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Abstract Loss of muscle mass and insulin sensitivity are common phenotypic traits of
immobilisation and increased inflammatory burden. The suppression of muscle protein synthesis
is the primary driver of muscle mass loss in human immobilisation, and includes blunting of
post-prandial increases in muscle protein synthesis. However, the mechanistic drivers of this
suppression are unresolved. Immobilisation also induces limb insulin resistance in humans,
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which appears to be attributable to the reduction in muscle contraction per se. Again mechanistic
insight is missing such that we do not know how muscle senses its “inactivity status” or
whether the proposed drivers of muscle insulin resistance are simply arising as a consequence
of immobilisation. A heightened inflammatory state is associated with major and rapid changes
in muscle protein turnover and mass, and dampened insulin-stimulated glucose disposal and
oxidation in both rodents and humans. A limited amount of research has attempted to elucidate
molecular regulators of muscle mass loss and insulin resistance during increased inflammatory
burden, but rarely concurrently. Nevertheless, there is evidence that Akt (protein kinase B)
signalling and FOXO transcription factors form part of a common signalling pathway in this
scenario, such that molecular cross-talk between atrophy and insulin signalling during heightened
inflammation is believed to be possible. To conclude, whilst muscle mass loss and insulin resistance
are common end-points of immobilisation and increased inflammatory burden, a lack of under-
standing of the mechanisms responsible for these traits exists such that a substantial gap in
understanding of the pathophysiology in humans endures.
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Abstract figure legend Schematic diagram depicting how Akt and FOXO signalling may form part of a common
signalling pathway influencing muscle protein breakdown, protein synthesis and the induction of insulin resistance
under conditions of heightened inflammatory burden (see text for abbreviations).

Introduction

Loss of muscle mass and insulin sensitivity are
common phenotypic traits of immobilisation (e.g.
bed-rest or limb casting) as well as being associated
with ageing, inflammation and trauma, and chronic
non-communicable disease. In particular, sepsis is
associated with major metabolic alterations, including
significant losses of muscle mass (Hasselgren et al.
2005) and hyperglycaemia (Mizock, 2001), dysregulation
of fat and carbohydrate utilisation (Saeed et al. 1999;
Chambrier et al. 2000) and hyperlactataemia (Vary,
1999) that is consistent with the impairment of muscle
carbohydrate oxidation and insulin resistance. However,
our mechanistic understanding of the aetiology of such
metabolic perturbations in immobilisation, acute trauma,
sepsis and chronic non-communicable disease is currently
poor, particularly in humans, as is detailed insight of
whether these negative traits can be at least partly
rescued by interventions such as exercise and/or targeted
drug administration in humans. Clarity of understanding
towards these gaps in our understanding and new insight
regarding the trajectories of change and the molecular
drivers of muscle mass loss and insulin resistance is vital
if in-roads are to be made in preserving muscle mass
and metabolic health in these scenarios. We therefore
focus attention here on the impact of immobilisation
and inflammation on the loss of muscle mass and insulin
sensitivity in humans.

