molecular technologies revealed that breast cancer is not a single disease,
but is a group of conditions with distinct molecular profiles [3]. Predominantly, breast
cancer affects women older than 40 years. Yet, in some parts of the world such as in Eastern
Asia, the Middle East, North Africa, and South America, breast cancer in young women
(<40 years) had high frequencies [4]. Incidence of early-onset breast cancer (EOBC) was
estimated to reach 6%–10% of all breast cancer cases in developed countries; this figure
doubled in developing countries where the percentage reaches 20%; the same goes for its
mortality rate, that is, 7% vs. 14% for developed and developing countries, respectively [5].

Breast cancer in young women has been defined by its aggressive nature; it tends
to be of high histological grade at diagnosis, high proliferation rate, and is positive for
human epidermal growth factor receptor (HER-2) and negative for endocrine receptors.
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In addition, high rate of local recurrence was associated with EOBC [6–14]. Kataoka A.
et al. found that after adjusting several prognostic factors including nodal status, adju-
vant therapy, and breast cancer subtype, young age remained an independent negative
prognostic factor for poor prognosis for all three endpoints: 5-year disease-free survival,
breast cancer-specific survival, and overall survival [15]. Many researchers assumed that
EOBC has distinct biology different from that in late-onset. In their view, this distinction
is not only observed in the aggressive phenotype mentioned above, but also in the differ-
ent distributions of risk factors and the contradictory clinical outcome of patients with
comparable clinicopathological parameters and similar therapeutic approach but the only
difference is that they belong to different age groups [16,17].

In this article, we reviewed published literature addressing EOBC-related somatic mu-
tations, chromosome copy number variants, single nucleotide polymorphism, differential
gene expression profile, microRNAs, DNA methylation profile, and differentially expressed
proteins, as well as altered pathways that have resulted from those aberrations. We believe
that better understanding of EOBC biology may help in the identification and verification of
molecular markers, which is a step towards personalizing therapy for this group of patients
who show insufficient efficacy to conventional adjuvant hormone and chemotherapy.

2. Contribution of Common Breast Cancer Mutations

Germline mutations acquired in DNA repair and tumor suppressor genes are the
most common form of breast cancer genetic susceptibility, which ultimately lead to the
accumulation of mutations in cell cycle check point and oncogenes that are required for
aberrant cell division [18]. Around 10%–20% of EOBC cases are hereditary [19] BRCA1 and
BRCA2 are the most common mutated genes related to breast cancer since their discovery
in the early 1990s [20]. Mutations related to the development of cancers are often classified
as high, intermediate, and low penetrance mutation based on their relative risk for the
specific cancer. BRCA1, BRCA2, TP53, PTEN, STK11, and CDH1 are considered the high
penetrance mutations of breast cancer where they account for 20% of hereditary risk. This
is followed by moderate penetrance mutations, which include PALB2, BRIP1, ATM, CHEK2,
and RAD51C, which account for around 5% of hereditary risk [21]. In addition, more than
180 mutations are considered as low-risk loci for breast cancer, which explains only 18%
of the familial risk. All these relative risk proportions define only half of the genetic risk
of breast cancer, with the other half still unknown [22]. In this study, we found that the
relative risk of different mutations differs among different age groups. In Table 1. we
provide a summary of the contributions of common breast cancer mutations to EOBC.
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Table 1. Contribution of common breast cancer mutations to early-onset breast cancer (EOBC).

Gene Penetrance Gene Encoded Protein Significance of Encoded
Protein

Condition(s) Related to
Gene Mutations

Risk of Breast Cancer
Compared to Normal

Population

Relative Risk for Breast Cancer
Patients Younger than 40 Years

Old

High penetrance BRCA1 Nuclear phosphoprotein

DNA damage response,
centrosome number, cell cycle

progression, and transcriptional
regulation

Hereditary breast and ovarian
cancer syndrome (HBOC) 40%–80% 9.4%–12%

High penetrance BRCA2
Breast cancer type 2

susceptibility protein
(BRCA2)

Repairs DNA breaks during
homologous recombination

Hereditary breast and ovarian
cancer syndrome (HBOC) 20%–85% 9.4%–12%

Moderate penetrance PALB2 Partner and localizer of
BRCA2 (PALB2) protein

Facilitates the co-localization of
BRCA2 to DNA damage sites

Fanconi anemia subtype
FA-N-Hereditary breast

cancer

9.7 times higher than
normal population

8–9 times higher than average in
patients within 20–39-year age

group

Moderate penetrance BRIP1 BRCA1 interacting protein
C-terminal helicase 1 Involved in DNA break repair Fanconi-anemia

complementation group J 2% 1%–2%

High penetrance TP53 Tumor protein p53 Tumor suppresser gene Li-Fraumeni syndrome Up to 50% 1%–7% in patients with age
younger than 35 years

High penetrance PTEN Phosphatase and tensin
homolog

Suppresses the PI3
K/Akt/mTOR pathways and

regulates cell survival,
proliferation and metabolism

PTEN hamartoma tumour
syndrome (PHTS)

30%–50% to 85% in other
references

Was reported in literature that
women less than 40 years may not

harbor PTEN mutation

High penetrance STK11/LKB1 Serine/threonine kinase 11 Tumor suppressor gene Peutz-Jeghers syndrome Up to 45%

8% risk at age of 40 years. In
another study, risk to develop
breast cancer at 40 years may

elevate to 31%

Moderate penetrance ATM Serine-threonine
protein kinase

Identify DNA damage, DNA
repair machinery activation,
and cell cycle check points

