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T cell Ig and mucin domain (Tim) protein family members were identified to be important
regulators of the immune response. As their name indicates, Tim proteins were originally
considered a T cell-specific markers, and they mainly regulate the responses of T helper
cells. However, accumulating evidence indicates that Tims are also expressed on antigen-
presenting cells (APCs), such as monocytes, macrophages, dendritic cells (DCs) and B
cells, and even plays various roles in natural killer cells (NKs) and mast cells. In recent
years, the expression and function of Tims on different cells and the identification of new
ligands for the Tim family have suggested that the Tim family plays a crucial role in immune
regulation. In addition, the relationship between Tim family gene polymorphisms and
susceptibility to several autoimmune diseases has expanded our knowledge of the role of
Tim proteins in immune regulation. In this review, we discuss how the Tim family affects
immunomodulatory function and the potential role of the Tim family in typical autoimmune
diseases, including multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE) and type 1 diabetes (T1D). A deeper understanding of the
immunoregulatory mechanism of the Tim family might provide new insights into the
clinical diagnosis and treatment of autoimmune diseases.

Keywords: Tim, autoimmune diseases, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type
1 diabetes
INTRODUCTION

Autoimmune diseases are characterized by abnormal tolerance to self-antigens that cause damage to
body tissues (1). The etiology of autoimmune diseases is multifactorial and includes infection,
environment and genetics (2–6). Most of these factors have been reported to be associated with
immune disorders. Therefore, a better understanding of autoimmune disease pathogenesis is
needed to identify better treatments.
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T cell Ig and mucin domain (Tim), a transmembrane
glycoprotein, has been identified as one of the three human
Tim family members (Tim-1, Tim-3, and Tim-4) that play a key
role in regulating immunity in conditions such as allergies,
asthma, virus infection and transplant tolerance (7–11). In the
immune system, Tim-1 has been reported to be preferentially
expressed on T helper type 2 (Th2) cells, where it serves as an
effective costimulatory molecule for T cell activation (12). Tim-3
was first identified as being expressed on interferon-g (IFN-g)-
producing Th1 cells. As an inhibitor of inflammatory Th1 cells,
Tim-3 interacts with its ligand to cause the death of Th1 cells,
thereby reducing IFN-g production (13). Tim-4 is a natural
ligand of Tim-1. Tim-4 is mainly expressed on antigen-
presenting cells (APCs), but not on T cells (14), and it
participates in autoimmune diseases by regulating the
proliferation of T cells (15). However, in recent studies, Tims
were shown to be expressed on other immune cell types, such as
macrophages, dendritic cells (DCs), natural killer cells (NKs) and
B cells (16–19), and may play a critical role in maintaining
immune homeostasis. These findings allow us to improve our
knowledge of the role of Tims in the immune system. In this
review, we focus on the expression and function of Tims on
different immune cells, discuss recent studies examining the role
of Tims in autoimmune diseases in both animal models and
Frontiers in Immunology | www.frontiersin.org 2
humans, and provide useful insights into the identification of
new therapeutic targets.
THE EXPRESSION AND FUNCTION OF
TIMS ON DIFFERENT CELL TYPES

Since the discovery of Tims in 2001, major progress has been
achieved in terms of elucidating their characteristics and
immunological functions (Table 1). In mice, the Tim family is
composed of eight members (Tim-1 to Tim-8), and the genes that
encode them are located on chromosome 11B1.1. In humans,
three members (Tim-1, Tim-3, and Tim-4) have been identified,
and the genes are located on chromosome 5q33.2 (Figure 1) (20).
These three human Tim genes are most homologous to mouse
Tim-1, Tim-3 and Tim-4, which are associated with allergic
diseases. All Tim molecules are type I glycosylated proteins. Tim
proteins contain an IgV domain, a mucin domain, a
transmembrane domain, and an intracellular domain (Figure 2).
Tim-1 and Tim-3 contain a tyrosine phosphorylation motif in the
intracellular domain. Tim-3 has the shortest mucin domain and
fewest predicted glycosylation sites. Tim-4 differs from the other
family members, and it contains a short intracellular tail without a
tyrosine phosphorylation motif. In addition, Tim-4 possesses an
TABLE 1 | Known features of the Tim family.