Immobilisation

Immobilisation induced loss of muscle mass. The
maintenance of muscle mass is dependent on the balance
between rates of muscle protein synthesis and muscle
protein breakdown, where a chronic imbalance results in
either the loss or gain of muscle mass. In vivo animal
studies utilising stable isotope tracer methodologies to
quantify muscle protein turnover in an acute setting
conclude that muscle protein synthesis is less (Booth &
Seider, 1979) and muscle protein breakdown is greater
(Kobayashi et al. 2006) following both 6 and 24 h of cast
immobilisation compared to the basal non-immobilised
state. Furthermore, evidence from research involving
administration of the proteasome inhibitor velcade to
rodents during 3 days of limb immobilisation resulted
in an �50% sparing of muscle weight, leading to the
suggestion that muscle protein breakdown predominates
in the rodent during immobilisation (Krawiec et al. 2005).
In contrast to rodent studies, it is thought that suppression
of muscle protein synthesis is the primary driver of muscle
mass loss in the immobilised state in humans (Phillips
et al. 2009; Murton & Greenhaff, 2010). For example, De
Boer and colleagues detected a 50% decline in the rate of
post-absorptive myofibrillar protein synthesis measured
over several hours following 10 days of limb suspension
in healthy, young volunteers when compared to baseline.
The authors concluded that the decline in myofibrillar
protein synthesis, even in these fasted state conditions,
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was of sufficient magnitude to fully account for the
decline in muscle cross-sectional area recorded in the
same volunteers, i.e. the contribution from muscle protein
breakdown to total muscle mass loss was paltry (De Boer
et al. 2007). Reasons for these inconsistencies probably
reside in the undoubted metabolic differences between
humans and rodents, most notably the relatively greater
rates of muscle protein synthesis and basal metabolic
rate in rodents that have limited capacity to maintain
metabolic homeostasis (Demetrius, 2005). Furthermore,
most rodent studies invariably involve young animals that
are still very much in their growth phase compared to
adult humans, whilst the magnitude of immobilisation
induced stress is likely to be far greater for rodents than
for consenting human volunteers. The influence these
compounding issues may have is exemplified by the degree
of muscle mass loss observed between species, where 3 days
of hindlimb cast immobilisation of a rodent has been
shown to result in an �19% lower muscle mass compared
to time-matched controls (Krawiec et al. 2005), vs. an
�5% decline in human quadriceps mass after 2 weeks of
full-limb cast immobilisation (Jones et al. 2004). However,
it is important to recognise that the body of evidence
published to date does not preclude a role for muscle
protein breakdown during disuse atrophy in humans.
Indeed, increased amounts of ubiquitin protein conjugates
(Glover et al. 2008) and increased 3-methylhistidine
(Tesch et al. 2008) release in the first few days of muscle
disuse point to an early and possibly transient contribution
of muscle protein breakdown to the aetiology of human
disuse atrophy. However, whilst any contribution is likely
to be comparatively small, the current lack of firm evidence
based on the application of tracer methodologies over the
time course of muscle immobilisation in humans makes
the exact contribution of muscle protein breakdown to
the aetiology of disuse-induced muscle loss in humans
speculative. Of note, recent evidence reports a 6-fold
increase in a small number of NCAM (also known as
CD56; see Table 1 for definitions of abbreviations) positive
muscle fibres following 3 days of immobilisation in healthy
male volunteers, pointing to an early denervation process
which would presumably ultimately involve changes in
both muscle protein synthesis and degradation in these
fibres (Demangel et al. 2017).

Cellular and molecular mechanisms allied to
immobilisation induced muscle mass loss. Research
has highlighted protein translation initiation, where the
ribosomal structure is formed and the associated mRNA
transcript becomes bound in response to increased
intramuscular amino acid availability and/or muscle
contraction, as a key point of regulation of muscle
protein synthesis, including in a number of conditions
where a decline in the rate of muscle protein synthesis is

Table 1. Abbreviations

4E-BP1 Eukaryotic translation initiation factor 4E
binding protein 1

Akt Serine/threonine-specific protein kinase
CRP C-reactive protein
E2 E2 ubiquitin-conjugating enzyme
eEF2 Eukaryotic elongation factor-2
eIF-4E Eukaryotic translation initiation factor 4E
FAT/CD36 Fatty acid translocase/Cluster of

differentiation 36
FOXO Forkhead box O
GLUT4 Glucose transporter 4
GSK3α and β Glycogen synthase kinase 3 α and β