Ataxia-telangiectasia (AT)
Five- to eightfold increased
risk for developing breast

cancer

Previous studies claimed that
ATM mutations do not confer

genetic predisposition for EOBC

Moderate penetrance CHEK2 G2 checkpoint serine
threonine kinase 2

Prevent mitosis when there is
DNA damage and
replication block

/
Three to five times in

patients harbouring the
mutation

Heterozygotes of CHEK2 patients
have OR of 2.6 (95% CI, 1.3–5.5) to

develop early-onset BC

Low to moderate
penetrance BARD1

A protein which interacts
with BRCA1 at the
N-terminal region

Formation of stable complex
with breast cancer type 1

susceptibility protein (BRCA1)
which is essential for BRCA1

role as tumor suppresser

/ / Two- to five-fold

Moderate penetrance MRE11, RAD50
and NBN

MRN complex, which is
dimers of three proteins

Involved in DNA repair and cell
cycle check points

Nijmegen breakage syndrome
and ataxia-telangiectasia-like

disorder

Threefold increase for
breast cancer risk among

heterozygous females

Odds ratio: 2.88 for early-onset
breast cancer

(/) not mentioned in literature, relative risk table was summarized from the following references [5,21,23].
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3. Prevalence of BRCA1 and BRCA2 Mutations

BRCA1 mutations were attributed to the high frequency of triple-negative and high-
grade tumors seen in EOBC [24]. However, the frequency of BRCA1 mutations among
different populations has been found to vary widely (5.9%, 22.7%, 12%, 12.2%, and 6.2%
among British, Italian, American, Polish, and Chinese, respectively) [25–29], and still
aggressive characteristics of EOBC persist. Conversely, BRCA2 mutations show less contri-
bution to EOBC, and, even if detected, it does not appear to correlate with the aggressive
phenotype (high-grade, negative estrogen and progesterone receptor, high proliferation
rate). Thus, in-depth investigation should be conducted among heterogeneous EOBC
cohort to reveal the shared mutational pattern and frequency of BRCA1.

4. Somatic Mutations

In 2017, Bryan et al. proved that no germline mutations were associated with the
mortality rate and aggressive nature of EOBC [30], directing later research towards somatic
and transcriptomic variations. Using The Cancer Genome Atlas (TCGA) and Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) databases, young age
estrogen receptor-positive breast cancer patients (≤45 years) showed high mutational rate
in CDH1 gene in comparison to older age patients (≥55 years) (14.5% vs. 2.9%). It should
be noted that CDH1 mutations are common findings in lobular breast carcinoma, which
mostly affects older age patients. However, in this study, CDH1 mutations were found
to be significantly high among young age patients even after amendment for multiple
comparisons [31]. This may suggest a shared mutational profile between lobular carcinoma
and EOBC. CDH1 gene encodes E-cadherin protein, which plays a significant role in
cell-cell adhesion as well as cell-extracellular matrix adhesion [32]. Disturbed expression
of E-cadherin was found to be associated with high-grade tumor, metastasis, and poor
prognosis [33].

Meanwhile, another two groups of researchers used TCGA public database to deter-
mine the landscape of somatic mutations in EOBC. The first group of researchers found that
GATA3 mutations were the only somatic mutations independently associated with young
age patients (<45 years) compared to older age patients (>46 years) even after adjustment
of several clinicopathological parameters [34]. The second group reported high proportion
of mutations in GATA3 and CTNNB1 genes in EOBC patients (≤40 years) compared to
late-onset patients (>40 years) [35]. Understanding the role of GATA3 and CTNNB1 genes
may help in recognizing their contribution to EOBC. In addition to the main role of GATA3
in mammary gland development [36], GATA3 is also known to encode a transcription
factor involved in T-cell differentiation [37]. Tumors with low GATA binding protein 3
(GATA3) expression levels were found to be associated with shorter overall and disease-
free survival compared to tumors with high GATA3 expression levels [38]. In summary,
GATA3 mutations contribute to cancer initiation, resistance to endocrine therapy, and poor
prognosis [39]. On the other hand, CTNNB1 gene encodes β-catenin protein, which is an
important protein for intercellular structure and cell growth modulation. β-Catenin has
been determined to be vital in cell-cell adhesion. Disturbance in β-catenin expression may
result in tumor metastasis [40].

In a recent study that examined 90 Taiwanese women with EOBC (<41 years), whole
genome sequencing and whole exon sequencing revealed that 40% and 37% of patients were
harboring mutations in tumor suppressor gene TP53 and oncogene PIK3CA, respectively.
The unexpected findings were the high frequency of extracellular structural protein-coding
gene mutations MUC17 (19%), TTN (17%), and FLG (16%). Comparing the frequencies of
the three mutations between non-Taiwanese pooled EOBC and pooled non-EOBC cohorts,
MUC17 and FLG mutations were found to remain distinctly high [41]. Little is known
about MUC17 implications for breast cancer. However, it is important to note that MUC1
and MUC4 have been reported to induce chemoresistance, possibly through creating
physical barrier minimizing tumoral drug concentration or by reducing apoptosis [42]. Al
Amri et al. presented MUC17 expression as chemotherapy predictive markers in breast
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cancer; further, in vitro knockdown of MUC17 was associated with enhanced chemotherapy
sensitivity. Moreover, survival analysis showed that low level of MUC17 expression
was related to longer survival following chemotherapy [43]. On the other hand, protein
encoded by Filaggrin (FLG) is identified as an intermediate filament-associated protein
that aggregates keratin intermediate filaments in mammalian epidermis, which, in turn,
promotes epidermal barrier formation [44]. Thus, it was suggested that mutations in
FLG might disturb the physical barrier, increasing the permeability of environmental
carcinogens resulting in somatic mutations and tumorigenesis at an early age [41].