Molecule Expressing cells Ligand(s) Function Disease Ref

Tim-1 Activated Th2 cells,
Bregs

Tim-4
PS

Costimulation of T cell activation,
modulation of Treg function,
maintenance and induction of Bregs

Autoimmune diseases,
infection,
asthma,
allergy

(12, 20)

Tim-3 Th1 cells,
innate immune cells

Gal-9
HMGB1
Ceacam1
PS

Suppression of the Th1 response,
increased activation of signaling pathways leading to T cell activation

Autoimmune diseases,
infection,
cancer

(13, 21)

Tim-4 APCs Tim-1
PS

Regulation of T cell proliferation,
clearance of apoptotic cells

Autoimmune diseases,
chronic metabolic disease,
infection,
allergy

(15, 22)
Septem
ber 2021 | Volume 12 | Article
FIGURE 1 | Tim locus. The arrangement of the three Tim genes on human chromosome 5 and the 8 Tim genes on mouse chromosome 11 is shown. Mouse Tim-5–8
are predicted genes. The arrow indicates the direction of mRNA transcription.
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arginine-glycine-aspartic acid (RGD) motif, which is present in
many ligands that bind to integrins (20). Therefore, Tim-4 may
also act as a decoy receptor. Variations in the structures andmotifs
of Tim family members indicate that individual Tim proteins may
have different roles in signal transduction.

Tim-1
The expression of Tim-1, also known as kidney injury molecule-
1 (Kim-1), is highly upregulated on the surface of injured kidney
epithelial cells (23). Its expression is increased in urine samples
from patients with chronic kidney disease (24). Tim-1 has been
used as a biomarker to assess the degree of injury in individuals
with acute tubular necrosis. In addition to its role in kidney
injury, Tim-1 was also detected in African green monkey kidney
cells (6) and later identified in humans as a cellular receptor for
hepatitis A virus, called HAVCR-1 (25).

Interestingly, Tim-1 is present on activated but not naive CD4+

T cells. Moreover, it is preferentially expressed on activated Th2
cells, but not Th1 cells (12). Tim-1 is a highly effective costimulatory
molecule that promotes the formation of T cell receptors (TCRs)
through agonistic anti-Tim-1 antibodies, which increase the
proliferation of CD4+ T cells (12). According to recent studies,
Tim-1 has a dual function as a T cell costimulator; it positively or
negatively costimulates the T cell response according to the way it
engages with T cells during T cell activation (26). Researchers tested
a series of monoclonal antibodies (mAbs) against Tim-1 and
identified two antibodies targeting Tim-1 that display distinct
effects. One agonistic mAb (3B3) increases the production of the
proinflammatory cytokines IFN-g and IL-17, increasing the severity
Frontiers in Immunology | www.frontiersin.org 3
of experimental autoimmune encephalomyelitis (EAE). In contrast,
the antagonistic mAb RMT1-10 inhibits IFN-g and IL-17
production, alleviates the development of autoimmunity (26).

In addition to exerting regulatory effects on Th cells, Tim-1 is
also vital for the function and development of regulatory T cells
(Tregs). The anti-Tim-1 mAb 3B3 reduces forkhead box protein
P3 (Foxp3) expression, prevents effector T cells (Teffs) from
differentiating into Tregs and regulates the suppressive ability of
Tregs, thereby preventing transplantation tolerance in mice (11).
Tim-1 signaling in B cells plays an important role in maintaining
the stability of the immune system and inhibiting autoimmune
diseases. Recently, researchers generated Tim-1-mutant [Tim-1
(Dmucin)] mice. Notably, the ability of regulatory B cells (Bregs)
to produce IL-10 was compromised in these mutant mice (27). B
cells with defective Tim-1 or Tim-1 mutations show reduced IL-
10 production and increased production of proinflammatory
cytokines (28). Based on these studies, Tim-1 expressed in B cells
participates in suppressing immune rejection. Other studies have
also found that the expression of Tim-3 and Tim-1 on the surface
of mouse mast cells promotes the secretion of the inflammatory
factors IL-13, IL-6 and IL-4 (29). Thus, Tim-1 plays wide-
ranging roles in various cells to regulate the immune system.

Tim-3
Tim-3 was first reported to be expressed on IFN-g-producing
Th1 cells (21). Binding of Tim-3 to its ligand terminates Th1
immune responses, and Tim-3 expression is regulated by the
transcription factor T-bet (30). Human Tim-3 shares 63% amino
acid homology with mouse Tim-3. Mouse Tim-3 consists of 281
FIGURE 2 | Structures of human Tim family members. Tim proteins contain an IgV domain, a mucin domain, a transmembrane domain and an intracellular domain.
Tim-3 has the shortest mucin domain and fewest predicted glycosylated site of the Tims. Tim-4 contains an arginine-glycine-aspartic acid (RGD) motif (yellow
diamond), which is present in many ligands that bind to integrins. However, Tim-4 has no tyrosine phosphorylation site (red circle).
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amino acid residues, while its human homolog consists of 302
amino acid residues (31). The membrane-bound form of Tim-3
includes an N-terminal IgV domain, a mucin domain, a
transmembrane domain and a short cytoplasmic tail.