IκB Inhibitor of NF-κB
IL-1 and -6 Interleukin 1 and 6
IMCL Intramyocellular lipid
IRS-1 Insulin receptor signalling protein 1
MAFbx Muscle atrophy F-box
mTOR Mammalian target of rapamycin
MuRF1 Muscle ring finger-1
MYD88 Myeloid differentiation primary response

protein
NCAM Neural cell adhesion molecule
NCAM/CD56 Neural cell adhesion molecule/Cluster of

differentiation 56
NF-κB Nuclear Factor Kappa Beta
p70S6K Ribosomal protein S6 kinase β-1
PDC Pyruvate dehydrogenase complex
PDK Pyruvate dehydrogenase kinase
Pi Inorganic phosphate
PIP phosphatidylinositol-1,4,5-trisphosphate
PI3K Phosphoinositide 3-kinase
PTEN Phosphatase and tensin homolog
Smad2,3 Homologies to the Caenorhabditis elegans

(SMA) and Drosophila (AD) family of genes
for receptors of the transforming growth
factor beta (TGF-B) superfamily

TAG Triglyceride
TLR4 Toll-like receptor 4
TNFR1 Tumor necrosis factor receptor
TRIF TIR-domain-containing adapter-inducing

interferon-β
Ub Ubiquitin
TNFα Tumour necrosis factor α

observed (Vary & Kimball, 1992, 2000; Vary et al. 1994).
The Akt/mTOR/p70S6K signalling cascade has been
assigned a central role in this nutrient and/or contraction
mediated activation of protein translation initiation,
and is founded on experiments demonstrating that
high frequency electrical stimulation of rodent muscle
occurs in parallel with increased phosphorylation of these
signalling proteins (Atherton et al. 2005) and muscle
specific over-expression of Akt in transgenic mice results
in muscle hypertrophy (Bodine et al. 2001). However,
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the established notion that increased phosphorylation
of Akt/mTOR/p70S6K signalling proteins is a central
regulator of muscle protein synthesis in human muscle is
debatable given that a disassociation between signalling
protein phosphorylation and muscle protein turnover
has been demonstrated. For example, stepwise increases
in serum insulin concentration at a known and fixed
amino acid infusion rate failed to modulate leg protein
synthesis any further than amino acid administration
alone (with insulin maintained at the post-absorptive
concentration), despite markedly increasing muscle Akt
and p70S6K phosphorylation (Greenhaff et al. 2008).
Similarly, Wilkinson et al. (2008) demonstrated that
acute resistance exercise, but not endurance exercise,
was able to increase post-exercise myofibrillar protein
synthesis despite signalling protein phosphorylation being
increased to the same extent in both exercise protocols.
From the perspective of human immobilisation, evidence
suggests that the Akt/mTOR/p70S6K signalling cascade
has no obvious role in the decline in muscle protein
synthesis given that neither the phosphorylation state nor
content of Akt, p70S6K, 4E-BP1 or eIF-4E were altered in
the post-absorptive state following 10 or 21 days of limb
suspension (de Boer et al. 2007). Furthermore, although
immobilisation blunted the increase in muscle protein
synthesis in response to amino acid infusion in healthy
volunteers when compared to the non-immobilised
contralateral limb (even under conditions of high amino
acid provision), this anabolic blunting occurred in the
face of similar changes in the phosphorylation state
of the Akt/mTOR/p70S6K signalling pathway in both
limbs (Glover et al. 2008), highlighting that this pathway
cannot be regulating the deficits in post-absorptive or
post-prandial muscle protein synthesis observed during
immobilisation. On balance, it would seem that the
precise mechanisms responsible for the decline in muscle
mass observed during immobilisation in humans are
not at all clear, and available data cast doubt on the
measure of protein phosphorylation being a robust proxy
of Akt/mTOR/p70S6K signalling pathway flux.

Immobilisation induced muscle insulin resistance.
Bed-rest induces whole body insulin resistance in human
volunteers, suggested by the increase in post-absorptive
blood glucose and serum insulin concentrations,
and more definitively by reductions in blood glucose
clearance following an oral glucose challenge and whole
body glucose clearance during an hyperinsulinaemic
euglycaemic insulin clamp (Mikines et al. 1991; Sonne
et al. 2010, 2011). These adaptations occur within
just 3–5 days of immobilisation (Stuart et al. 1988;
Smorawinski et al. 2000), and because they are also
evident at a local limb level are interpreted as being
representative of skeletal muscle insulin resistance.