There is more evidence to support that EOBC somatic mutation profile is different
from that of late-onset breast cancer. In a study that examined young Latin American
breast cancer patients, TP53 mutations showed an unexpected pattern of mutations not
common in breast cancer, where 27% of the mutations were single-base substitution-
transversion mutations G:C > T:A compared to other young and old breast cancer cohorts
used for comparison (METABRIC, TCGA, and International Agency for Research on Cancer
IARC) [45]. This proportion and pattern of mutations were described earlier in lung cancer
patients and attributed to exposure to exogenous agent, polycyclic aromatic hydrocarbons
(PAHs) [46]. Surprisingly, studies in the field of occupational and environmental medicine
provided evidence of increased risk of breast cancer related to exposure to PAHs, mainly
among cases with family history and premenopausal status [47,48]. This association needs
further investigation to understand why carcinogenic PAHs develop EOBC more than
late-onset breast cancer.

To summarize, although the cut-off age of EOBC differs from one study to another,
as varying public databases were also used to generate these results, we have realized
that most studies examining somatic mutations share the same mutational theme, that
is, the higher mutational frequency in genes encodes adhesion and extracellular matrix
molecules. This is consistent with EOBC infiltrating and metastatic behaviors, considering
the important role of the extracellular matrix (ECM) in providing structural and biochemical
support for cancer stem cells that in turn induces cancer stemness [49]. Inhibitors that target
ECM can, therefore, be an effective choice in the treatment of EOBC patients. However,
more research in this area is needed. Additionally, genetic panel testing of most frequent
mutations (TP53, CDH1, PIK3CA, GATA3, and CTNNB1) can assist in EOBC management
and prediction of tumor prognosis. The ethnicity of the patient, however, should also be
taken into consideration, as it is apparent that the incidence of mutations varies between
different ethnicities.

5. Chromosome Copy Number Variants (CNVs)

Chromosome copy number variant (CNV) is a form of genetic structural variation,
defined by any increase or decrease in the number of DNA segments that measure around
one kilobase (1000 base pairs) or more [50]. Azim et al. detected one chromosome copy
number variant to be significantly associated with EOBC (≤45 years) (deletion in chr6q27)
in comparison to late-onset breast cancer (≥70 years) [34]. Investigating the significance of
genes located in chromosome 6, it appears that chromosome 6 long arm holds genes that
reflects tumorigenic and metastatic features in many cancer cell lines [51,52], in particular,
growth-suppressing genes in breast cancer cells. The significance of allele loss in chromo-
some 6 to breast cancer is due to the localization of estrogen receptor in 6q23–6q25 regions;
loss in these regions may give rise to less differentiated and aggressive breast tumors [52].

Another group of researchers using Genomic Identification of Significant Targets
(GISTIC) tool recognized two regions of amplification (6p23 and 7p21.1) and three regions
of deletion (19q13.32, 22q12.3, and 22q13.31) in estrogen receptor-positive breast cancer
young age patients (≤45 years) compared to their older counterparts (≥55 years) [31]. To
emphasize the impact of those chromosomal aberrations on breast cancer, loss and gain
in chromosome 7 short arm were reported in primary breast cancer and early-stage lung
adenocarcinoma [53,54]; genes present within chromosome 7 were suggested to play an
important role in breast cancer tumorigenesis [53]. Loss of heterozygosity (LOH) in chromo-
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some 19q13.3 was detected with higher frequency in secondary glioblastomas compared to
primary glioblastomas, providing evidence that LOH in 19q13.3 may contribute to disease
progression. An additional point to note is that chromosome 19q13.3 region contains BAX
gene [55], which induces cell apoptosis. Disturbed apoptotic pathways resulted in cancer
growth and resistance to anti-cancer therapy. Low expression of BAX gene was reported in
all breast cancer subtypes [56,57]. Lastly, loss of chromosome 22 long arm is common in
breast cancer. Castells et al. reported loss in chromosome 22q in more than half of invasive
ductal carcinoma cases (15/28) and 75% of lobular carcinoma cases (3/4); conversely, none
of the ductal carcinomas in situ showed loss in any 22q loci. Thus, it was assumed that the
long arm of chromosome 22 contains genes that might have contributed to advance-stage
tumor progression [58].

Meanwhile, Ghaffari et al. reported a change in copy number variant in BIRC5
gene among EOBC patients, out of 40 breast cancer tissue samples tested, 7 samples
showed amplification in BIRC5, of which 5 were from patients younger than 40 years
at diagnosis [59]. BIRC5 gene contributes to apoptosis modulation and interleukin-11
signaling pathway. Thus, it may play an important role in cell cycle regulation and
various cell cycle checkpoints [60]. A previous study reported correlation between BIRC5
expression and increased survival time to relapse or death [61].

To conclude, EOBC copy number variant-based studies presented CNVs contributed
to EOBC tumorigenesis (6q27, 6p32, and 7p21.1), advance-stage tumor progression (22q12.3
and 22q13.31), disease progression (19q13.32), and prognosis (copy number variant in
BIRC5 gene). However, further studies that correlate CNV profile with gene and protein
expression profile are needed to validate these findings.