To date, Tim-3 expression has been detected on both innate
and adaptive immune cells, such as DCs (32), mast cells (29),
macrophages (33), NK cells (34), and CD4+ T and CD8+ T cells
(35). In addition, Tim-3 may be expressed on Th17 cells,
although at lower levels than in Th1 cells (36). Subsequently,
Tim-3 was also shown to be expressed on Tregs and participate
in immune regulation (37). The differential expression of Tim-3
on both innate and adaptive immune cells suggests that Tim-3
exerts different effects on the functions of these cells. In a
published study, an anti-Tim-3 Ab was used to block Tim-3
signaling in a mouse model of autoimmune heart disease. The
decreased expression of Tim-3 and CD80 on mast cells and
macrophages reduces the level of cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) on the surface of CD4+ T cells,
resulting in a decrease in the number of Treg cells and aggravated
myocarditis (38). These studies indicate that the Tim-3 signaling
pathway affects the adaptive immune system by influencing the
innate immune system.

Tim-4
Tim-4 contains an extracellular IgV domain, a glycosylated
mucin domain and an intracellular tail, and it is mainly
expressed on APCs, including DCs, NKT cells, B1 cells and
macrophages (22).

According to the current knowledge of Tim-4, the interaction
between Tim-4 and its ligand plays an important role in the
initiation of Th2 polarization. In DCs exposed to cholera toxin
(CT) or/and peanut extract (PE), Tim-4 expression is increased
and participates in triggering specific Th2 polarization and
intestinal allergies (39, 40). Tim-4 is a natural ligand for Tim-
1, and emerging evidence suggests that the binding of Tim-1 to
Tim-4 is involved in regulating T cell proliferation (41).
Interestingly, the dose of Tim-4 is very important for the fate
of T cells. High doses of Tim-4 promote T cell proliferation,
while low doses exert the opposite effect. The explanation for
these effects may be that Tim-4 binds unknown ligands with
higher affinity than Tim-1 on T cells, transmitting negative
signals. Alternatively, the interaction of Tim-1-Tim-4 may
transmit a negative signal at a lower ligand density, similar to
the agonist-antagonist phenomenon observed when peptide
ligands are changed, and this inhibition is reversed by higher
Tim-4 concentrations (41, 42). Another study showed that Tim-
4 inhibits the activation of naive rather than activated T cells.
Since Tim-1 is not expressed on naive T cells, the inhibitory effect
of Tim-4 may depend on unknown ligands other than Tim-1.
Thus, Tim-4 has at least two types of ligands: one that promotes
T cell activation and another that inhibits T cell activation. These
results suggested that Tim-4 might regulate T cell depending on
the activation status of T cells, probably by binding different
ligands (14). A recent study reported that Tim-4 inhibits the
production of nitric oxide (NO) and cytokines in LPS-treated
macrophages by inhibiting the nuclear factor kappa B (NF-kB)
pathway or janus activating kinase 2 (Jak2)/signal transducer and
Frontiers in Immunology | www.frontiersin.org 4
activator of transcription 1 (STAT1) signaling (43). In summary,
Tim-4 is expressed on different cell types and plays various roles
in regulating immunity.
THE LIGANDS OF TIMS

Published studies have shown that the soluble Tim-4-Ig fusion
protein specifically binds to Tim-1-transfected cells, while the
soluble Tim-1-Ig fusion protein also specifically binds to Tim-4-
transfected cells. These studies confirm the interaction between
Tim-4 and Tim-1. In addition, Tim-4-Ig binds to activated T
cells that express Tim-1 at high levels, and this binding is blocked
by anti-Tim antibodies. Thus, Tim-4 is indeed the natural ligand
of Tim-1 (41). Another study showed that Tim-4 binds to
(phosphatidylserine) PS exposed on the surface of apoptotic
cells. Hence, PS was identified as another ligand of Tim-4 (44).
However, a recent study failed to detect a direct interaction
between Tim-1 and Tim-4 (45). Miyanishi et al. showed that Ba/
F3 B cells expressing Tim-1 or Tim-4 bind to exosomes through
PS. PS is present on the surface of exosomes and is involved in
signal transduction between cells (44). This finding indicates that
the Tim-1-Tim-4 interaction occurs through the PS bridge.
Therefore, the interaction between Tim-1 and Tim-4 is indirect.