Additionally, insulin resistance develops after 3–14 days
of reduced ambulatory activity (Olsen et al. 2008;
Krogh-Madsen et al. 2010). Collectively these studies
suggest the reduction in muscle contraction per se
drives the deficits in post-prandial glucose disposal,
which may also explain the association between age and
insulin resistance reported in the literature. However, the
mechanisms underpinning this physiological response
are unclear and are considered further below.

Cellular and molecular mechanisms associated with
immobilisation induced muscle insulin resistance. Under
normal physiological conditions, skeletal muscle glucose
transport is a rate limiting step in blood glucose disposal
and is thought to occur as a result of blunted insulin
signalling and/or GLUT 4 translocation to the plasma
membrane (Zierath et al. 1996; Garvey et al. 1998).
Maintenance of insulin signalling via the IRS-1/Akt
pathway seems to be essential for insulin mediated muscle
glucose uptake because of its involvement in GLUT4
translocation and its dysregulation in type 2 diabetes
(Björnholm et al. 1997; Kim et al. 1999; Morino et al.
2005). Moreover in the context of this review, rodent
hindlimb immobilisation has been shown to reduce
IRS-1 protein expression and Akt activity (Hirose et al.
2000), whilst bed-rest has been shown to blunt insulin
stimulated Akt phosphorylation in humans (Kiilerich et al.
2011; Mortensen et al. 2013). Furthermore, 7–19 days
bed-rest (Tabata et al. 1999; Op ‘t Eijnde et al. 2001;
Biensø et al. 2012) has been shown to reduce muscle
GLUT4 protein content. In keeping with a decline
in insulin mediated glucose uptake, reduced muscle
hexokinase activity and/or expression has also been
observed following immobilisation (Ringholm et al. 2011;
Biensø et al. 2012), alongside a decline in muscle glycogen
synthase activity (Biensø et al. 2012). Whether any of
these responses are drivers of immobilisation induced
muscle insulin resistance or occur as a consequence of it is
unknown. Indeed, we do not yet know how muscle senses
its “inactivity status” or the true source of immobilisation
induced muscle insulin resistance.

Another important candidate for immobilisation
induced impairment of muscle glucose disposal is IMCL
accumulation. A positive correlation exists between
post-absorptive plasma free fatty acid concentrations
and whole body insulin resistance, and the relationship
between IMCL content and insulin resistance is even
stronger (Pan et al. 1997a; Krssak et al. 1999).
Furthermore, IMCL content is positively correlated with
insulin resistance in healthy volunteers and in first degree
relatives of patients with type 2 diabetes (Krssak et al.
1999; Perseghin et al. 1999). It seems logical therefore that
IMCL content may play a central role in the aetiology of
skeletal muscle insulin resistance during immobilisation.
Indeed, an increase in IMCL content has been observed
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following 28 days of unilateral lower limb suspension and
bed-rest (Manini et al. 2007; Cree et al. 2010), which was
less obvious after 7 days bed-rest (Dirks et al. 2016). An
increase in IMCL content during immobilisation could
originate from excessive free fatty acid supply secondary
to positive energy intake and/or reduced physical activity.
Accordingly, the use of acipimox to reduce plasma free
fatty acid concentration and IMCL content resulted
in a marked improvement in insulin sensitivity in
non-immobilised volunteers (Bajaj et al. 2004). From
a mechanistic standpoint, the accumulation of IMCL
will increase intracellular fatty acid metabolites, such as
long chain fatty acyl CoAs, long chain acylcarnitines,
diacylglycerols and ceramides, which collectively will blunt
insulin signalling and/or inhibit pyruvate dehydrogenase
flux also reducing muscle glucose utilisation. What is the
mechanism behind the immobilisation induced increase
in IMCL? Physical inactivity reduces lipid oxidation (Ritz
et al. 1998; Bergouignan et al. 2006), which has been
attributed to a reduction in metabolic rate in this situation
(Blanc et al. 2000). Accordingly, the decline in lipid
oxidation observed after 7 days bed-rest was paralleled
by the development of whole body insulin resistance
(Blanc et al. 2000). One interpretation of these data
therefore is that an increase in IMCL content results
directly from an immobilisation induced reduction in
the rate of lipid oxidation in tandem with a reduction
in muscle metabolic rate and a parallel increase in plasma
free fatty acid availability. What the time course of muscle
IMCL accumulation is during immobilisation and how
this relates to the temporal change in muscle insulin
sensitivity is unknown. Indeed, whether muscle IMCL
accumulation is a driver of immobilisation induced muscle
insulin resistance or a consequence of it is unknown.