6. Single Nucleotide Polymorphism

Single nucleotide polymorphism (SNP) is a form of genetic variation, which ulti-
mately may affect protein structure and function [62]. An interesting meta-analysis study
that examined 6042 breast cancer patients, including 2315 aged ≤ 40 years at diagnosis,
identified 2 SNPs associated with disease progression in EOBC (≤40years). Both SNP
rs715212 (P meta = 3.54 × 10−5) and rs10963755 (P meta = 3.91 × 10−4) were found in the
ADAMTSL1 gene. Further expression quantitative trait locus analysis supports the hypoth-
esis that rs715212 may influence Amphiregulin (AREG) expression [7]. AREG gene, which
shows higher expression in EOBC [31], has been determined to regulate T-regulatory cells
creating an immune-suppressed tumor environment [63]; most importantly, it contributes
to resistance to chemotherapy [64].

Meanwhile, a comparable study that examined only Caucasian women detected
12 SNPs associated with EOBC. All these 12 SNPs were near or within the MAP3K1 gene.
The SNPs with lowest p-value were rs2229882 and rs889312. However, after multiple
comparisons, most of the SNPs were also detected in late-onset breast cancer, which
made the researchers suggest that late- and EOBC may share the same genetic profile [65].
Unexpectedly, a subsequent study found that SNP, MAP3K1 rs889312 (C/C allele) was
significantly associated with poor disease-free survival, distant disease-free survival, and
overall survival in hormone receptor-positive breast cancer patients, predominantly in
premenopausal patients [66].

Tunisian EOBC patients (<40 years) exhibited genetic polymorphism of major his-
tocompatibility complex class I-related chain A (MICA) in comparison to their older
counterparts. MICA is a glycoprotein that has been determined to play an important role
in the modulation of host immune response, suggesting that it may mediate cell viability
by letting tumor cell evade host immune system [67].

Considering the above findings, SNP studies highlighted the significant contributions
of different SNPs to EOBC tumorigenesis, progression, resistance to chemotherapy, and
poor prognosis. However, most of those studies were limited to homogenous populations.
Thus, larger sample size studies with heterogeneous population will be needed to validate
and generalize these findings.
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7. Differential Gene Expression Profile

In 2008, Andres and her colleagues found that gene occurrence in breast cancer patients
appears in an age-related manner; further, they determined that there are more than 367
gene sets differentially expressed in young patients (≤45 years) in comparison to older
patients (≥65 years). However, in 2011, the same group of researchers reanalyzed the exact
data by building a statistical model to demonstrate differentially expressed genes between
the two age groups and to exclude any cofounders. The model yielded 693 genes, but
after clinicopathological correlation, gene expression differences diminished to 0 [68]. In
contrast, a literature-based study revealed that breast cancer in young women (≤40 years)
was differentially enriched with gene sets representing luminal progenitor cells, immature
mammary stem cells, and high levels of RANKL, c-kit, and BRCA1 mutations [69]. These
controversial findings challenged more researchers to further investigate in this area.

Liao et al. reported 178 genes differentially expressed in young age estrogen receptor-
positive breast cancer patients (≤45 years) compared to their older counterparts (≥55 years).
In young age patients, significant genes were upregulated such as AREG, TFPI2, AMPH,
DBX2, RP5-1054A22.3, and KLK5, while ESR1, CYP4Z1, RANBP3L, FOXD2, and PEX3
were downregulated [31]. Yau C. et al. have also reported 24 genes highly expressed in
estrogen receptor-positive sporadic breast cancer young age patients (≤45 years) (AREG,
PRSS, GREB, PTHLH, HPGD, STK6, FGFR1, and DLG7) compared to old age patients
(≥70 years) [70]. Implications of up- and downregulated genes to breast cancer are summa-
rized in Table 2.

Analyses of two microarray datasets (GSE109169-GSE89116) have revealed differential
expression of PPARG and SQLE genes in EOBC tumor tissues (<40 years) compared
to normal breast tissues. PPARG was downregulated in EOBC tumor tissue [87]. It was
established that the level of Peroxisome proliferator-activated receptor γ (PPARG) is related
to breast cancer patient prognosis. Low level of expression of PPARG was observed in
patients with local recurrence and in patients who died of breast cancer [88]. Meanwhile,
SQLE, which encodes squalene epoxidase a rate-limiting enzyme in sterol biosynthesis
and a significant therapeutic target for breast cancer, was upregulated in EOBC tumor
tissue [87]. SQLE expression, which was associated with poor prognosis, was found to be
highly expressed among black women compared to white women in a previous study [89].
Taking into account that black women have twice the incidence of EOBC [10], and by
considering that this study used data generated from two Asian population (Indian and
Taiwanese), we assumed that SQLE expression in breast cancer is related to EOBC more
than patient ethnicity.

In conclusion, it can be noted that most EOBC gene expression studies include only
estrogen receptor-positive breast cancer cases, as there is lacking difference in gene expres-
sion profile of estrogen receptor-negative cases among different age groups. However, the
findings of those studies are valuable and serves as guidance for further investigation.
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Table 2. Implications of the upregulated and downregulated genes in EOBC to breast cancer.

GENE Gene Status in EOBC Gene Role References

AREG

Upregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Amphiregulin (AREG) is a growth factor essential for the
development of normal mammary gland and mammary stem cell
differentiation as well as estrogen receptor-positive breast tumour.
AREG was reported to engage in regulating proliferation and
migration of HER2-positive breast cancer cells.
In vitro study showed that AREG knockdown may slow down breast
cancer cell growth but will not completely inhibit it. However, it will
affect breast cancer cell invasion dramatically.

[63,71–73]

TFPI2

Upregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Human tissue factor pathway inhibitor-2 (TFPI-2) encodes for a wide
spectrum of serine proteinase inhibitors which in turn inversely
regulates the extracellular matrix degradation, a key step toward
tumor invasion and metastasis. TFPI2 was found to be
hypermethylated and consequently downregulated in highly invasive
breast cancer cell lines.