Adequate research has confirmed that Galectin-9 (Gal-9) is
recognized as a ligand of Tim-3. It binds to the carbohydrate
structure of the IgV domain of Tim-3, which contains two N-
glycosylation sites. The interaction between Gal-9 and Tim-3
triggers the death of Th1 cells, thereby inhibiting tissue
inflammation and inhibiting the progression of EAE (13).
Carcinoembryonic antigen cell adhesion molecule 1
(Ceacam1), with a molecular weight of 60 kDa, was recently
characterized as another candidate Tim-3 ligand that binds to the
Tim-3 IgV domain (46). Ceacam1 is expressed on activated T
cells and involved in T cell suppression (47). Tim-3 and Ceacam1
are coexpressed and form a heterodimer. This coexpression is
necessary for the inhibitory function of Tim-3. Ceacam1 forms
heterodimer interactions in cis or in trans through its N-terminal
domains, and both cis and trans interactions between Ceacam1
and Tim-3 affect the immune tolerance of T cells (46). In
addition, high-mobility group box 1 (HMGB1) and PS have
also been identified as Tim-3 ligands. HMGB1 is mainly related
to inhibition of the innate immune response, while PS is related
to the clearance of apoptotic cells (48, 49). An understanding of
how these ligands coordinate their interactions with Tim-3 and
regulate immunity is important.

As discussed above, PS has been identified as a ligand of
Tim-4. The crystal structure of Tim-4 showed that the CC’ and
FG loops in the IgV domain of Tim-4 create a narrow cavity. A
metal ion-dependent ligand binding site (MILIBS) is specifically
responsible for the recognition of PS (50). The hydrophilic head
of PS penetrates into the MILIBS, its acidic phosphate group is
coordinated with metal ions, and the fatty acid tail of PS
interacts with the aromatic residues of the FG loop. The
hydrophobic residues in the FG loop are essential for PS
recognition (51). The single deletion of aromatic residues in
September 2021 | Volume 12 | Article 748787
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the FG loop reduces the binding of the Tim protein to PS in
liposomes by approximately 70%, while the double mutation
completely eliminates PS binding (50).

In addition, PS is a phospholipid present on dying cells and is
a typical “eat me” signal. Tim-4 specifically bind to PS exposed
on the surface of apoptotic bodies (AB) via the IgV domain, and
then mediate engulfment by macrophages (44). Effective
clearance of apoptotic bodies maintains normal tissue
homeostasis in organisms. The blockade of Tim-4 binding to
PS leads to deficient clearance of apoptotic cells and results in
systemic autoimmunity.
TIM FAMILY IN AUTOIMMUNE DISEASE

The Tim family plays an important role in regulating immunity.
The Tim fami ly has a l so been repor ted to exer t
immunomodulatory effects on many autoimmune diseases.
Here, we use multiple sclerosis (MS), rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) as
examples to summarize the roles of the Tim family in autoimmune
diseases (summarized in Table 2).

The Signaling Pathway of Tims
Tim-1 antibodies were used to identify the signaling pathway by
which Tim-1 activates T cells. Overexpression of Tim-1 leads to
nuclear factor of activated T-cells (NFAT)/activatorprotein-1
(AP-1) transcriptional activation, which depends on Y276 in
the cytoplasmic tail of Tim-1 (63). In addition, Tim-1 is recruited
to the TCR signaling complex in human T cells through its
interaction with CD3. The increase in signaling events related to
TCRs include the phosphorylation of Zap70 and IL-2 inducible T
cell kinase (ITK). In addition, ITK and phosphoinositide 3-
kinase (PI3K) complexes are recruited to the TCR signaling
Frontiers in Immunology | www.frontiersin.org 5
complex (64). After a tyrosine in Tim-1 is phosphorylated in a
Lck-dependent manner, the p85 linker subunit of PI3K is directly
recruited, leading to PI3K activation (65). Based on these studies,
Tim-1-mediated T cell activation may require PI3K activation.

Tim-3 was identified as specifically expressed on the surface of
CD4+ and CD8+ T cells. Studies have found that the tyrosine
residues in the cytoplasmic region of Tim-3 are related to T cell
signaling (31). When Tim-3 does not bind to its ligand, Tyr256/
Tyr263 in the cytoplasmic region of Tim-3 interacts with HLA-B
associated transcript 3 (Bat3), and Bat3 recruits the tyrosine kinases
Lck to maintains T cell activation (66). However, when Tim-3 binds
to the Gal-9, the phosphorylation of Tyr256 and Tyr263 is triggered
by ITK (67), then releases Bat3 from Tim-3 and inhibits the T cell
signaling by tyrosine kinase Fyn recruitment (68).

