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Abstract: The present contribution deals with the thermomechanical modeling of the strain-induced
crystallization in unfilled polymers. This phenomenon significantly influences mechanical and
thermal properties of polymers and has to be taken into consideration when planning manufacturing
processes as well as applications of the final product. In order to simultaneously capture both
kinds of effects, the model proposed starts by introducing a triple decomposition of the deformation
gradient and furthermore uses thermodynamic framework for material modeling based on the
Coleman–Noll procedure and minimum principle of the dissipation potential, which requires suitable
assumptions for the Helmholtz free energy and the dissipation potential. The chosen setup yields
evolution equations which are able to simulate the formation and the degradation of crystalline
regions accompanied by the temperature change during a cyclic tensile test. The boundary value
problem corresponding to the described process includes the balance of linear momentum and
balance of energy and serves as a basis for the numerical implementation within an FEM code.
The paper closes with the numerical examples showing the microstructure evolution and temperature
distribution for different material samples.

Keywords: thermomechanical modeling; microstructure; energy; dissipation; strain-induced
crystallization; polymers; temperature; thermodynamic consistency

1. Introduction

The strain-induced crystallization (SIC) is a phenomenon of formation and degradation of tiny
crystalline regions within the amorphous polymer structure due to the strain variation. It has a
significant influence on the production and application of the affected materials, which strongly
motivates its experimental investigation and numerical simulation. The experimental characterization
of the process relies on techniques such as volume change measurements [1], electron microscopy [2],
small-angle X-ray scattering [3], and terahertz spectroscopy [4]. However, the most frequently used
technique is the in situ wide-angle X-ray diffraction. Amongst others, the method has been applied to
study crystalline content and orientation [5], the SIC kinetics [6], the effects of dynamic loading [7], and
the distribution of the crystallite size [8]. Infrared thermography is also worth mentioning, particularly
in the context of investigating thermal effects [9–11].

The representative results of a cyclic tensile test performed for the unfilled natural rubber at
constant ambient temperature and strain rate are shown in Figure 1. Here, the stress diagram (Figure 1a)
forms a hysteresis and thus shows the dissipative nature of the SIC phenomenon. The volume fraction
of the crystalline regions, the so-called degree of crystallinity, is also used to show the crystallization
process. According to Figure 1a, crystalline regions begin to form after exceeding a stretch of λ = 4.3.
The degree of crystallinity rises with increasing strain until saturation at about λ = 6.0 is reached.
A further increase in total deformation may lead to inelastic deformations, which is not the subject
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of this study. The decrease of the degree of crystallinity during the unloading phase is less intensive
than its growth by loading. The material becomes completely amorphous at a stretch of λ = 3.0. It is
also remarkable that the heat generated by the formation of crystalline regions leads to an increase in
temperature, whereas the regression of the crystalline regions during the unloading phase causes a
decrease in temperature. Accordingly, the temperature diagram (Figure 1b) has a form analogous to
the one shown in Figure 1a.
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Figure 1. Uniaxial cyclic tensile test for a vulcanized unfilled natural rubber at room temperature and
at a constant strain rate of 4.2× 10−3 s−1 [12]. (a) Stress–stretch diagram (solid line) and crystallinity
degree–stretch diagram (circle symbols). (b) Temperature–stretch diagram.

With regard to the modeling and simulation, the first effort was made by Alfrey and Mark
(1942) [13] who investigated the behavior of a single polymer chain. On the basis of the this work,
Flory (1947, 1949) [14,15] formulated the classical thermodynamic theory of the SIC. In these works,
the degree of crystallization is expressed by the change in crystallization temperature which, in turn,
depends on strain. At a later stage, a phenomenological expression to describe the growth of the
crystalline phase was proposed by Doufas et al. (1999) [16] using a modified Avrami equation.
The work by Ahzi et al. (2003) [17] extends the hyperelastic model of Boyce et al. (1993) [18]
by the phenomenological expression of Doufas et al. (1999) in order to explain the growth of the
crystalline phase. The works by Negahban (2000) [19] and Rao and Rajagopal (2001) [20] used the
large deformation theory to model the amorphous and crystalline phases separately. Afterwards,
Tosaka et al. (2004) [21] developed a micromechanical model in which shorter chains are completely
stretched under tension and form nucleation sites for crystals. The model by Kroon (2010) [22] deals
with the anisotropic nucleation in unfilled rubbers. It predicts both stress–stretch hysteresis and
the development of the degree of crystallization, under the assumption that the dissipative process
is not caused by crystallization only but also by the viscoelastic behavior of the amorphous phase.
An advanced micromechanical continuum model for partially crystallized polymers was developed
by Mistry and Govindjee (2014) [23]. In their work, the micromechanical model is connected to the
macroscopic scale by using the non-affine microsphere model. The model is able to quantitatively
predict the macroscopic behavior of strain-crystallizing rubbers. Recently, Nateghi et al. (2018) [24]
similarly proposed a micromechanical model that is incorporated into the affine microsphere model.
In a contribution by Dargazany et al. (2014) [25], a micromechanical model for SIC in filled rubbers
additionally considers inelastic properties of filled rubbers such as the Mullins effect, the permanent
setting effect, and the induced anisotropy. In contrast to the aforementioned models that focus on the
modeling of mechanical effects of the SIC, the publication by Behnke et al. (2018) [26] simulates the
temperature and time dependency of SIC by taking the induced anisotropy into account. The newer
publications by Khiêm and Itskov (2018) [27] and Khiêm et al. (2019) [28] focus on calorimetric effects,
such as the temperature change due to SIC and the evolution of heat sources, whereas the work by



Polymers 2020, 12, 2575 3 of 30

Felder et al. (2019) [29] proposes a thermomechanically coupled model related to the crystallization by
cooling from the melt.

Molecular dynamics is an alternative approach to modeling the microstructural phenomena of
SIC, as presented in works by Nie (2015) [30] and Yamamoto (2019) [31]. This approach is suitable for
investigations at nanoscale since it directly simulates effects related to interatomic potentials or thermal
fluctuations of atoms. However, the approach is time-consuming and subject to a high computational
effort. This strongly motivates the continuum mechanical modeling which intrinsically includes the
aspects mentioned above and enables the efficient simulation of much larger samples than in the case
of the molecular dynamics. Coupled with the multiscale strategies, a continuum mechanical model is
even able to simulate practical applications.

As the previous overview shows, the development of measurement techniques has already made
a significant contribution to the study of the SIC process. Nevertheless, there are still open issues which
have not yet been sufficiently clarified by experimental studies, since phenomena are related to the
nanoscale and are thus not accessible by the experimental techniques. Amongst others, the influence
of the heat production on the shape, distribution, and mutual interaction of crystalline regions for
high strain states can be pointed out. Moreover, already existing models mostly provide data on the
effective material behavior without giving insight into the developed microstructure and the related
temperature distribution. In contrast to these strategies, the present model treats the microstructural
changes of the crystalline regions within the amorphous polymer matrix as well as the heat production
of both phases. Our previous work [32] presents a material model which depicts the mechanical
characteristics of the SIC phenomenon in agreement with the experimental investigations (Figure 1).
Based on this model, the aim of the present contribution is to visualize the microstructural development
and the change of temperature distribution within a material sample and to observe their interaction
depending on external influences. The approach proposed focuses on the unfilled polymers being the
representatives of nearly incompressible materials.

The paper is structured as follows: Section 2 gives an overview of general concepts used for the
thermomechanical modeling of the SIC. It introduces the finite deformation kinematics that rely on
the multiplicative split of the deformation gradient into an elastic, crystalline, and thermal part and
assumes the Arruda–Boyce model for elastically stored energy. The same section investigates the
thermodynamic consistency, determines the energetically conjugated pairs, and uses the minimum
principle of dissipation potential to derive evolution equations. Subsequently, it also defines the
boundary value problem (BVP) including the balance of linear momentum and balance of energy.
Whereas Section 2 deals with the general concepts, Section 3 introduces specific assumptions related to
the modeling of the SIC. Primarily, it defines the internal variables and proposes expressions for the
Helmholtz free energy and dissipation potential. Both are chosen such that the resulting evolution
equations simulate the increase and the decrease of the crystalline regions and of the temperature
during a cyclic test. Finally, Section 4 provides details on the implementation of the material
model into the FEM software FEAP, and Section 5 demonstrates the application. Selected numerical
examples pertaining cyclic tensile loads visualize the microstructure evolution and the corresponding
temperature distribution. At first, an academic example studies the material response of three
crystalline regions with different initial regularity while growing and shrinking. Thereafter, the model
is applied to monitor the microstructure evolution and temperature distribution for a sample with a
complex initial configuration. The paper finishes with conclusions and an outlook.