[74,75]

DBX2

Upregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Developing brain homeobox 2 (DBX2) plays vital role in cell
differentiation and is usually upregulated in cancer tissues. DBX2 was
significantly upregulated in hepatocellular carcinoma tissues and
found to play major roles in the proliferation and metastasis of
hepatocellular carcinoma cells through Shh pathway.

[76]

KLK5

Upregulated in young age
oestrogen receptor-positive
breast cancer patients
(≤45 years)

Overexpression of kallikrein gene was significantly associated with
premenopausal, lymph node-positive, and estrogen receptor-negative
breast tumors. It was also associated with reduced breast cancer
patients, disease-free survival, and overall survival.
Finally, KLK5 was considered unfavourable independent prognostic
marker for breast cancer.

[77]

ESR1

Downregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Downregulation of estrogen receptor has been considered a
prognostic factor for local recurrence and distant metastasis. Lower
expression of ESR1 was associated with higher tumor grade.

[78]

CYP4Z1

Downregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Cytochrome P450 (CYP) 4Z1 frequently overexpressed in breast
cancer tissue and correlates with high tumor grade and poor
prognosis as CYP4Z1 has been determined to be involved in tumor
angiogenesis and tumor cell proliferation.

[79]

FOXD2

Downregulated in young age
estrogen receptor-positive
breast cancer patients
(≤45 years)

Upregulation of FOXD2-AS1 was associated with poor prognosis
among breast cancer patients, as it has been found to be involved in
breast cancer cell proliferation, migration, and invasion ability.

[80]

GREB
Highly expressed in estrogen
receptor-positive breast cancer
young age patients

Previous literature suggests that growth regulation by estrogen in
breast cancer (GREB) is involved in the estrogen-induced growth of
breast cancer.
It is also considered a clinical marker for response to
endocrine therapy.

[81]

PTHLH
Highly expressed in estrogen
receptor-positive breast cancer
young age patients

Elevated parathyroid hormone-like hormone (PTHLH) production has
been found to be associated with metastasis of breast cancer to
the bone.

[82]

HPGD
Highly expressed in estrogen
receptor-positive breast cancer
young age patients

Hydroxyprostaglandin dehydrogenase (HPGD) has been determined
to be correlated with activity of estrogen pathway and possesses
tumor suppressive activity. SNP rs8752 in miR-485-5p binding site in
HPGD gene was found to be associated with high risk of breast cancer.

[83]

STK6

Highly expressed in estrogen
receptor-positive sporadic
breast cancer young
age patients

Aurora kinase A is involved in the proliferation, mitotic checkpoint
control, and cell growth in breast cancer basal subtype. [84]

FGFR1

Highly expressed in estrogen
receptor-positive sporadic
breast cancer young
age patients

Fibroblast growth factor receptor 1 is associated with poor prognosis
in luminal subtype breast cancer patients; also, it was found to induce
endocrine therapy resistance.

[85]

DLG7

Highly expressed in estrogen
receptor-positive sporadic
breast cancer young
age patients

Disc large homolog 7 had critical role throughout spindle assembly
which is important for genomic stability. Upregulation of DLG7 is
associated with worse overall survival in distinct subtypes of
colorectal cancer patients.

[86]
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8. MicroRNAs

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression post-
transcriptionally. MicroRNAs are often considered new biomarkers utilized in the pre-
diction of various biological processes, such as cell differentiation, cell cycle regulation,
development, and apoptosis. Any disruption in the microRNA expression may result
in a change in the gene expression profile of the cell and, consequently, in initiation and
progression of syndromes, including cancer [90].

It is possible to discriminate breast cancer arising in young women from that in older
women using microRNA profile. As per the findings of Peña-Chilet et al., it was determined
that normal breast tissue and breast cancer tissue from older women (≥65 years) share
almost similar microRNA profile, contrary to the profile obtained from younger women
below the age of 35 years [91].

Several microRNAs were implicated in the aggressive phenotype seen in EOBC;
eight microRNAs were differentially expressed in estrogen receptor-positive breast tu-
mors from young age patients (35 years or less) compared to tumors from older patients
(50–65 years). Seven of these microRNAs were upregulated (miR-9, miR-210, miR-106a,
miR-106b, miR-18b, miR-33b, and miR-518a-3p), and only one was downregulated (miR-
372). The expression level of most of those deregulated microRNAs was associated with
higher tumor size and TNM stage (p-value < 0.05) [92].

Breast tumors from very young age patients (35 years or less) showed differential
expression of six microRNAs (hsa-miR-1228*, hsa-miR-3196, hsa-miR-1275, hsa-miR-1207-
5p, hsa-miR-92b and hsa-miR-139-5p) compared to tumors from patients above 65 years of
age. The deregulated microRNAs were significant for pathways relevant to apoptosis, cell
motility, proliferation, mitotic regulatory processes, phosphatidylinositol 3-kinase (PI3K)
and Insulin–like growth factor-1 receptor (IGFR) transduction [91]; all those pathways
grant for the tumor high metastatic capacity by inducing progression and invasion.

Three microRNA expressions (miR-1285-5p, miR-183-5p, and miR-194-5p) were deter-
mined to be correlated with overall survival of very young breast cancer patients (<35 years)
who had poor prognosis (recurrence within 5 years of primary diagnosis) [4]. Differentially
expressed miRNAs serve as a promising area for further exploration. Implications of all
deregulated microRNAs in EOBC mentioned in this section is described in Table 3.