Finally, a decrease in mitochondrial content and/or
mitochondrial function during immobilisation has also
been proposed as a potential driver of altered fuel
metabolism under these conditions. In support of this,
microarray analysis revealed altered mRNA expression
of genes involved in mitochondrial bioenergetics and
carbohydrate metabolism after 2 and 14 days of
immobilisation in healthy volunteers (Abadi et al.
2009). Furthermore, 14 days of immobilisation reduced
quadriceps muscle mitochondrial respiratory capacity and
protein content, and to the same extent in young and old
volunteers (Gram et al. 2014). Importantly, this response
was shown to be a function of a decrease in mitochondrial
content that accompanies immobilisation rather than a
change in intrinsic mitochondrial function per se. This is
based on the evidence that the immobilisation induced
decline in mitochondrial respiratory capacity disappeared
when respiration was normalised to citrate synthase
activity (a marker of mitochondrial content). In keeping
with this, exercise training following immobilisation
restored mitochondrial capacity and citrate synthase

activity (Gram et al. 2014). Nevertheless, the same group
of authors were able to subsequently show increased
mitochondrial reactive oxygen species production in the
face of no change in anti-oxidant capacity, following
immobilisation, which was accompanied by decreased
mitochondrial ATP generating respiration. However,
the consequences of this with respect to altered fuel
metabolism under these conditions were not investigated.
Exercise training following immobilisation did, however,
restore both (Gram et al. 2015).

Inflammation

Inflammation induced loss of muscle mass. Several
pro-inflammatory cytokines (e.g. CRP, IL-1, IL-6 and
TNFα) have been repeatedly implicated in altered
protein homeostatic signalling and atrophy in muscle
(Garcia-Martinez et al. 1993; Haddad et al. 2005). For
example, inhibition of TNFα was shown to attenuate
skeletal muscle proteolysis during sepsis in rodents
(Zamir et al. 1992; Combaret et al. 2002). Moreover,
TNFα infusion was shown to elicit MAFbx and MuRF1
upregulation in rodents (Frost et al. 2007). Administration
of both IL-6 and IL-1 to rats results in increased myo-
fibrillar protein breakdown (Zamir et al. 1991; Goodman,
1994). Sepsis in particular is a complex and potentially
fatal condition that results from an uncontrolled, systemic
inflammatory response to an infection, and is a major
cause of morbidity and mortality in intensive care units
(ICUs) worldwide (reviewed in Bone et al. 1992). Muscle
wasting occurs rapidly (Puthucheary et al. 2013), the
magnitude of which is an independent predictor of
mortality in critically ill patients (Ali et al. 2008). Given
that muscle wasting is the primary driver of subsequent
physical disability in critical illness survivors (Herridge
et al. 2003), that continues after discharge (Pfoh et al. 2016)
with an associated mortality (Dinglas et al. 2017), it is
appropriate that National Institute for Health and Clinical
Excellence guidelines highlight physical disability and
specifically its driver (muscle wasting) as a public health
issue (NICE, 1990). A hallmark for the pathophysiology
of sepsis is a large, uncontrolled systemic inflammatory
host response to circulating microbial antigens (reviewed
in Cohen, 2002), with the most common sites of infection
being the lungs, urinary tract and abdominal cavity (Angus
et al. 2001). Sepsis-induced muscle wasting and weakness
can clearly have a damaging impact on recovery and
survival.