2. Thermodynamically Consistent Framework

2.1. Kinematics within the Finite Thermomechanical Framework

The multiplicative decomposition of the deformation gradient F into an elastic part Fe, an inelastic
part Fi, and a thermal part Fth

F = Fe · Fi · Fth (1)
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is an appropriate method to simultaneously incorporate inelastic and thermal effects within the finite
deformation theory [33,34]. The deformation gradient F is a two-point tensor that maps the initial
configuration (B0) to the deformed configuration (Bt). Formula (1), however, implies the existence
of two additional intermediate configurations (Figure 2) such that Fth maps the initial to the thermal
intermediate configuration (Bth). The latter is then related to the intermediate configuration Bi by the
inelastic deformation gradient Fi. Eventually, the elastic deformation gradient Fe maps the inelastic
intermediate to the current configuration. It is also worth mentioning that the ordering of intermediate
configurations is not uniquely prescribed. Hartmann (2012) [35], for example, defines the multiplicative
decomposition into the thermal and mechanical deformation gradient in a reverse order.

B0

Bth Bi

Bt

F

F th

F i

F e

Figure 2. The multiplicative decomposition of the deformation gradient and the corresponding
mapping between the initial, thermal intermediate, inelastic intermediate, and current configuration.

Based on assumption (1), the elastic deformation gradient is written as

Fe = F · Fth−1 · Fi−1
(2)

which furthermore yields the relationship for the corresponding rate

Ḟe
= Ḟ · Fth−1 · Fi−1

+ F ·
˙

Fth−1 · Fi−1
+ F · Fth−1 ·

˙
Fi−1 . (3)

The relationship above depends on the time derivatives
˙

Fi−1 and
˙

Fth−1
, which can be expressed

in a more appropriate manner as will be shown by the example of
˙

Fi−1. The procedure starts by taking
the time derivative of the identity tensor I, which is expressed as a function of Fi

Fi · Fi−1
= I ⇒

˙(
Fi · Fi−1

)
= Ḟi · Fi−1

+ Fi ·
˙

Fi−1
= 0 . (4)

Rearranging Equation (4) then yields

˙
Fi−1

= −Fi−1 · Ḟi · Fi−1
. (5)

A similar procedure provides an analogous relationship for
˙

Fth−1
:

˙
Fth−1

= −Fth−1 · Ḟth · Frh−1
, (6)
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such that the insertion of Equations (2), (5), and (6) into (3) ends up in

Ḟe
= Ḟ · Fth−1 · Fi−1 − F · Fth−1 · Ḟth · Fth−1 · Fi−1 − Fe · Ḟi · Fi−1

, (7)

which is the final expression for the rate elastic deformations only depending on rates and on inverse
values of basic quantities F, Fi, and Fth.

The nearly incompressible elasticity of polymeric materials is considered in works by Flory
(1961) [36] and Doll et al. (2000) [37]. These authors introduce the decomposition of the deformation
gradient Fe into a volmetric part F̂e and a deviatoric part F̄e, both depending on the determinant Je:

Fe = F̂e · F̄e , F̂e := Je
1
3 I , F̄e := Je−

1
3 Fe , Je = det(Fe) . (8)

For the isochoric deformations, it holds that Je = 1 since the determinant Je represents the
measure of the elastic volumetric changes.

2.2. The Arruda–Boyce Elastic Energy

Nowadays, there are plenty of different models for the elastic energy part, as is shown in the
overview by Steinmann et al. (2012) [38]. However, the present contribution assumes the Arruda–Boyce
model relying on the statistical mechanics of idealized polymer chains. This micromechanical model is
suitable for simulating the large elastic deformations and excellently fits to the chosen thermodynamic
framework and numerical concept. Moreover, it only depends on two material parameters which
are experimentally easily accessible and which are already known for many standard polymers such
as natural rubber [39] and unfilled silicone rubber [40]. Since it is well established and explored,
the Arruda–Boyce model represents an ideal platform for the present analysis where the focus is set on
the investigation of dissipative aspects of the process rather than on the elastic effects.

The Arruda–Boyce energy ΨAB originally has the form

ΨAB( Ī1) = µ λ2
m

(
λchain

λm
β + ln

β

sin(β)

)
, β = L−1

(
λchain

λm

)
, λchain =

√
Ī1

3
, (9)

where Ī1 is the first invariant of the deviatoric elastic right Cauchy–Green tensor C̄e

Ī1 = tr(C̄e) , C̄e = (F̄e)T · F̄e = Je−
2
3 (Fe)T · Fe . (10)

In Equation (9), µ denotes the shear modulus, λm is the limiting network stretch, λchain is the chain
stretch depending on the deviatoric first invariant, and β denotes the inverse Langevin function which
is related to the energy of a single random chain. The latter function cannot be expressed explicitly
and is usually approximated by the Taylor series truncated up to the certain order [41,42]. The present
work assumes that an approximation including three terms of the Taylor series provides sufficient
accuracy. In this case, the Arruda–Boyce energy takes the form

ΨAB( Ī1) =
µ̄

2

[
( Ī1 − 3) +

1
10 λ2

m

(
Ī2
1 − 9

)
+

11
525 λ4

m

(
Ī3
1 − 27

)]
, (11)

where parameter µ̄ is determined from the consistency condition of model (11) with the linear elasticity
theory for small strains. According to [43,44], this condition is expressed as

∂ΨAB

∂ Ī1

∣∣∣∣
Ī1=3

=
µ

2
, (12)
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and requires the evaluation of the derivative of Equation (11) at Ī1 = 3

∂ΨAB

∂ Ī1

∣∣∣∣
Ī1=3

=
µ̄

2

(
1 +

3
5 λ2

m
+

99
175 λ4

m

)
. (13)

Finally, the implementation of Equation (13) in Equation (12) yields the expression for µ̄

µ̄ = µ

(
1 +

3
5 λ2

m
+

99
175 λ4

m

)−1
. (14)

Alternatively to the Taylor series, a range of Padé approximations can be applied for the numerical
evaluation of the inverse Langevin function. These approximations have different degrees of accuracy
and complexity as discussed in the review papers by Jedynak [45] and Carroll [46].

The original form of the Arruda–Boyce model corresponds to the incompressible material
behavior; however, it can be easily extended to capture the influence of compressibility by adding a
volumetric part Ψvol. In that case, the total elastic energy Ψe turns into

Ψe( Ī1, Je) = ΨAB( Ī1) + Ψvol(Je) . (15)

The chosen expression for the volumetric part of the energy is proposed by Simo and Taylor
(1991) [47] and represents a special case of the Ogden model [48]

Ψvol(Je) =
K
4

(
(Je)2 − 1− 2 ln(Je)

)
, (16)

∂Ψvol

∂Je =
K
2

(
Je − 1

Je

)
, (17)

where K denotes the bulk modulus. Assumption (16) is physically motivated with regard to the energy-
and stress-free state in the reference configuration since it holds

Ψvol(Je = 1) = 0 ,
∂Ψvol

∂Je (Je = 1) = 0 . (18)

Moreover, the energy function (16) is convex and coercive in Je. The latter implies that the energy
tends to infinity Ψvol → ∞ for high compression and tension modes, i.e., for the cases where Je → 0
and Je → ∞. A comprehensive comparison of various models for the volumetric energy with respect
to their mathematical and physical properties is shown by Hartmann and Neff (2003) [49], whereas the
implementation of these approaches for nearly incompressible materials is discussed by Kadapa and
Hossain (2020) [50].