Tim-4 has been shown to increase the levels of p-extracellular
regulated kinase (ERK) 1/2 and p-Akt in CD3+ T cells by cross-
linking with Tim-1. Treatment of naive T cells with inhibitory
Tim-4-Ig reduces the phosphorylation of linker for activation of
T cells (LAT) and ERK 1/2 (14). In addition, Tim-4 inhibits the
mitogen-activated protein kinase (MAPK) pathway in T cells.

In summary, Tim proteins participate in the regulation of many
signaling pathways, most of which are related to the pathogenesis of
autoimmune diseases. Therefore, an understanding of the role of
Tims in different autoimmune diseases and their possible signaling
pathways and mechanisms will provide new insights to improve
immunotherapy. However, the mechanisms by which Tims regulate
autoimmune diseases through these signaling pathways are not yet
fully understood, and more research is needed to achieve
continuous improvements before clinical treatment.

Tims and MS
Most evidence for the roles of Tims in autoimmune diseases has
been derived from studies of mouse EAE models. The findings
from these studies enable us to understand the effect of
TABLE 2 | Studies examining the roles of Tim family members in autoimmune diseases.

Tim Autoimmune
disease

Conclusion Ref

Tim-1 MS Tim-1-/- B cell mice developed more severe EAE. Transfer of Tim-1+ B cells reduced the severity of EAE in mice. (28)
RA A polymorphism in the Tim-1 gene was related to RA in a Chinese Hui population, and a polymorphism of the Tim-1

promoter region may be related to the susceptibility to RA in Korean populations.
(52,
53)

SLE Tim-1 expression in PBMCs was increased in patients with SLE compared with healthy controls and was positively
correlated with IL-10 expression.

(54)

T1D The numbers of Tim-1+ Tregs and Tim-4+ Tregs in patients with T1D and NOD mice were significantly reduced. (55)
Tim-3 MS Tim-3 expression in PBMCs from patients with MS helped predict the prognosis of the disease. Higher Tim-3 expression

was associated with a better prognosis than lower Tim-3 expression.
(56)

RA Increased expression of Tim-3 in peripheral blood T cells from patients with RA was negatively correlated with the DAS28
and plasma TNF-a levels.

(57)

SLE The expression of Tim-3 and Gal-9 in T cells was increased in patients with SLE compared with healthy controls. (58)
T1D In mice treated with a Gal-9 plasmid, inflammation of the pancreatic islets was reduced, and the number of Th1 cells was

significantly reduced.
(59)

Tim-4 MS Tim-4 has been shown to play a critical role in the T cell-mediated immune response. (14,
60)

RA Increased expression of Tim-3 in peripheral blood T cells from patients with RA was negatively correlated with the DAS28
and plasma TNF-a levels.

(61)

SLE The Tim-4 mRNA was expressed at significantly higher levels in PBMCs from patients with SLE than in PBMCs from
healthy controls and was positively correlated with Tim-1 mRNA and serum TNF-a levels.

(62)

T1D The numbers of Tim-1+ Tregs and Tim-4+ Tregs in patients with T1D and NOD mice were significantly reduced. (55)
September 2021 | Volume 12 | Article 74
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autoimmune pathology, especially regarding the T cell
inflammatory response in the central nervous system (CNS)
(69). MS is an autoimmune disease characterized by
inflammation of the white matter in the CNS. This disease
most commonly affects the white matter around the ventricle,
optic nerve, spinal cord, brain stem and cerebellum (70). EAE is a
mouse model of MS. The pathogenesis of EAE is similar to that
of MS, which provides new insights into the pathology of MS.