Table 3. Implication of EOBC deregulated microRNAs to breast cancer.

MicroRNA Status in EOBC Implication to Breast Cancer Reference

miR-9

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

Previous literature suggests direct involvement of miRNA-9 in
breast cancer metastasis, due to the different levels of
expression through different stages of breast cancer. MTHFD2 is
one of the genes targeted by miR-9, which plays a role in cell
viability and anti-apoptotic activity.

[93,94]

miR-210

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

A known hypoxia-regulated microRNA, which is upregulated
in normal and transformed hypoxic cells, miR-210 has been
found to be vital during tumor initiation and growth by
reducing mitochondrial respiration in the hypoxic
microenvironment.

[95,96]

miR-106a

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

The upregulation of miR-106a has been proven to induce breast
cancer cell proliferation, colony formation, migration, and
invasion in vitro. Moreover, miR-106a upregulation
significantly reduces breast cancer cell apoptosis and sensitivity
to cisplatin.

[97]

miR-106b

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

Breast cancer patients frequently had upregulated level of
miR-106b in tissue. miR-106b expression significantly
correlated with breast cancer tumor size and marker of
proliferation Ki67 expression. High miR-106b expression was
associated with shorter disease-free survival and overall
survival in breast cancer patients.

[98]
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Table 3. Cont.

MicroRNA Status in EOBC Implication to Breast Cancer Reference

miR-18b

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

miR-18b is involved in the modulation of breast cancer cell
migration and metastasis in vitro. [99]

miR-33b

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

miR-33b is frequently downregulated in breast cancer tissue in
comparison to normal adjacent tissue. A previous study
recognized miR-33b as a negative regulator for metastasis and
breast cancer cell stemness.

[100]

miR-518a-3p

Upregulated in estrogen
receptor-positive tumors
in patients with
age ≤ 35 years.

Expression of miR-518a-3p was associated with cell
proliferation in several malignancies. miR-518a-3p expression
was positively correlated with overall survival in
triple-negative breast cancer patients.

[101]

miR-372

Downregulated in
estrogen receptor-positive
tumors in patients with
age ≤ 35 years.

Frequently overexpressed in breast tumor tissue.
Downregulation of miR-372 significantly inhibited cell
proliferation and induced apoptosis of breast cancer cells.

[102]

hsa-miR-1228*
Deregulated in young age
breast cancer patients
(≤ 35 years).

miR-1228 plays a vital role in the regulation of cell proliferation
and metastasis in cancer cells. [103,104]

hsa-miR-3196
Deregulated in young age
breast cancer patients
(≤ 35 years).

Few studies elucidate the role of hsa-miR-3196 in cancer
progression. However, miR-3196 was downregulated in basal
cell carcinoma compared with non-lesional skin.

[105]

hsa-miR-1275
Deregulated in young age
breast cancer patients
(≤35 years).

Upregulated miR-1275 has been reported to induce p53
signaling pathway via regulating serpin family E member
1(SERPINE1) (which is member in P53 signalling pathway and
is also a known protein involved in cell adhesion) that
suppresses tumour cells proliferation, invasion, and migration
while at the same time, promoting cell apoptosis. (In vitro and
in vivo study in glioma). Another role for hsa-miR-1275 is to
inhibit adipogenesis in obesity.

[106–108]

hsa-miR-1207-5p
Deregulated in young age
breast cancer patients
(≤35 years).

Low expression of 1207-5p targeted mRNA was reported to
regulate tumor protein p53, transforming growth factor β
(TGF-b) and insulin signaling pathways in metabolic
syndrome patients.
P53, TGF-b, and insulin signaling pathways are implicated in
the initiation, progression, and metastasis of breast cancer.

[109]

hsa-miR-92b
Deregulated in young age
breast cancer patients
(≤35 years).

Has-miR-92b expression inhibits breast cancer cell viability,
invasion, migration, and control autophagy through histone
methyltransferase enhancer of zeste homolog 2 (EZH2) in vitro.

[110]

hsa-miR-139-5p
Deregulated in young age
breast cancer patients
(≤35 years).

hsa-miR-139-5p expression induces apoptosis and arrests cell
cycle in S phase. Furthermore, it inhibits viability, migration,
and invasion in breast cancer cells via targeting Notch
signaling pathway.

[111]

miR-1285-5p

Correlated with overall
survival in young age
breast cancer patients
(≤35 years).

miR-1285-5p suppresses breast cancer cell proliferation activity
via upregulation of targeted gene transmembrane protein 194A
(TMEM194A).

[112]

miR-183-5p

Correlated with overall
survival in young age
breast cancer patients
(≤35 years).

miR-183-5p have oncomiR effects on breast cancer cells.
Overexpression of miR-183-5p can significantly induce breast
cancer cell proliferation and inhibit apoptosis in vitro.

[113]

miR-194-5p

Correlated with overall
survival in young age
breast cancer patients
(≤35 years).

miR-194-5p were found to be upregulated in breast cancer
tissue.
Knockdown of miR-194-5p in breast cancer cell resulted in
inhibition of cell proliferation, migration, and invasion via
expression of SOX17 and regulation of the canonical Wnt
(Wnt/β-catenin) signaling pathway.