2.3. Thermodynamic Consistency

The second thermodynamic law in the form of the Clausius–Duhem inequality [51] is chosen to
investigate the thermodynamic consistency of the model:

D = −ė + Θ η̇ +
1
ρ0

P : Ḟ +Dcond ≥ 0, Dcond = − 1
ρ0 Θ

q0 · ∇X Θ . (19)

Here, ė is the rate of internal energy, η̇ is the rate of entropy, Θ is the temperature, ρ0 denotes
the density, P : Ḟ represents the internal power, P is the first Piola-Kirchhoff stress tensor, X are the
coordinates in reference configuration, Dcond is the heat conduction contribution to the dissipation
D, q0 is the heat flux vector, and index “0” refers to the initial configuration. Equation (19) has the
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standard solution determining the heat transfer through the material. This solution is known as the
Fourier law and has the following form in the reference configuration [52]

q0 = −λθ det(F)C−1 · ∇X Θ, C = FT · F, (20)

where λθ is the thermal conductivity coefficient and C is the right Cauchy–Green deformation tensor.
An alternative formulation of the dissipation inequality (19) is obtained by using the Legendre

transformation of the internal energy yielding the Helmholtz free energy Ψ

Ψ = e−Θ η . (21)

Consequently, the internal energy rate can be expressed as a function of elastic energy rate Ψ̇

ė = Ψ̇ + Θ̇ η + Θ η̇ . (22)

The particular case studied in this contribution assumes the Helmholtz energy Ψ as a function of
three arguments: the elastic deformation gradient Fe, temperature Θ, and an additional set of internal
variables describing microstructural phenomena γ, such that its rate turns into

Ψ̇ =
∂Ψ
∂Fe : Ḟe

+
∂Ψ
∂Θ

Θ̇ +
∂Ψ
∂γ

: γ̇ . (23)

Finally, the insertion of Equations (7), (22), and (23) into (19) yields an alternative form of the
dissipation inequality

D =

(
1
ρ0

P− ∂Ψ
∂Fe ·

(
Fi−1

)T
·
(

Fth−1)T
)

: Ḟ −
(

∂Ψ
∂Θ

+ η

)
Θ̇

+

((
Fth−1)T

· FT · ∂Ψ
∂Fe ·

(
Fi−1

)T
)

:
(

Ḟth · Fth−1)
+

(
FeT · ∂Ψ

∂Fe

)
:
(

Ḟi · Fi−1
)
− ∂Ψ

∂γ
: γ̇ +Dcond ≥ 0 ,

(24)

which is suitable for the application of the Coleman–Noll procedure and for determining the
constitutive laws [53]. Following the procedure mentioned, the first two terms in Equation (24)
yield definitions for the first Piola–Kirchhoff stress tensor and entropy

P = ρ0
∂Ψ
∂Fe ·

(
Fi−1

)T
·
(

Fth−1)T
, (25)

η = − ∂Ψ
∂Θ

, (26)

whereas the remaining terms enable the definition of thermodynamically conjugated pairs. The velocity
gradient and Mandel stress tensor related to the thermal intermediate configuration are the first
conjugated pair

Lth := Ḟth · Fth−1
, (27)

Mth :=
(

Fth−1)T
· FT · ∂Ψ

∂Fe ·
(

Fi−1
)T

(28)
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and velocity gradient and Mandel stress tensor related to the inelastic intermediate configuration
represent the second conjugated pair

Li := Ḟi · Fi−1
, (29)

Mi := FeT · ∂Ψ
∂Fe . (30)

In addition, both Mandel stress tensors (Equations (28) and (30)) can be related to each other by
considering the multiplicative decomposition of the deformation gradient (Equation (1))

Mth =
(

Fth−1)T
· FthT · FiT · FeT · ∂Ψ

∂Fe ·
(

Fi−1
)T

= FiT ·Mi ·
(

Fi−1
)T

. (31)

According to the previous relationship, the Mandel stress tensor is mapped from the
intermediate inelastic configuration to the intermediate thermal configuration, which corresponds to a
pullback operation.

Eventually, the last term in inequality (24) provides the definition for the driving force
corresponding to the rate of internal variables γ̇

qγ := −∂Ψ
∂γ

. (32)

Using the new notation (Equations (27)–(30) and (32)), the dissipation inequality (24) is written in
a shorter form

D = Dth +Di +Dγ +Dcond ≥ 0 , (33)

which includes the contribution due to thermal deformations Dth, the contribution due to the inelastic
deformations Di, the contribution due to microstructural changes Dγ, and the contribution due to the
heat conduction Dcond. The single contributions are defined as follows:

Dth = Mth : Lth ≥ 0 , Di = Mi : Li ≥ 0 , Dγ = qγ : γ̇ ≥ 0 , (34)

where the non-negativity of each term is required separately.

2.4. Derivation of Evolution Equations

Evolution equations for internal variables are an essential part of material models for inelastic
processes. Their derivation is a challenging task such that different approaches have been established
for this purpose [54]. The present contribution follows the minimum principle of dissipation
potential [55] which is expressed as follows

min{L = Ψ̇ + ∆ | γ̇} . (35)

According to this principle, the minimization of the Lagrangian L including the Helmholtz energy
rate Ψ̇ (Equation (23)) and the dissipation potential ∆ leads to the evolution laws for the internal
variables γ. Bearing in mind that the Helmholtz energy Ψ is a function of three arguments Fe, Θ, and
γ, the Lagrange function can be written in an extended form

L =
∂Ψ
∂Fe : Ḟe

+
∂Ψ
∂Θ

Θ̇ +
∂Ψ
∂γ

: γ̇ + ∆(γ̇) . (36)

Now, the minimization of Equation (36) with respect to γ̇ reads the conditions

∂L
∂γ̇

=
∂Ψ
∂γ

+
∂∆
∂γ̇

= 0 ⇒ ∂∆
∂γ̇

= −∂Ψ
∂γ

, (37)
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and a comparison of Equations (32) and (37) leads to the conclusion that the driving force of an internal
variable is equal to the derivative of the dissipation potential with respect to the same quantity

qγ =
∂∆
∂γ̇

. (38)

Equations (35)–(38) define a generic procedure which will be used to derive equations driving the
microstructural changes associated with the SIC (Section 3.5).

2.5. Balance Equations

Different from a BVP, which is related to a purely mechanical problem, the BVP corresponding
to a thermomechanical problem includes two differential equations, namely the balance of linear
momentum and the balance of energy. These differential equations are accompanied by the suitable
boundary conditions as follows [56,57]:

DivP + ρ0 b = 0 in B , (39)

ė +
1
ρ0

Div(q0) =
1
ρ0

P : Ḟ + rΘ in B , (40)

P · n = t̄ on ∂Bt , (41)

u = ū on ∂Bu, (42)

−q0 · n = q̄Θ on ∂Bq , (43)

Θ = Θ̄ on ∂BΘ . (44)

Here, b is the body force, rΘ is the heat source, q0 is the heat flux vector defined by the Fourier
law (20), and n is the surface normal vector. The balance of linear momentum (39) is supplemented
by the Neumann and Dirichlet boundary conditions expressed in terms of prescribed tractions t̄,
displacements u and prescribed displacements ū. The corresponding boundary parts are denoted by
Bt and Bu, respectively. Similarly, the balance of energy (40) is accompanied by boundary conditions
relating the heat flux q0 and temperature Θ to the prescribed values q̄Θ and Θ̄ acting on the boundary
parts Bq and BΘ.