Of further interest, CRP is an acute-phase protein of
hepatic origin that increases following IL-6 secretion by
macrophages and T cells. Its physiological role is to bind
to dead or dying cells (and some types of bacteria) in
order to activate the complement system, and is therefore
a useful marker of systemic inflammation. Circulating
CRP concentration can be associated independently with
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loss of lean body mass (Schaap et al. 2006; Dutra et al.
2017) and age related loss of muscle mass (Schaap et al.
2006). Furthermore, in large observational studies CRP
was not associated with age per se, suggesting a separate
influence on muscle mass (Puzianowska-Kuźnicka et al.
2016). In differentiated human myotubes, CRP has been
shown to negatively affect cell size directly by decreasing
muscle protein synthesis and phosphorylation of Akt and
ribosomal protein S6 (Puzianowska-Kuźnicka et al. 2016).

Cellular and molecular mechanisms allied to inflammation
induced muscle mass loss. A limited number of
mechanistic experimental research studies focused on
muscle mass loss in the context of inflammation has
been conducted in patient volunteers, not least because
baseline data are often difficult to acquire. This practical
problem has been overcome by researchers undertaking
relatively short duration endotoxin administration studies
in healthy volunteers, which have reported acute decreases
in both muscle protein synthesis and muscle protein
breakdown, and efflux of muscle amino acids, such that
muscle protein balance was unaffected (Vesali et al. 2009).
How these observations relate to the accepted accelerated
loss of muscle mass in patients under inflammatory
conditions (Debigare et al. 2001; Puthucheary et al. 2013)
is difficult to rationalise. One possibility is that these
acute studies were performed in the post-absorptive state
when muscle protein synthesis will be reduced and muscle
protein breakdown increased. However, the limited data
available concerning the impact of endotoxin infusion
on muscle protein balance in the post-prandial state
in humans is equally baffling as it suggests that whilst
amino acid administration can rescue muscle protein loss
compared to the post-absorptive state, calculated muscle
protein synthesis and breakdown rates did not differ
significantly between interventions (Rittig et al. 2016).
Clearly further research is necessary, including muscle
tracer incorporation studies. In critically ill patients where
stable isotope tracers were used to quantify temporal
changes in muscle protein synthesis and leg protein break-
down 24 h after admission to an ICU (Puthucheary
et al. 2013), muscle protein synthesis was found to be
depressed in patients on day 1 compared with healthy
control volunteers in the post-absorptive state, but by
day 7 had increased independent of nutritional status
to rates similar to the post-prandial state in control
volunteers. Leg protein breakdown remained elevated
throughout the study in the patients. In keeping with
these observations, the authors demonstrated that muscle
wasting (ultrasound determined muscle cross-sectional
area and the muscle protein-to-DNA ratio) occurred early
and rapidly during the first week of critical illness, and
was more severe among patients with multi-organ failure
compared with single organ failure. These observations of
negative muscle protein balance and atrophy occurring

early following ICU admittance are in keeping with
data depicting elevation of muscle cytokine mRNA and
widespread dephosphorylation (inactivation) of proteins
regulating translation initiation factor activation and
protein synthesis (Akt1, GSK3α and β, mTOR, p70S6K
and 4E-BP1) in patients within 6–8 h of admission to
the ICU compared with healthy age- and sex-matched
control volunteers (Constantin et al. 2011). In accordance
with the observation of elevated leg protein break-
down in such conditions (Puthucheary et al. 2013), this
suppression of the Akt/mTOR/p70S6K signalling cascade
occurred in tandem with increased muscle-specific
E3-ligase (MAFbx and MuRF1) and 20S proteasome
mRNA and protein expression levels in patients relative
to controls (Constantin et al. 2011). The Akt/FOXO
signalling pathway has been implicated in the development
of muscle atrophy during catabolic conditions, potentially
through activation of the ubiquitin/proteasome pathway
(Crossland et al. 2008). More specifically, the upregulation
of MAFbx and MuRF1 mRNA expression in skeletal
muscle in animal models occurs within hours after the
onset of endotoxaemia (Dehoux et al. 2003; Wray et al.
2003), and appears to be mediated by dampened Akt
phosphorylation activating FOXO transcription factors
and increased expression of downstream FOXO gene
targets, including MAFbx and MuRF1 (Crossland et al.
2008). This series of events supports the concept that
the ubiquitin/proteasome system is an important early
driver of muscle protein breakdown, although not the
only catabolic driver under such conditions (Deval et al.
2001; Smith et al. 2008).