Xiao showed that a Tim-1 deficiency in B lymphocytes
disrupts the balance between regulatory and proinflammatory
cytokines in B cells. Mice with Tim-1-/- B cells exhibit an
enhanced pathogenic Th1/Th17 response, a decreased number
of Foxp3+ Tregs and reduced IL-10 expression in CNS-derived T
cells, resulting in a worse EAE clinical score (28). In addition, the
adoptive transfer of Tim-1+ B cells not only alleviates EAE in
wild-type mice but also decreases the severity of EAE in the Tim-
1-/- B cell mouse model, showing that Tim-1 is associated with
the severity of EAE by regulating the balance between pathogenic
T cells and protective Tregs. Tim-4 has been shown to play a
critical role in the T cell-mediated immune response. On the one
hand, treatment with a Tim-4 blocking antibody in vivo reduces
the T cell-mediated inflammatory response produced in EAE
mice (14). On the other hand, the Tim-4-Fc fusion protein
inhibits the activation of naive T cells in vitro by inhibiting the
activation of the MAPK pathway, inhibits the differentiation of
Th17 cells and prevents IL-17 production. Notably, the
inhibitory effect of the Tim-4-Fc fusion protein is independent
of Tim-1 and requires IgV and mucin domains (60). Based on
these studies, Tim-4 has a bimodal regulatory function that
depends on the activation status of T cells: an inhibitory effect
of Tim-4 on naive T cells and a positive regulatory effect on
activated T cells.

Tim-3 is expressed on CD4+ Th1 cells that secrete IFN-g (21).
It also ameliorates the symptoms of EAE by inducing the death
of pathogenic Th1 cells, and inhibition of Tim-3 aggravates the
symptoms of EAE. The expression of both Gal-9 and Tim-3 on
Th1 cells in vitro induces Th1 cell death and ameliorates EAE
(13). During the induction of EAE, the administration of Gal-9 in
vivo reduces T cell proliferation and IFN-g production, changes
related to reductions in disease morbidity and mortality. In
contrast, inhibition of Gal-9 in vivo with an siRNA exacerbates
the development of EAE. Dysregulation of Tim-3 expression in
MS has been reported in clinical studies. Koguchi et al. studied
CD4+ T cell clones isolated from the CSF of patients with MS.
Compared with CD4+ T cells from healthy controls, CD4+ T cells
from patients with MS express lower levels of Tim-3 and produce
more IFN-g (71). Tim-3 signaling also induces the death of
specific CD8+ T cells, and the use of Tim-3-blocking antibodies
exacerbates CD8+ T cell-mediated EAE (72). Yang et al.
examined Tim-3 function on CD4+ T cells isolated from the
circulatory system of healthy controls and patients with MS.
Blocking Tim-3 during T cell stimulation significantly promotes
the secretion of IFN-g in healthy controls. Tim-3 inhibition has
no effect on treated patients, suggesting that patients with MS
have defects in Tim-3-mediated immunoregulation (73).
According to recent studies, the expression levels of Tim-3 on
Frontiers in Immunology | www.frontiersin.org 6
peripheral blood mononuclear cells (PBMCs) from patients with
MS help predict the prognosis of the disease. Lower expression
levels of Tim-3 on PBMCs are associated with an increased
possibility of progression to secondary progressive multiple
sclerosis (SPMS), while higher Tim-3 expression levels on
PBMCs are associated with a benign prognosis 10 years
later (56).

Tims and RA
RA is a systemic inflammatory autoimmune disease
characterized by joint pain and swelling. In severe cases, it can
lead to joint deformities and loss of function (74). RA affects 0.5–
1% of the adult population and is more common in women (75).
Although the pathogenesis of RA remains elusive, multiple
factors are widely accepted to be involved. Genetic,
environmental and hormonal factors may all contribute to the
pathogenesis of RA (76, 77).

Recently, polymorphisms in Tim genes were reported to be
potential risk factors for RA. Xu et al. reported that Tim-1
(-1637A>G, -232A>G), Tim-3 (-1541C>T, +4259G>T) and
Tim-4 (SNP rs7700944) gene polymorphisms are related to RA
susceptibility in the Chinese Hui population (52, 78, 79). Similar
results were also reported for other national populations (53, 80).
Tim-4 is involved in the immunoregulation of collagen-induced
arthritis (CIA), and it exhibits dual functions, depending on the
phase of CIA. During the induction phase, treatment with anti-
Tim-4monoclonal antibodies exacerbates the development of CIA
inmice. In contrast, during the effector phase, treatment with anti-
Tim-4 monoclonal antibodies reduces proinflammatory cytokine
levels in the ankle joint, significantly inhibiting the progression of
CIA (61).