Internal energy rate ė in Equation (40) is defined by Equation (22) and thus requires a more precise
study of entropy rate η̇. To this end, definition (26) is used along with the fact that the free energy is a
function of three arguments:

η̇ = −
˙(

∂Ψ
∂Θ

)
= −

(
∂2Ψ

∂Θ ∂Fe : Ḟe
+

∂2Ψ
∂Θ2 Θ̇ +

∂2Ψ
∂Θ ∂γ

: γ̇

)
. (45)

Now, taking into account the definitions introduced in Section 2.3, the internal energy rate
turns into

ė =
1
ρ0

P : Ḟ −Mth : Lth −Mi : Li − qγ : γ̇ + Θ η̇ (46)

such that the final form of the energy balance is obtained by inserting Equations (45) and (46) into (40)

cd Θ̇ +
1
ρ0

Div(q0) = rΘ + Mth : Lth + Mi : Li + Hγ : γ̇ + HF : Ḟe, (47)

cd := −Θ
∂2Ψ
∂Θ2 , Hγ := qγ + Θ

∂2Ψ
∂Θ ∂γ

, HF := Θ
∂2Ψ

∂Θ ∂Fe . (48)

The standard notation introduced in (48) includes the heat capacity cd, the latent heat due to
internal microstructural processes in the material Hγ and the latent heat due to deformations HF.
The latter enables, amongst others, the modeling of the Gough–Joule effect [58].
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3. Thermomechanical Modeling of the SIC

Whereas Section 2 provides the general framework for modeling thermomechanical processes,
Section 3 presents the assumptions specific to the modeling of the SIC. This includes the choice of
internal variables, the assumption for the Helmholtz free energy, the definition of coupling conditions,
and the formulation of the dissipation potential.

3.1. Definition of Internal Variables

The multiplicative decomposition of the deformation gradient representing the base of kinematics
in the finite thermomechanical framework (Equation (1)) already incorporates two internal variables,
namely the inelastic deformation gradient Fi and its thermal counterpart Fth. In the case of the SIC,
the inelastic deformations are caused by the crystallization, which will be emphasized by introducing
index “c” instead of index “i” in the following text (i.e., Fc := Fi, Lc := Li, Mc := Mi and Dc := Di ).

However, the description of microstructural processes related to SIC requires the introduction
of two additional internal variables: regularity of polymer chain network (χ) and thermal flexibility
of polymer network (α). The regularity in this context comprises the information on the ordering of
the polymer chains with respect to each other and the degree of order among the polymer atoms.
It takes values from the range [0, 1], such that values close to zero correspond to an amorphous state,
whereas values close to the value of one are classified as crystalline regions. During a tensile test,
the regularity evolves, thus simulating the formation/degradation of crystalline regions. The second
internal variable captures physical properties related to the molecular mobility in the polymer which is
governed by the chain flexibility and the temperature [59]. The flexibility of the polymer chains in the
network changes due to warming up and cooling during a cyclic tensile test, where heating induces
the chains to become more flexible.

3.2. Assumption for the Helmholtz Free Energy Density

In order to obtain a model suitable for simulating the SIC, the Helmholtz free energy is assumed
to consist of four terms combining the benefits of several modeling approaches

Ψ = Ψe( Ī1, Je) + Ψth(Θ) + Ψcrys(χ) + Ψcoup(α, Θ) . (49)

Here, the elastically stored energy Ψe (Equation (15)) includes the Arruda–Boyce model
(Equation (11)) and the volumetric contribution (Equation (16)). A similar combination has been
used in works by Gasser and Holzapfel (2002) [60] and by Elguedj and Hughes (2014) [61] when
studying nearly incompressible materials behavior. The thermally stored energy part Ψth has been
proposed by Raniecki and Bruhns (1991) [62] and has recently been used by Mahnken (2013) [52] for
thermomechanical modeling of polymers

Ψth(Θ) = cd (Θ−Θ0)− cd Θ ln
(

Θ
Θ0

)
. (50)

The thermal contribution above is a function of reference temperature Θ0 and holds under the
condition that the heat capacity cd is independent of temperature. The crystalline energy part Ψcrys is
proposed in [32] to model the regularity evolution during the unloading phase. It is a linear function

Ψcrys(χ) = c1 χ , (51)

where parameter c1 is load-dependent and enables to control the evolution direction. The last energy
contribution, Ψcoup, is a mixed term in thermal flexibility and temperature, including proportionality
constant c2

Ψcoup(α, Θ) = c2 α (Θ−Θ0) . (52)
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A similar bilinear form is suggested in the work by Hajidehi and Stupkiewicz (2017) [63] for
the energy transition in shape memory alloys with the aim to simulate the temperature decrease
during unloading.

3.3. Coupling Conditions

The problem formulation presented depends on four internal variables, two of which have a
tensorial character. However, some additional information is provided by the physics of the SIC
phenomenon which enables the simplification of the underlying setup. The focus is first set on the
velocity gradient Lc referring to the rate of deformations caused by the crystallization. The closer
specification of this quantity relies on the experimental observation, showing that the orientation of
crystalline regions is dependent on the external load orientation. This implies that velocity gradient
Lc is coaxial with the Mandel stress tensor Mc since they are a thermodynamically conjugated pair.
Furthermore, it can be expected that the intensity of deformations due to the crystallization depends
on the regularity degree of network, which leads to the following assumption for the velocity gradient

Lc = k1 χ̇
Mc,dev

‖Mc,dev‖
, Mc,dev = Mc − tr(Mc)

3
I . (53)

Here, k1 denotes the proportionality constant and the choice of the deviatoric part of the Mandel
stress tensor is substantiated by the fact that the model deals with the unfilled polymers being the
representatives of nearly incompressible materials. In a similar way, the thermal velocity gradient
and the rate of thermal flexibility are coupled to each other through the linear relationship with the
positive proportionality constant k2

Lth = k2 α̇ I . (54)

Equation (54) suggests a diagonal form of Lth since an isotropic character of thermal effects is
expected. After introducing coupling conditions (53) and (54), the problem formulation only depends
on the two scalar internal variables χ and α.

3.4. Derivation of Driving Forces

Assumptions made in Sections 3.2 and 3.3 enable the specification of driving forces corresponding
to remaining internal variables χ and α. For this purpose, coupling conditions (53) and (54) are first
introduced into the dissipation inequality (33)

D = Mth : Lth + Mc : Lc + qχ χ̇ + qα α̇ +Dcond (55)

= k2 tr(Mth) α̇ + k1

∥∥∥Mc,dev
∥∥∥ χ̇ + qχ χ̇ + qα α̇ +Dcond . (56)

Thereafter, qχ and qα are calculated according to the standard definitions applied to the
assumptions on energy contributions (51) and (52)

qχ = −∂Ψcrys

∂χ
= −c1 , qα = −∂Ψcoup

∂α
= −c2 (Θ−Θ0) . (57)

Now, the implementation of Equation (57) in (56) and gathering of terms including the same type
of rates yield expressions for sought driving forces

q̃χ := k1

∥∥∥Mc,dev
∥∥∥− c1 , (58)

q̃α := k2 tr(Mth)− c2 (Θ−Θ0) , (59)
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such that the dissipation inequality turns into

D = q̃χ χ̇ + q̃α α̇ +Dcond ≥ 0 . (60)

The requirement for the non-negativity of each addend yields the conclusion that a driving force
must have the same sign as the rate of the corresponding internal variable. This furthermore implies
that a decrease of the regularity (χ̇ < 0) is accompanied by a negative driving force (q̃χ < 0) during
the unloading stage. It is furthermore assumed that the rate of driving force (58)

˙̃qχ = k1
˙∥∥∥Mc,dev

∥∥∥ (61)

distinguishes the loading stage ( ˙̃qχ ≥ 0) and the unloading stage ( ˙̃qχ < 0).

3.5. Assumption for the Dissipation Potential and Derivation of Evolution Equations

The assumed dissipation potential includes two contributions, each of them dependent on the
rate of a single internal variable

∆(χ̇, α̇) = ∆crys(χ̇) + ∆th(α̇) . (62)

The choice of the potential part related to the network regularity ∆crys is motivated by the
experimental results shown in Figure 1a. According to this diagram, the crystalline regions start to
evolve after exceeding a threshold value and grow up to the end of the loading phase where the
limiting stretch of ≈ 600% must not be exceeded. Subsequently, the crystalline regions shrink during
the unloading with a lower rate. The dissipation potential suitable for modeling this process has been
proposed in [32] and has the following form

∆crys(χ̇) = (A + B) |χ̇| . (63)

Here, A is a crystallization limit for the evolution of the regularity and B represents the increment
of this limit. The rate of increment B is a function of the regularity rate

Ḃ =
b

f (χ)
|χ̇| , f (χ) = β1 − (χ− β2)

β3 , b =

{
b1 if ˙̃qχ ≥ 0 ,

b2 if ˙̃qχ < 0 .
(64)

The chosen formulation depends on material constants β1, β2, and β3 and introduces function f >

0 to favor the evolution of the regularity in regions with higher values. Moreover, the load-dependent
parameter b controls the velocity of the evolution. The values for this parameter are different for the
loading phase ( ˙̃qχ ≥ 0) and unloading phase ( ˙̃qχ < 0). Condition b2 > b1 > 0 indicates a slower
decrease of the regularity during the unloading phase than its growth during the loading phase.