Overall it would appear there are comprehensive
acute alterations in muscle cross-sectional area, muscle
protein turnover and the molecular events considered
to regulate muscle protein synthesis and breakdown in
patients early following admittance to ICU. Although
muscle mass loss is common to both immobilisation
and the ICU, we do not know the relative contribution
of immobilisation and inflammation to muscle mass
loss in this situation. It is clear, however, that the
drivers of muscle mass loss are very different between
the two scenarios in humans. Furthermore, although
pro-inflammatory cytokines appear to be important in the
aetiology of muscle mass loss, it is important to recognise
that multiple mediators and pathways contribute to
the heightened morbidity and mortality associated with
infection and inflammation (reviewed in Jacobi, 2002).
Indeed, anti-cytokine therapies were developed to dampen
the systemic inflammatory response, including anti-
bodies against TNFα, soluble TNFα receptors and IL-1β
receptor antagonists. Blockade of TNFα was found to
have beneficial effects on survival in animal models
of shock (Beutler et al. 1985; Tracey et al. 1987);
however, subsequent clinical trials did not show benefit
in human sepsis (Reinhart & Karzai, 2001). Furthermore,
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IL-1β inhibition using a recombinant receptor antagonist
reduced mortality in animal models of shock (Ohlsson
et al. 1990), but, again, human trials showed no beneficial
effects (Opal et al. 1997).

Inflammation induced muscle insulin resistance. Various
catabolic conditions that stimulate muscle atrophy
are often associated with insulin resistance, including
heightened muscle inflammation (Hasselgren et al. 1987;
Dardevet et al. 1994; Wang et al. 2006). Insulin-stimulated
whole body glucose disposal, endogenous glucose
production and glucose oxidation have been shown to
be impaired in patients with severe sepsis (Chambrier
et al. 2000), which is associated with increased mortality
(Falciglia et al. 2009).

Cellular and molecular mechanisms associated with
inflammation induced muscle insulin resistance.
Although current practice is to maintain normoglycaemia
in intensive care, detailed mechanistic insight regarding
the aetiology of this patient phenotype is missing and
current insight has been gained in the main from animal
based investigation. Hyperlactataemia is also a frequent
manifestation of sepsis, which, based on preclinical
research, may be at least partially due to impaired
PDC activity and flux limiting mitochondrial pyruvate
utilisation as a result of sepsis induced PDK upregulation
(Vary, 1999; Alamdari et al. 2008). Given the proposed
role of TNFα in insulin resistance (Plomgaard et al.
2005), possibly through suppression of insulin signalling
at the level of IRS-1 (Hotamisligil et al. 1996; del Aguila
et al. 1999), it is more than likely that elevated cytokines
have some role in the observed changes in carbohydrate
metabolism in inflammatory states, and at least partly
through dysregulation of Akt signalling (Crossland et al.
2008), not least because divergent in vivo pharmacological
approaches that reduce muscle inflammation blunt
the dysregulation of muscle carbohydrate metabolism
(Crossland et al. 2010, 2017).