[114]



Genes 2021, 12, 372 11 of 21

9. DNA Methylation Profile

DNA methylation is one of the epigenetic machineries deemed crucial for the normal
development and maintenance of tissue-specific gene expression [115]. EOBC has been
often characterized by having hypomethylated DNA profile in comparison to late-onset
breast cancer, where hypomethylation was determined in 69% of significant CpG sites.
Pathways affected by methylation in EOBC include those related to the neuronal system,
extracellular matrix modulation, immune system, DNA repair, Notch/Notch1 signaling,
and vesicular trafficking. DNA methylation in EOBC resulted in significant upregulation
of HDAC5 which proved to promote tamoxifen resistance through cancer stem cell-related
transcription factor SOX9 deacetylation, as well as significant downregulation of EHF that
involves in epithelial mesenchymal transition inducing metastasis [116].

By using TCGA methylation data, 373 genes were hypomethylated, whereas 457 genes
were hypermethylated in estrogen receptor-positive young age breast cancer patients
(≤45 years) compared to their older counterparts (≥65 years). The significant hyper-
methylated genes were ESR1, MAT2B, CTSS, DDR2, and GALNTL2 [31]. Methionine
Adenosyltransferase 2B (MAT2B) has been determined to be involved in cell metabolism
including proliferation and apoptosis; further, higher expression of MAT2B was correlated
with good prognosis in estrogen receptor-positive breast cancer patients [117]. Meanwhile,
CTSS gene has been identified to encode Cathepsin S protein which plays a significant
role in genomic stability through abolishing BRCA1 activity; further, CTTS knockdown
was found to be associated with suppression of tumor metastasis in triple-negative breast
cancer cell [118]. Overall, DNA methylation events appears to play vital role in EOBC
aggressive characteristics.

10. Differentially Expressed Proteins

Several proteins showed significant differential expression in young age patients
(less than 35 years) compared to older age patients (between 50 and 65 years). Bcl-2-like
protein 1 (BCL2L1), Poly [ADP-ribose] polymerase 1 (PRP1), and RAF proto-oncogene
serine (RAF1) were determined to be overexpressed, whereas Estrogen receptor (ESR1),
Eukaryotic translation initiation factor 4E (EIF4E), Signal transducer and activator of
transcription 5A (STAT5A), and Ribosomal protein S6 kinase alpha-1 (RPS6KA1) were
underexpressed. The pattern of expression of the deregulated proteins was linked to the
clinical parameters of EOBC. Higher expression of PRP1 and lower expression of RPS6KA1
were associated with positive lymph nodes status, whereas overexpression of RAF1 and
underexpression of STAT5A were correlated with high TNM stage [92].

By utilizing immunohistochemical staining, Hasoda et al. recognized significant
higher expression level of Receptor activator of nuclear factor kappa-B ligand (RANKL),
GATA3, Progesterone receptor (PgR), and Trefoil factor 1 (TFF1) in estrogen-positive and
HER-2-negative breast cancer patients (age range between 27 and 56 years) [119]. Table 4.
illustrates the functions of over- and underexpressed proteins in breast cancer.
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Table 4. The role of EOBC over- and underexpressed proteins in breast cancer.

Protein Expression Status in EOBC Role of Protein Reference

BCL2L1 Overexpressed

Belongs to the BCL2 protein family that act as
anti-apoptotic regulators that are involved in a
wide variety of cellular activities.
Tamoxifen treatments induce apoptosis by
reducing BCL2 level in breast cancer.

https://www.ncbi.nlm.
nih.gov/gene/598

(accessed on 4 March
2021), [120]

PARP1 Overexpressed

Co-expressed with other DNA repair proteins
suggesting that it may have a role in DNA repair
process. PARP1 expression was determined to be
related to younger age, larger tumor size, and
higher tumor grade in breast cancer.

[121]

RAF1 Overexpressed

Raf-1 and Bcl-2 were found to induce different
and overlapping pathways that contributed to
drug resistance. Mutations like amplification of
c-erbB-2 oncogene, which is frequent in young
age breast cancer patients, may lead to activating
Raf, resulting in resistance to certain
chemotherapeutic drugs.

[122]

ESR1 Low expression ESR1 lower expression is a predictive factor for
endocrine therapy resistance. [123]

EIF4E Low expression eIF4E expression was positively associated with
breast tumor grade. [124]

STAT5A Low expression
Low level of Stat5a expression was associated
with poor prognosis in node-negative breast
cancer tumours.

[125]

RPS6KA1 Low expression RPS6K encodes protein that contributes to the
control of cell growth and proliferation.

https://www.ncbi.nlm.
nih.gov/gene/6194

(accessed on 4 March 2021)

TFF1

Highly expressed in oestrogen
receptor-positive and
HER-2-negative breast cancer
patients with age (27–56 years)

Expression of TFF1 regulated by estrogen plays a
role in breast cell metastasis. Inhibition of TFF1
may increase hormonal therapies’ efficacy.

[126]

RANKL

Highly expressed in oestrogen
receptor-positive and
HER-2-negative breast cancer
patients with age (27–56 years)

RANKL participates in mammary gland
development during pregnancy and is involved
in the initiation and progression of
progesterone-induced breast cancer.

[127]

PgR

Highly expressed in oestrogen
receptor-positive and
HER-2-negative breast cancer
patients with age (27–56 years)

Progesterone receptor plays an important role in
breast cancer initiation and progression.
Additionally, progesterone receptor expression is
important in the prediction and prognosis of
breast cancer.

[128]

11. Altered Pathways

The proto-oncogene MYC signaling pathway has been found to be significantly ex-
pressed in EOBC (≤45 years) compared to late-onset breast cancer (≥45 years) [129]. MYC
pathway deregulation has been determined to play a role in the development, progression,
metastasis, and therapy resistance of breast cancer [130]. Expression of MYC pathway can
vary among different molecular subtypes of breast cancer. However, it is often overex-
pressed in aggressive subtypes such as basal-like subtype [130]. Furthermore, as EOBC
has been determined to be rich in basal-like subtype, it was expected that MYC signaling
pathways show higher expression.