The second part of the dissipation potential, ∆th, is defined in terms of the rate of thermal flexibility
and depends on material constants D1 and D2

∆th(α̇) =
D1

2
χ−D2 α̇2 . (65)

The proposed dissipation potentials now serve as a basis for the application of the minimum
principle (Section 2.4). To this end, the notation introduced in Section 3.3 is used to reformulate the
rate of Helmholtz energy Ψ̇ (Equation (23)) and the Lagrange function L (Equation (36))
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Ψ̇ = P : Ḟ − η Θ̇− q̃χ χ̇− q̃α α̇ , (66)

L = P : Ḟ − η Θ̇− q̃χ χ̇− q̃α α̇ + (A + B) |χ̇|+ D1

2
χ−D2 α̇2 . (67)

Subsequently, the minimization procedure yields the modified driving forces

q̃χ =
∂∆crys

∂χ̇
, (68)

q̃α =
∂∆th

∂α̇
. (69)

However, the evaluation of the driving force q̃χ (Equation (68)) is not straightforward since
potential ∆crys (Equation (63)) depends on the absolute value function which is not differentiable
at χ̇ = 0. For that reason, the subdifferential of the crystalline dissipation potential ∂∆crys(χ̇) is
introduced instead of its derivative

∂∆crys(χ̇) =

 q̃χ = (A + B)
χ̇

|χ̇| for χ̇ 6= 0 ,

{q̃χ; |q̃χ| ≤ A + B} for χ̇ = 0 .

(70)

(71)

Equation (70) represents the derivative of the potential with respect to the regularity rate under
the condition that χ̇ 6= 0, whereas any value |q̃χ| ≤ A + B can be a solution for χ̇ = 0. Case (71) applies
at the beginning of the tensile test where the material undergoes purely elastic deformations without
changing the regularity. After exceeding the crystallization limit, the regularity starts to increase
according to the evolution law which is obtained by rearranging Equation (70)

χ̇ =
|χ̇|

A + B
q̃χ = λ q̃χ , λ ≥ 0 . (72)

The procedure for determining parameter λ has been comprehensively explained in [32].
Within the present contribution, only the main steps are summarized as follows: First, the absolute
values are taken from both sides of the Equation (70) and the obtained relationship is squared. In a
second step, after taking the time derivative of modified Equation (70) and inserting Equations (58),
(61), (64) and (72), the crystallization parameter turns into

λ =
f q̃χ

˙̃qχ

b (A + B)2 ≥ 0 . (73)

Equation (70) also holds for the complete unloading stage, where the degradation of crystalline
regions occurs. This is achieved by introducing a shift yielding a negative driving force q̃χ during the
unloading (Section 4.2). Simultaneously, the rate ˙̃qχ is negative per definition during the unloading
stage (Equation (61)). Since driving force q̃χ and its rate ˙̃qχ are both negative during the unloading
phase, the condition λ ≥ 0 (Equation (73)) holds and relationship (72) applies.

The study of thermal influences accompanying crystallization are based on Equation (69) yielding
the following evolution equation

q̃α =
∂∆th

∂α̇
= D1 χ−D2 α̇ ⇒ α̇ =

χD2

D1
q̃α . (74)

Obviously, the rate α̇ is proportional to its driving force which characterizes the viscous type of
evolution. In this case, the decrease of the temperature during the unloading phase is controlled by a
suitable choice of constant c2 in the driving force (Equation (59)).
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Finally, the insertion of evolution Equations (72) and (74) in (60) yields the single
dissipation contributions

Dχ = q̃χ χ̇ = λ q̃2
χ ≥ 0 , Dα = q̃α α̇ =

χD2

D1
q̃2

α ≥ 0 , (75)

where both terms fulfill the non-negativity requirement, which approves the thermodynamical
consistency of the model.

4. Numerical Implementation of the SIC Model

4.1. Implementation of the Thermomechanical Coupled Problem into the FEM

Balance Equations (39) and (47) are numerically solved by applying the FEM where a setup
appropriate for nonlinear materials and large deformations is developed. This includes the
transformation of the energy balance and the development of the weak form of the problem.

The balance of energy (47) is more closely specified by using driving forces (Equations (58) and
(59)) along with coupling conditions (53) and (54)

cd Θ̇ +
1
ρ0

Div(q0) = rΘ + H̃χ χ̇ + H̃α α̇ + HF : Ḟe . (76)

Here, latent heat H̃χ and H̃α are expressed according to the definition (48)

H̃χ := q̃χ + Θ
∂2Ψ

∂Θ ∂χ
, H̃α := q̃α + Θ

∂2Ψ
∂Θ ∂α

(77)

whereas HF remains as defined in Equation (48). Furthermore, the energy derivatives in the latent heat
contributions are calculated on the basis of assumptions (49)–(52)

H̃χ = q̃χ , H̃α = q̃α + Θ c2 , HF = 0 . (78)

Provided that the maximal cooling of natural rubber due to the Gough–Joule effect is about
0.005 K [64], the temperature change by latent heat HF is negligible compared to the temperature
change due to the SIC. This motivates the choice of energy density Ψ (Equation (49)), where it holds

∂2Ψ
∂Θ∂Fe = 0, and thus the corresponding latent heat contribution becomes HF = 0. Accordingly,
balance of energy (76) turns into

cd Θ̇ +
1
ρ0

Div(q0) = rΘ + q̃χ χ̇ + (q̃α + Θ c2) α̇ . (79)

For the purpose of transforming the strong formulation of the problem into its weak form,
two steps are performed: First, the strong form of each differential equation (Equations (39) and (79))
is multiplied by test functions δu and δΘ, commonly referred to as virtual displacement and virtual
temperature. Thereafter, the equations are integrated over domain B. Finally, the integration by parts
and subsequently the Gauss integration theorem are applied to the divergence term in Equation (79) to
transform the volume integral over the body B into an integral over the surface ∂B. The weak form of
both balance equations reads∫

B
∇X δu : P dV −

∫
B

δu · ρ0 b dV −
∫

∂Bt
δu · t dA = 0 , (80)
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∫
B

δΘ cd Θ̇ dV +
∫

∂B
δΘ

1
ρ0

q0 · n dA−
∫
B
∇X δΘ · 1

ρ0
q0 dV−∫

B
δΘ rΘ dV −

∫
B

δΘ q̃χ χ̇ dV −
∫
B

δΘ (q̃α + Θ c2) α̇ dV = 0 .
(81)

In a second step, domain B ≈ ⋃nel
e=1 Be is spatially disrcretized into a finite number of elements

nel and integrals are approximated by a sum of integrals over single elements Be. The same applies for
the boundary parts:

nel

∑
e=1

[∫
Be
∇X δue : P dV −

∫
Be

δue · ρ0 b dV −
∫

∂Be t
δue · t dA

]
= 0 , (82)

nel

∑
e=1

[∫
Be

δΘe cd Θ̇e dV +
∫

∂Be
δΘe 1

ρ0
q0 · n dA−

∫
Be
∇X δΘe · 1

ρ0
q0 dV−

∫
Be

δΘe rΘ dV −
∫
Be

δΘe q̃χ χ̇ dV −
∫
Be

δΘe (q̃α + Θ c2) α̇ dV
]
= 0 .