It is also of note that a link between circulating CRP and
insulin resistance has been established, with associations
seen with measures of fat mass, fasting insulin and a
number of metabolic disorders (Festa et al. 2000). Just
as with protein homeostasis, circulating CRP may not
be simply a biomarker of inflammation but may play a
causal role in the dysregulation of fuel metabolism. CRP
binds and aggregates low density lipoproteins and very
low density lipoproteins (de Beer et al. 1982). Additionally,
CRP impacts on macrophage phenotype (Dong & Wright,
1996), which purportedly impacts on insulin resistance.
However, a direct link between CRP and insulin resistance
remains elusive, and causal links have not been established
with type 2 diabetes (Brunner et al. 2008). CRP is regulated
by other pro-inflammatory cytokines such as TNFα and

IL-6 for which more robust direct causative links have been
established (see above), and as such circulating CRP may
be an upstream representative of their activity (Ridker,
2016).

Molecular cross-talk between muscle atrophy and
insulin signalling in inflammation. Few studies to date
have investigated muscle protein and fuel metabolism
concurrently to elucidate potential mutual signalling
events that may explain dysregulation of muscle protein
and carbohydrate metabolism in inflammation. As pre-
viously discussed, Akt signalling appears to be crucial in
hypertrophy and atrophy signalling, as well as insulin
signalling, and it is increasingly evident that there
is cross-talk between insulin and atrophy signalling
processes during heightened inflammation in animal
models (Crossland et al. 2008) and patients (Constantin
et al. 2011). Specifically, elevated cytokines may result
in the impairment (reduced phosphorylation) of Akt1
via inhibition of IRS-1 (del Aguila et al. 1999), sub-
sequently leading to the dephosphorylation (activation)
of FOXO, and, in turn, transcriptional upregulation
of FOXO target genes MAFbx, MuRF1 and PDK, as
well as decreased phosphorylation (activation) of muscle
anabolic signalling proteins (Crossland et al. 2008;
Constantin et al. 2011). In support of this, genetically
insulin-resistant, db/db, mice were found to have increased
rates of muscle proteolysis, which correlated with altered
Akt/FOXO signalling (Wang et al. 2006). Furthermore,
strategies aimed at blunting the muscle cytokine response
to inflammation in vivo in an animal model of clinical
sepsis have been shown to dampen the dysregulation
of Akt/FOXO signalling and the abundance of down-
stream mRNA targets, whilst concomitantly preventing
muscle protein loss and the impairment of pyruvate
dehydrogenase complex activation and carbohydrate
oxidation (Crossland et al. 2010, 2017). Collectively, these
findings, along with other reports of dysregulation of Akt
signalling in the catabolic, insulin resistant state (Wang
et al. 2006), and the proposed role of FOXO in both atrophy
and insulin signalling pathways (Kwon et al. 2004; Sandri
et al. 2004), suggest that Akt and FOXO form part of a
common signalling pathway influencing muscle protein
breakdown, protein synthesis and the induction of insulin
resistance during inflammation (Abstract figure).

Conclusion

This review highlights that whilst muscle mass loss
and insulin resistance are common end-points of
immobilisation and increased inflammatory burden, there
is a lack of understanding of the mechanisms responsible
for these common events such that a substantial gap
in understanding of the pathophysiology exists. It does
seem unlikely, however, that the same mechanisms are
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involved. For example, Akt signalling appears to play a
central role in the dysregulation of protein metabolism
in conditions of increased inflammatory burden, but not
in immobilisation. It is important therefore for future
research to determine the mechanisms responsible for
the loss of muscle mass and insulin sensitivity during
immobilisation and whether the impacts of combined
immobilisation and increased inflammatory burden are
additive in situations such as intensive care, which could
have important clinical ramifications. Importantly, these
studies need to be conducted in humans, and will include
multiple time-point measurements over the course of
intervention, dynamic measurements of muscle protein
turnover and glucose uptake in the post-prandial state,
and will be combined with sensitive measures of muscle
composition, intermediary metabolism and modern
molecular biology. Such studies will produce major new
mechanistic insights into human pathophysiology, with
potential application to new therapeutic approaches and
opportunities for “reverse translation” to more basic
research.
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