Tim-3 may be a potential new marker for assessing the
severity of RA. The expression levels of Tim-3 on PBMCs
from patients with RA have been reported. Liu et al. showed
increased expression of Tim-3 on peripheral blood CD4+ T cells,
CD8+ T cells, NKT cells and monocytes from patients with RA.
The percentage of Tim-3+ cells is negatively correlated with the
28-joint disease activity score (DAS28) and plasma tumor
necrosis factor alpha (TNF-a) levels (57). In another study,
Tim-3 expression on CD4+ and CD8+ T cells was shown to be
negatively correlated with the progression of RA (81). In
addition, the number of Tim-3+ Foxp3+ Tregs is decreased in
patients with RA and is negatively correlated with RA disease
activity (82). Based on accumulating evidence, the Tim-3-Gal-9
pathway may play an essential role in the induction and
development of RA, and it may be a clinical target for the
treatment and alleviation of RA. In an animal model,
treatment with Gal-9 was shown to induce naive T cells to
differentiate into Tregs, not only reducing the production of
proinflammatory cytokines in mouse joints but also decreasing
the number of Tim-3+ CD4+ T cells in the peripheral blood (83).
In a clinical study, significantly higher Gal-9 expression in
several T cell subsets and plasma was observed in patients with
RA than in healthy controls. After 12 weeks of treatment with a
calcineurin inhibitor, Gal-9 expression levels in individuals with
a good therapeutic response were significantly lower than in
September 2021 | Volume 12 | Article 748787
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those with a poor therapeutic response (84). Tim-3 is considered
a useful biomarker for determining disease activity and
progression. However, the current knowledge on Tim-3-
targeted therapy for RA is still limited, and more studies in
humans are required to provide further evidence (85).

Tims and SLE
SLE is an autoimmune disease with diverse clinical manifestations
involving multiple organs. Its etiology is unclear, and it is related
to various factors, including genetic, immune, and hormonal
factors (86–89).

Lupus nephritis is the main risk factor for the overall
morbidity and mortality of SLE and is related to the
dysregulation of Th1 and Th2 responses (90). Tim-1 has an
important role in regulating the Th1/Th2 response (91). Studies
of mouse models of nephritis have suggested that when an
inhibitory anti-Tim-1 antibody (RMT1-10) is administered to
mice with nephritis, Foxp3+ T cells accumulate in the mice, and
the expression of the IL-10 mRNA increases. RMT1-10
treatment reduces the urinary excretion and renal expression
of Tim-1, reflecting an alleviation of interstitial injury (92).
Previous studies have suggested that patients with SLE show
increased expression of Tim-1 in PBMCs compared with healthy
people, and Tim-1 expression is positively correlated with IL-10
expression. Moreover, this study also found significantly
increased levels of the Tim-1 mRNA in patients with active
SLE (SLE disease activity index (SLEDAI)>6), which indicates
that Tim-1 mRNA expression in PBMCs is related to the disease
activity of patients with SLE (54). Interestingly, in another study,
researchers found that the mRNA expression levels of Tim-4 and
Tim-1 were positively correlated in patients with SLE, but this
correlation was not obvious in healthy controls. However, the
authors failed to detect a significant difference in the Tim-1
mRNA expression levels between patients with SLE and healthy
controls. This difference may be due to the distinctive SLEDAI of
the subjects participating in each study (62). In summary, unlike
other Tim molecules, research on the role of Tim-1 in SLE is still
limited, and more research is needed to explore this protein in
the future.

Th1 and Th17 immune dysregulation is one of the causes of
SLE (93). Tim-3 was initially identified on activated Th1 and Th17
cells and induced T cell death after binding to its ligand, Gal-9
(94). Jiao et al. investigated the expression of Tim-3 and Gal-9 in
patients with SLE and healthy controls. The expression of Tim-3
and Gal-9 on various T cells (including CD4+ T cells, CD8+ T cells,
and CD56+ T cells) was significantly higher in patients with SLE
than in healthy controls (58). Another study indicated that the
plasma level of soluble Tim-3 (sTim-3) was increased in patients
with SLE and positively correlated with anti-dsDNA antibodies,
SLEDAI score, erythrocyte sedimentation rate (ESR), and urine
albumin levels (95). All these studies illustrated that Tim-3 is
potentially useful as an effective biomarker for evaluating
indicators of SLE disease activity.