(83)

The field variables δue and δΘe and their gradients ∇X δue and ∇X δΘe refer to single elements
and are interpolated by using an approximation with nen support points

δue ≈
nen

∑
A=1

δueA NA , δΘe ≈
nnen

∑
A=1

δΘeA NA , (84)

∇X δue ≈
nen

∑
A=1

δueA ⊗∇X NA , ∇X δΘe ≈
nnen

∑
A=1

δΘeA∇X NA , (85)

where δueA and δΘe are the values at node A of element e. The interpolation is done using
C0-continuous Lagrange basis functions NA. The application of Equations (84) and (85) on the
discretized weak forms (Equations (82) and (83)) yields

nel

∑
e=1

{
nen

∑
A=1

δueA ·
[

f eA
u,int − f eA

u,vol − f eA
u,sur

]}
= 0 , (86)

nel

∑
e=1

{
nnen

∑
A=1

δΘeA
[

f eA
Θ,trans + f eA

Θ,cond − f eA
Θ,vol − f eA

Θ,sur − f eA
Θ,crys − f eA

Θ,flex

]}
= 0 . (87)

The force contributions in the discretized weak form of the balance of linear momentum
(Equation (86)) correspond to the internal forces f eA

u,int, the volumetric forces f eA
u,vol, and the surface

forces f eA
u,sur:

f eA
u,int :=

∫
Be

P · ∇X NA dV , f eA
u,vol :=

∫
Be

ρ0 NA b dV , (88)

f eA
u,sur :=

∫
∂Be t

NA t dA , (89)

whereas, the discretized weak form of the balance of energy (Equation (87)) includes fluxes f eA
Θ,tran

describing transient heat transfer, fluxes f eA
Θ,cond including heat conduction, volumetric fluxes f eA

Θ,vol,
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surface fluxes f eA
Θ,sur, fluxes f eA

Θ,crys yielding a temperature change caused by the crystallization, and

fluxes f eA
Θ,flex changing the temperature due to thermal flexibility

f eA
Θ,tran :=

nnen

∑
B=1

Θ̇eB
∫
Be

NA cd NB dV , f eA
Θ,vol :=

∫
Be

NA rΘ dV , (90)

f eA
Θ,cond := −

∫
Be
∇X NA · 1

ρ0
q0 dV , f eA

Θ,sur := −
∫

∂Be
NA 1

ρ0
q0 · n dA , (91)

f eA
Θ,crys :=

∫
Be

NA q̃χ χ̇ dV , f eA
Θ,flex :=

∫
Be

NA (q̃α + Θ c2) α̇ dV . (92)

A special focus lies on the last flux contribution (Equation (92)), which after inserting
Equation (59) yields

f eA
Θ,flex :=

∫
Be

NA (qα α̇ + c2 Θ0 α̇)dV . (93)

The first term in the parenthesis in Equation (93) is non-negative due to dissipation inequality (55).
However, the second term represents a product of positive constants c2 Θ0 with rate α̇ which can be
negative during the unloading phase. This allows the reduction of temperature in the unloading phase
as it is observed in experimental results (Figure 1b). Finally, the element contributions are assembled
to a global system of equations under the consideration of kinematic compatibility[

δu
δΘ

]T

· R (u, Θ) = 0 , (94)

R (u, Θ) =

[
f u,int − f u,vol − f u,sur

f Θ,tran + f Θ,cond − f Θ,vol − f Θ,sur − f Θ,crys − f Θ,flex

]
. (95)

Provided that R = 0 holds for all admissible [δu δΘ], problem (94) can be solved by any solver
for a nonlinear system of equations. Most commonly, the Newton-Raphson method is applied for this
purpose. This procedure relies on the following iteration rule

∆gi = −K−1 · R , gn
i+1 = gn

i + ∆gi . (96)

Here, i denotes the Newton iteration counter, n is the current time step and ∆gi = [∆ui ∆Θi]

are the increments of the global variables gn
i = [un

i Θn
i ] related to the time step n. Finally, K = ∂R

∂g
represents the global stiffness matrix of the system.

4.2. Time Discretization and Simulation of the Unloading Phase

Experimental results show that the loading stage is related to the regularity and temperature
increase, whereas the degradation of crystalline regions accompanied by the decrease of the temperature
occurs during the unloading stage. In the present model, evolution Equations (72) and (74) control the
process described. Their numerical implementation relies on the time discretization of the change of
crystallization limit (Equation (64)), of the crystallization parameter (Equation (73)) and of both driving
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forces (Equations (58) and (59)). The explicit scheme approximating time derivatives by a forward
difference quotient is chosen for this purpose:

χn+1 = χn + ∆λ q̃χ n , (97)

q̃χ n = k1‖Mc,dev
n ‖ − c1 , (98)

∆λ =
∆t f (χn) q̃χ n k1

(
‖Mc,dev

n ‖ − ‖Mc,dev
n−1 ‖

)
b (A + Bn)

2 , (99)

Bn+1 = Bn +
b

f (χn)
|χn+1 − χn| , (100)

αn+1 = αn + ∆t
χD2

n
D1

q̃α n , (101)

q̃α n = k2 tr(Mth
n )− c2 (Θn −Θ0) . (102)

Here, subscript n + 1 denotes values at the current time step and subscript n refers to the values
in the previous time step. It is important to point out that the evaluation of the crystalline and thermal
Mandel stresses in the above expressions involve the time integration of tensor valued quantities.
For this reason, evolution laws (53) and (54) are numerically solved by applying the exponential
map [65] along with definitions (27) and (29)

Fc
n+1 = exp

(
k1 (χn+1 − χn)

Mc,dev
n

‖Mc,dev
n ‖

)
· Fc

n , (103)

Fth
n+1 = exp (k2 (αn+1 − αn) I) · Fth

n . (104)

The method used in the current approach goes back to the definition of the tensor exponential,
where the numerical solution is carried out by calculating a finite truncation of the Taylor series.
Equation (104) is an exact solution due to the diagonality of identity I. The contribution by Moler and
Van Loan (2003) [66] discusses various approaches to compute the exponential of a second order tensor
and compares their applicability and efficiency.

Within the framework of the numerical implementation, the simulation of the degradation of
crystalline regions deserves special attention. According to Equation (61), the evolution direction of
the regularity is controlled by the sign of the driving force due to the non-negativity of λ. In other
words, a negative driving force during the unloading stage leads to a reduction of the regularity
which is achieved by choosing a suitable shift c1 in Equation (98). This load-dependent parameter is
calculated from the condition for the initial value of driving force q̃un,in

χ to coincide with the negative
crystallization limit if increment B is set to zero

q̃un,in
χ = k1 ‖Mc,dev

end,ld‖ − c1 = −A ⇒ c1 = A + k1‖Mc,dev
end,ld‖ . (105)

Here, Mc,dev
end,ld is the deviatoric crystalline Mandel stress tensor at the end of the loading stage,

subscript “ld” denotes the loading stage, superscript “un” denotes the unloading stage, and “in” is an
initial value.

4.3. Algorithmic Aspects of the SIC Model Implementation

The SIC model is implemented in the FEAP-software that is appropriate for an enhanced
FE-analysis of the complex material behavior. A new element along with a new material subroutine
are developed to this end. Their structure and interconnection with the main program are presented
in Figure 3.
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The flow chart of the main program (Figure 3a) shows that the element subroutine is used at the
beginning of the simulations to allocate material properties to each single element and to generate data
on the initial network regularity. Thereafter, the element subroutine is called to calculate the element
residual and stiffness matrix which are finally assembled in the global residual R and global stiffness
matrix K. The latter are used to solve the nonlinear system of Equations (94) and (95) according
to the scheme (96). This iterative procedure is performed until the prescribed accuracy is achieved.
To this end, a tolerance for the energy norm of displacement increments is set to the value 1× 10−12.
The applied monolithic scheme solves the mechanical and thermal balance equations simultaneously
with respect to the field variables, displacements and temperature. It provides final values of global
external variables un and Θn for each time step n. The time iteration is performed on the basis of the
Newmark method with the default parameters β = 0.25 and γ = 0.5. The incorporation of temporal
aspects is needed in order to simulate the external load in an incremental form and, correspondingly,
to update the solution of the boundary value problem (39)–(44).