Integrin, laminin, and epidermal growth factor receptor signaling pathways were the
most significant altered pathways in young age estrogen receptor-positive breast cancer

https://www.ncbi.nlm.nih.gov/gene/598
https://www.ncbi.nlm.nih.gov/gene/598
https://www.ncbi.nlm.nih.gov/gene/6194
https://www.ncbi.nlm.nih.gov/gene/6194
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patients (≤45 years) compared to older age patients [31]. Integrin membrane proteins
maintain cell adhesion to the extracellular matrix, and upon loss of integrin, the cells will
undergo apoptosis. Thus, integrin expression then mediates cell survival and is one of
the factors that prevent the tumor cells from undergoing drug-induced apoptosis. β1
integrin was also reported to mediate pathways that drive resistance to HER2-targeted
therapies [131,132]. Integrin plays an important role in the migration, proliferation, and
death of breast cancer cells [133]. A crosstalk between P-cadherin and laminin receptor
and α 6β4 integrin signaling pathway was reported in stem cell and invasive properties of
breast cancer cells [134]. On the other hand, epidermal growth factor receptor signaling
pathway is implicated in tamoxifen resistance, through activation of downstream kinases,
extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), MAP kinase (MAPK) and
protein kinase B (AKT) [135]. Thus, it is clear that EOBC exhibits differential expression of
pathways related to HER2-targeted therapies and induced tamoxifen resistance. This may
provide a clue for tumor recurrence and poor outcome observed in EOBC.

12. Tumor Microenvironment

Tumor microenvironment plays an important role in breast cancer tumorigenesis and
progression. Targeting malignant and non-malignant components of tumor microenvi-
ronment may help in cancer management [136]. Researchers suggested that endocrine
changes during the reproductive age and gestation play a critical role in altering breast
microenvironment in young women, as if it predisposes the tissue for tumorigenesis [137].
Eight stromal genes were differentially expressed in breast tumors from very young pa-
tients (35 years or less) compared to tumors from older age patients (50–65 years) (UQCRQ,
ALDH1A3, EGLN1, and IGF1 overexpressed, while FUT9, IDI2, PDHX, and CCL18 under-
expressed) [92]. Table 5 provides a summary of the implications of EOBC-deregulated
stromal genes in breast cancer.
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Table 5. Implications of EOBC-deregulated stromal genes in breast cancer.

Stromal Gene Expression Status in
Early-Onset Breast Cancer Role Reference

UQCRQ Overexpressed

UQCRC1 is frequently highly expressed in breast cancer
tissues. Expression of UQCRC1 was positively
correlated with cytochrome c-oxidase (COXII),
suggesting that it may play a role in cell apoptosis.

[138,139]

ALDH1A3 Overexpressed
Aldehyde dehydrogenase (ALDH1A3) has been found
to be positively correlated with breast cancer tumor
grade, stage, and metastasis.

[140]

EGLN1 Overexpressed

EGlN1 (also called the oxygen sensor PHD2) is the main
prolyl hydroxylase that regulates hypoxia-inducible
factor and epidermal growth factor expression in breast
cancer. It has been established that breast cancer with
high epidermal growth factor level is more aggressive.

[141]

IGF1 Overexpressed

In addition to being reported as a potent mitogen for
breast cancer cells, IGF1 and IGF2 promote proliferation
and inhibit apoptosis of breast cancer cells. Knockdown
of their expression results in tumor growth inhibition.

[142]

FUT9 Underexpressed

Fucosylation is a type of glycosylation process that has
been detected excessively in several malignancies.
Overexpression of fucosylated antigens was associated
with proliferation, metastasis, epithelial mesenchymal
transition, and multi-drug resistance.

[143]

PDHX Underexpressed

Reduction in pyruvate dehydrogenase protein X level in
cell has resulted in a decrease in mitochondrial
oxidation, increase in extracellular acidification, and
change in the level of pyruvate, lactate, and citrate.
Collectively, this resulted in increasing cell
proliferation ability.

[144]

CCL18 Underexpressed

Chemokine (C-C motif) ligand 18 (CCL18) is mainly
produced by tumor-associated macrophages and is
associated with metastasis and poor prognosis in breast
cancer patients.

[145]

13. TP53

It is impossible to skip the role of TP53 when dealing with EOBC. Thus, in here,
we have also mentioned a recent and interesting study that reported significant lower
expression of growth-arrest-specific 7 isoform b (GAS7b) in young age breast cancer patients
(≤40 years old) compared to their older counterparts. Importantly, it should be noted
that in normal physiological condition, wildtype TP53 binds to GAS7b promoter, inducing
GAS7b transcription. However, in EOBC, the high mutational load of TP53 affects the rate
of GAS7b transcription; considering the role of GAS7b in regulating cell structure and cell
migration, this aberrant transcription may contribute to metastasis events [146]. This study
revealed that TP53 mutations may have more implications beyond what was reported
earlier; thus, further research is needed.

14. Conclusions

Considering all the above evidence, it can be concluded that EOBC has a distinct
biology; however, this distinction is more prominent among estrogen receptor-positive
and sporadic breast cancer tumors. Further advanced research is needed in order to
discover novel molecular markers associated exclusively with EOBC, which may help in
customizing the therapy for this group of patients. Additionally, genes related to tumor
microenvironment and extracellular matrix proteins, in addition to pathways affected by
TP53 mutations, may be a promising area for future research.
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