Similar to RA, insufficient clearance of AB is also a cause of
SLE. If ABs are not engulfed by macrophages or DCs, the antigens
and harmful substances from ABs will trigger an immune
Frontiers in Immunology | www.frontiersin.org 7
response, thereby promoting the progression of SLE (96, 97).
The elimination of ABs is a key mechanism for maintaining
normal tissue homeostasis in multicellular organisms. Tim-4
binds to PS and exposes it on the surface of ABs, presenting a
signal to macrophages to trigger engulfment. Tim-4 mediates the
clearance of ABs by macrophages. The mechanism of apoptotic
cell phagocytosis is as follows: Ba/F3 transformants expressing the
Tim-4 complex and integrin a(v)b (3) bind to and phagocytose
apoptotic cells in the presence of milk fat globular epidermal
growth factor VIII (MFG-E8) (98). A recent study showed that
mice lacking Tim-4 or MFG-E8 rarely develop antibodies (99). In
contrast, mice lacking both Tim-4 and MFG-E8 produce high
levels of anti-dsDNA antibodies, indicating that Tim-4 and MFG-
E8 mediates the clearance of apoptotic bodies, and involved in
pathogenesis of SLE (15). In a human study, Zhao et al. observed
significantly higher Tim-4 mRNA levels in the PBMCs from
patients with SLE, especially those in the active phase of the
disease, than those in healthy controls. Moreover, the level of the
Tim-4 mRNA in PBMCs from patients with SLE positively
correlated with the expression of the Tim-1 mRNA and serum
TNF-a levels (62). Overexpressed Tim-4 may bind to Tim-1 and
promote a Th2-mediated immune response, especially in patients
with SLE. TNF-a is mainly secreted by activated macrophages and
may induce an increase in Tim-4 expression, thereby promoting
the proliferation of Th2 cells by binding to Tim-1. These findings
imply that Tim-4 exerts a regulatory function in the pathogenesis
of SLE.

Tims and T1D
T1D is a chronic autoimmune disease that is mainly caused by
the destruction of islet b cells mediated by T lymphocytes (100).
Due to the continuous destruction of insulin-producing islet b
cells, insulin deficiency and hyperglycemia occur. Patients with
an uncontrolled disease may suffer from ketoacidosis, which can
be life-threatening (101). Noninsulin-based treatment strategies,
such as delaying b cell failure, stem cell treatment, and islet
transplantation, would be optimal to ameliorate T1D in patients
and prevent its complications (102–104).

Research by Shimokawa confirmed that CD8+ Tregs are
essential for preventing autoimmune diabetes. Notably, compared
with healthy individuals, patients with T1D have fewer CD8+ Tregs
(105). Tim-1 and Tim-4 are considered essential for the activation
and differentiation of T lymphocytes. Guo et al. evaluated the
expression of Tim-1 and Tim-4 in Tregs and found that the
numbers of Tim-1+ Tregs and Tim-4+ Tregs were significantly
decreased in both patients with T1D and no obesity diabetes
(NOD) mice (55).

The Tim-3 pathway represents an important mechanism for
downregulating Th1-mediated autoimmune diseases and
promoting the development of immune tolerance. A previous
study showed that treating recipient mice with a Tim-3-specific
monoclonal antibody accelerated the occurrence of autoimmune
diabetes in an adoptive transfer NOD model. In addition, similar
results were obtained when researchers treated recipient mice with
the Tim-3-Ig fusion protein, which disrupts the integrity of the
inhibitory interaction between Tim-3 and its ligand on T cells (106).
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Blockade of the Tim-3 pathway accelerates diabetes in NOD
mice. This effect may be mediated by inhibiting the
immunosuppressive function of Tregs. Furthermore, Gal-9 was
identified as a ligand for Tim-3 and shown to suppress the Th1
immune response in the development of T1D (107). Compared
with control mice, NOD mice overexpressing the Gal-9 were
significantly protected from T1D and showed less inflammation
of pancreatic islets (59). Many studies have shown that the Tim-3
pathway is involved in Th1-mediated disease, and blocking the
signaling by Tim-3 and its ligand Gal-9 may aggravate
autoimmune diseases, including T1D (108).
CONCLUSIONS

Considerable progress has been achieved in understanding the
expression and function of the Tim family in autoimmune diseases.
Tim proteins are intimately involved in immunoregulation and
participate in many diseases, such as allergies, infections, and
cancers, by influencing the immune system. The data on the Tim
family also provide us with insights into the design of selective
targeted therapeutics. Clearly, the expression of Tim molecules is
not limited to T cells, indicating that they perform different
functions in a variety of cells to modulate immune responses.
Frontiers in Immunology | www.frontiersin.org 8
Emerging evidence suggests that Tim-1 has a potential role in the
maintenance and regulation of Bregs. Tim-3 negatively regulates
the response of Th1 cells and inhibits the production of
inflammatory factors. Similarly, Tim-4 seems to play a positive
role in clearing apoptotic cells and might participate in systemic
autoimmune diseases. Therefore, future research on the Tim family
is expected to provide new strategies for autoimmune treatment.
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