The element subroutine includes two essential tasks, namely the generation of the initial network
regularity and the evaluation of the element residual and of the element stiffness matrix (Figure 3b).
The generation of the initial regularity is physically motivated by the fact that the natural amorphous
entangled microstructure of polymer chains includes places with a different cross-linking degree and
polymer chain arrangement. Some of these places are especially suitable for the formation of crystalline
regions and behave as nuclei of the crystallization. In order to model such an initial configuration,
the network regularity is first set to zero in all elements. In a second step, a uniform distribution
is applied to generate initial values of the network regularity in the range [1× 10−8, 1× 10−3] as
well as to generate the element numbers associated to the particular initial values. Two intrinsic
subroutines of the Fortran program language, random_seed and random_number, are used for this
purpose. The volume fraction of elements with a higher initial value is varied and fitted with respect
to the experimental results shown in Figure 1a. Depending on the initial configuration, the material
model determines where the crystalline regions develop and how fast they grow.

The second core assignment of the element subroutine is the definition of the evaluation of the
residual and of the element stiffness matrix. The basis for this step is already provided by definitions of
forces and fluxes (Equations (88)–(92)). Accordingly, the residual vector corresponding to the element
e has the form

Re =

[
Re

u
Re

Θ

]
=

[
f e

u,int − f e
u,vol − f e

u,sur
f e

Θ,tran + f e
Θ,cond − f e

Θ,vol − f e
Θ,sur − f e

Θ,crys − f e
Θ,flex

]
, (106)

and corresponding stiffness matrix Ke results from the derivative of the residual (106) with respect to
the global field variables g = [u Θ]T

Ke =
∂Re

∂g
=


∂Re

u
∂u

∂Re
u

∂Θ
∂Re

Θ
∂u

∂Re
Θ

∂Θ

 =


∂ f e

u,int

∂u
0

−
∂ f e

Θ,crys

∂u
−

∂ f e
Θ,flex

∂u
∂ f e

Θ,tran

∂Θ
+

∂ f e
Θ,cond

∂Θ
−

∂ f e
Θ,flex

∂Θ

 . (107)
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(a) (b) (c)

Figure 3. (a) Flowchart of the main program, (b) flowchart of the element subroutine, (c) flowchart of
the material model subroutine.

Amongst others, previous equations depend on the stress tensor and on the latent heats which
are calculated in the material model subroutine (Figure 3c). Here, the input variables are temperature
and deformation gradient. Criterion (61) distinguishes the loading and the unloading mode. Such a
differentiation is needed since the shift c1 (Equation (105)) and the appropriate value for constant b
(Equation (64)) are defined at the transition from the loading to the unloading mode. Subsequently,
three following tasks are accomplished:

• the update of internal variables according to the Equations (97)–(102), which also requires the
calculation of Mandel stress tensors (Equations (30) and (31)),

• the calculations of the crystalline and the thermal deformation gradient are updated by
Equations (103) and (104),

• the calculations of the first Piola–Kirchhoff stress tensor (Equation (25)), and latent heats
(Equation (78)). These quantities are final results passed to the element subroutine.

5. Numerical Examples

5.1. Simulation of Single Crystalline Regions Embedded in the Matrix Material

The first numerical example deals with the simulation of a tensile test performed on a
two-dimensional sample that demonstrates the material behavior under the influence of the SIC.
The elastic material constants are chosen for rubber and correspond to the original amorphous
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phase [67,68]. The crystalline material constants are fitted to the experimental results by Toki et al.
(2003) [69] and Candau et al. (2015) [12]. The latter work is also used for fitting thermal material
constants (Figure 1b). An overview of all material parameters is given in Table 1. The thermal
conductivity is neglected (λΘ = 0), as the focus lies on the heat generated or absorbed by SIC and not
on the flow of heat within the material. The conductivity of natural rubber is low compared to the
other materials and amounts to 0.15 W/(m K) [70]. Moreover, no external heat sources (rΘ = 0) are
applied in the simulations.

Table 1. Elastic, crystalline, and thermal material constants used in simulations.

Elastic Constants

Bulk modulus K 5× 108 Pa
Shear modulus µ 4× 105 Pa
Limiting network stretch λm 2 -

Crystalline Constants

Coupling constant k1 7× 10−2 -
Crystallization limit A 1× 105 Pa
Hardening constant b1 1.7× 105 Pa
Softening constant b2 2× 105 Pa
Constant in function f β1 0.25 -
Constant in function f β2 0.5 -
Exponent in function f β3 2 -

Thermal Constants

Reference temperature Θ0 300 K
Thermal flexibility modulus c2 2× 105 Pa/K
Coupling constant k2 4× 10−2 -
Thermal flexibility coefficient D1 3.3× 106 Pa
Exponent D2 6 -

The setup corresponding to the tensile test is shown in Figure 4a. The chosen square specimen
has the dimensions 100× 100 nm and is discretized by 50× 50 square elements. For this purpose,
four-node quadrilateral elements with bilinear shape functions are assumed. They are fully integrated
by using four integration points. In addition, the simulations are performed by applying quadrilateral
elements with the reduced one-point integration. However, both types of simulations yield comparable
results and no effects of volume locking or of hourglassing are observed. The sample thickness is
1 nm and is significantly smaller than the remaining dimensions, which corresponds to a plane stress
state problem. The application of the model to 3D simulations would be straightforward, since the
general SIC material model is presented in previous sections. Vertical displacements prescribed at the
horizontal boundaries increase linearly up to the maximum value of 250 nm and thereafter decrease
linearly to zero (Figure 4b). The displacement increment is set to |∆ū| = 2.5× 10−2 nm. Here, the bar
symbol indicates external influences. The prescribed stretch is calculated according to λ̄ = (l + 2 ū)/l.
The total loading time amounts to 10 s, while the time increment is ∆t = 1× 10−3 s.
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]

Figure 4. (a) Geometry and discretization of the sample with the prescribed vertical displacement ū
and side length l. (b) The applied stretch λ̄ = (l + 2 ū)/l as a function of time.

The example has an academic character and investigates the material response under the
presence of three separate crystalline regions embedded in the amorphous matrix material (Figure 4).
Furthermore, the influence of the initial value of the regularity degree is studied. In the initial
configuration (Figure 5a) the regularity is set to a value of χ0 = 1× 10−3 at an element in the bottom
part of the sample, to χ0 = 1× 10−4 at an element in the middle of the sample and to χ0 = 1× 10−5

at an element in the upper part of the sample. The evolution of the regularity over the time at the
crystalline region in the bottom is shown for the complete load cycle in Figure 5b. As expected,
the regularity starts to evolve after exceeding the crystallization limit (Equation (71)) and reaches the
value of χ ≈ 1 corresponding to full crystallization. During the unloading phase, it decreases with a
slower rate (Equation (64)) and ends up at the value of χ ≈ 0 complying with the amorphous material.
A wide range of experimental results show that crystalline regions completely recede at stretches
between 250% and 350% and that the original amorphous phase is completely recovered. Examples
giving evidence of this phenomenon are presented in Le Gac et al. (2018) [71] for polychloroprene
and in Huneau (2011) [72] for polyisoprene. One exception is shown in the work by Albouy et al.
(2005) dealing with the inverse yielding effect. An incomplete recovery only occurs if the sample
was previously loaded beyond a certain critical draw ratio. Additional factors that benefit this effect
are a low cross-linking density and lower temperatures. The stress–stretch curve (Figure 5c) builds
a hysteresis loop which is in agreement with the experimental results (Figure 1a). Here, the P22

component of the first Piola–Kirchhoff stress tensor is plotted. The temperature curve (Figure 5d)
shows similar tendencies as the regularity: it increases during loading and reduces during unloading.
The remaining temperature at the end of the unloading phase is due to the produced dissipation
(Equation (75)) which contributes to Equation (79) and leads to temperature increase.
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Figure 5. (a) Initial microstructure with three nuclei, (b) the regularity vs. stretch, (c) the stress–stretch
diagram, and (d) the temperature change over the stretch at the crystalline region in the bottom part of
the sample.

In addition, Figure 6a monitors the microstructure development during the loading phase at a
stretch of λ̄ = 4.9. The resulting temperature distribution is shown in Figure 6b. The crystalline regions
build up and grow faster at the areas close to the element with a higher initial value of regularity.
The same holds for the temperature which rises more strongly in these areas. Figure 7 monitors
the fully developed crystalline regions and the corresponding temperature distribution at the end
of the loading phase (λ̄ = 6.0). The highest temperature occurs directly in the crystallized region.
Interestingly, the area surrounding the crystal has cooled down. Equilibrium is established in the
deformed state, with the consequence that heat is absorbed from the surrounding areas.
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Loading stage: λ̄ = 4.9
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Figure 6. Simulation of the cyclic tensile test for a sample with three nuclei. Snapshots of the
microstructure evolution during the loading stage (λ̄ = 4.9) showing (a) regularity distribution
and (b) temperature distribution (in Kelvin).

End of loading stage: λ̄ = 6.0
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Figure 7. Simulation of the cyclic tensile test for a sample with three nuclei. Snapshots of the
microstructure evolution at the end of the loading stage (λ̄ = 6.0) showing (a) regularity distribution
and (b) temperature distribution (in Kelvin).

5.2. Microstructure Evolution for a Sample with the Complex Initial Microconfiguration

A further example simulates the tensile test for a sample with randomly generated initial values
of network regularity (Figure 8a), which is the situation to be expected in a real polymer. The initial
values are generated in the range [0, 1× 10−3] and randomly distributed over the sample as explained
in Section 4.3. The higher values of the regularity represent potential nuclei of crystalline regions.
All remaining material and process parameters except the initial regularity are kept as in Section 5.1.
Comparable simulations are performed using quadrilateral elements with the reduced integration;
however, no evidence of volume locking is noticed.
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Figure 8. (a) Initial microstructure with randomly distributed nuclei. (b) The applied stretch as a
function of time.

Three snapshots are chosen to display the microstructure development and the temperature
distribution: Figure 9 shows the microstructure corresponding to an applied stretch of λ̄ = 4.8
during the loading phase, Figure 10 presents the situation at the end of the loading phase λ̄ = 6.0,
and Figure 11 shows the microstructure for a stretch of λ̄ = 3.7 during unloading. The color scale in
Figure 8a differs from the color scale in Figures 9–11 in order to visualize the initial microstructure better.
Crystalline regions (Figure 9a) form during loading and this process generates heat so that an increase
in temperature can be observed (Figure 9b). At the highest stretch state, the degree of crystallinity
reaches about 15% (Figure 10a). The highest temperatures are located in regions with a high density of
crystals, since this is where the heat development of adjacent crystals accumulates. These temperatures
correspond to the red color in Figure 10b. In addition, it can be seen that the immediate surroundings
of the crystals cool down (purple areas). As already shown in the example with three crystals,
a withdrawal of heat from the amorphous regions also takes place during crystallization. Amorphous
regions located at a larger distance from the crystals hardly experience any temperature changes
and are shown in blue. During the unloading phase the regression of the crystallization (Figure 11a)
absorbs heat, thereby reducing the temperature (Figure 11b). The comparison of the two states from
Figures 9 and 11 also demonstrates that the rate of the network regularity is higher during the loading
stage than during the unloading stage at the same level of the stretch λ̄.

Loading stage: λ̄ = 4.8
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Figure 9. Cyclic tensile test with random initial microstructure. Snapshots of the microstructure
evolution during the loading stage (λ̄ = 4.8) showing (a) regularity distribution and (b) temperature
distribution (in Kelvin).
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End of loading stage: λ̄ = 6.0
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Figure 10. Cyclic tensile test with random initial microstructure. Snapshots of the microstructure
evolution at the end of loading (λ̄ = 6.0) showing (a) regularity distribution and (b) temperature
distribution (in Kelvin).

The simulations shown also enable an analysis of the effective material behavior, which is
illustrated by examples of the crystallinity degree and of the effective temperature. The crystallinity
degree in the proposed model is defined as the volume fraction of the crystalline regions with the
network regularity over 80%. Its evolution compared to the experimental results is presented in
Figure 12a. The crystalline regions start to build at λ̄ = 4.3 and their volume fraction gradually
increases up to the value of 15% at the end of the loading phase. The crystallinity degree decreases
during the unloading stage and crystalline regions completely vanish at λ̄ = 3.0. The rate of change
during the loading phase is higher than during the unloading stage. A comparison shows that model
for a chosen set of parameters predicts a slightly faster formation and degradation of the crystals than
is observed in experiments. It also should be noted that data on the start of the crystallization, as well
as the value of the crystallinity degree at the peak are used to fit the parameters in Table 1 and to fit the
volume fraction of the sample with the initial regularity different than zero.

Unloading stage: λ̄ = 3.7
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Figure 11. Cyclic tensile test with random initial microstructure. Snapshots of the microstructure
evolution during the unloading stage (λ̄ = 3.7) showing (a) regularity distribution and (b) temperature
distribution (in Kelvin).

The effective temperature Θef is evaluated according to the principle of the volume averaging

Θef =
1
V

∫
B

Θ d V (108)
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and corresponding change with respect to the initial temperature is shown in Figure 12b.
The temperature strongly increases after reaching λ̄ = 4.3 since the crystallization process starts.
At the end of the loading stage, the model predicts a temperature which excellently agrees with the
experimental value and corresponds to the temperature change of 6 K. During the unloading phase,
the temperature gradually decreases with a moderate slope; however, it does not completely recover
its initial value. This discrepancy can be explained by the fact that the present model simulates a closed
system, whereas an exchange of the heat with the surroundings is possible in experiments [12].
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Figure 12. Comparison of the experimental results (in grey) and numerical results (in blue) for (a) the
crystallinity degree and (b) the temperature change.

6. Conclusions and Outlook

This contribution presents a thermodynamically consistent model for the SIC in unfilled polymers
under consideration of mechanical and thermal effects. The kinematics is defined by distinguishing
configurations due to elastic, crystalline, and thermal deformations, which yields the multiplicative
split of the deformation gradient into three contributions. The evolution equations of the internal
variables describing the regularity of polymer network and the flexibility of polymer chains as a
result of heat generation by crystallization are derived from the dissipation potential that has been
established specifically for this type of material. The assumption for Helmholtz energy includes the
Arruda–Boyce elastic energy term, the crystalline energy term, the purely thermal energy part, and
the mixed energy contribution dependent on temperature and thermal flexibility. Finally, the weak
form of the BVP including the balance of the linear momentum and balance of energy along with the
suitable boundary conditions is defined for the purpose of the numerical implementation of the model
proposed into the FEM-software.

The application of the model is illustrated by examples dealing with the microstructure evolution
during a cyclic tensile test. In the first example, the sample contains three nuclei embedded
in the amorphous matrix material. The aim of this academic test is to investigate the material
response affected by the SIC. The numerical results show the evolution of the network regularity,
the stress–stretch curve building a hysteresis, and the temperature change with similar trends as the
regularity. In addition, the snapshot of the temperature distribution at the end of the loading path
shows that heat is generated in the crystalline region, whereas the adjacent amorphous area cools
down. A further example simulates the behavior of a sample with the configuration to be expected in
a real amorphous polymer and enables the visualization of the SIC process by means of snapshots
in several load stages. In the temperature diagrams, the heat generation and absorption due to the
formation or degradation of the crystallization can be observed. It is noticeable that the temperature
especially increases at places with clusters of crystalline regions, while the amorphous matrix outside
the “active” areas hardly experiences any temperature changes at all. The obtained results also serve
as a basis for the evaluation of the crystallinity degree and of the effective temperature which plays an
important role in the experimental validation.
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Apart from the issues mentioned, the developed model also gives rise to other investigations. In a
first step, the assumptions for the Helmholtz energy and the dissipation potential can be extended in
order to simulate further effects occurring in filled and unfilled rubbers. Some important topics in this
context would be the Mullins effect, a deformation state beyond the elastic limit, induced anisotropy,
the Gough–Joule effect, and heat conduction [73,74]. In addition, the model proposed can be coupled to
the phase–field approach in order to represent the biphasic nature of material better. Internal variable
χ would correspond to the order parameter in that case, and its evolution could be controlled by the
same dissipation potential as proposed in the present work.
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