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SUMMARY

The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been 

implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling 

compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic 

first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in 

maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function 

results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally 

during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation 

that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function 

significantly perturbs NE architecture and increases chromosome segregation defects, resulting 

in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner 

nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation 

of the genome during early development.
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In brief

In this study, Shankar et al. demonstrate that defects in ESCRT machinery functions impair 

pruning of inner nuclear membrane invaginations that form normally after mitotic exit as the 

nuclear envelope undergoes expansion. These findings highlight a critical role for the ESCRT 

machinery in the maintenance of inner nuclear membrane morphology.

INTRODUCTION

The nuclear envelope (NE) is composed of two distinct lipid bilayers, an outer nuclear 

membrane (ONM) and an inner nuclear membrane (INM), that form an effective barrier 

between the genome of eukaryotic cells and cytoplasmic factors that might otherwise cause 

DNA damage and lead to genome instability (Martins et al., 2020; Ungricht and Kutay, 

2017). The ONM is continuous with the endoplasmic reticulum (ER), harboring many of 

the same proteins and lipids, although their morphologies differ substantially. The ONM 

is also continuous with the INM; they share a similar surface topology and are joined 

at small pores that mediate nucleocytoplasmic exchange. Nonetheless, numerous studies 

have highlighted that these connected bilayers exhibit unique proteomes and lipidomes, 

contributing to their distinct cellular functions (Ungricht and Kutay, 2015; Schirmer et 

al., 2013; Romanauska and Köhler, 2018). In particular, the INM plays a key role in 

regulating genome organization by facilitating the separation of peripheral heterochromatic 

DNA away from actively transcribing euchromatic DNA (Mekhail and Moazed, 2010; 
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Cabianca et al., 2019). The mechanisms underlying this phenomenon are not entirely clear, 

although specific chromatin-INM protein interactions likely play an important role (Barrales 

et al., 2016; van Steensel and Belmont, 2017; Iglesias et al., 2020). Consistent with this 

idea, impaired function of the nuclear lamina, which underlies the INM and contacts 

DNA directly, results in altered chromatin organization and gene transcription, as well as 

chromosome missegregation during mitosis (Smith et al., 2018; Kuga et al., 2014; Liu et 

al., 2000). Similarly, the loss of LEM (LAP2, emerin, MAN1) domain family members 

that also decorate the INM and associate with DNA-binding proteins, including barrier-to-

autointegration factor (BAF), can lead to disruptions in gene silencing and perturbations to 

chromatin architecture, which may ultimately contribute to chromosome segregation defects 

observed during cell division (Buchwalter et al., 2019).

Beyond a role in linking chromatin to the INM, the LEM domain protein LEMD2 has 

also been implicated in recruiting components of the endosomal sorting complex required 

for transport (ESCRT) machinery to gaps that remain in the NE after initial steps of its 

reformation during telophase (Gu et al., 2017; Halfmann et al., 2019; Webster et al., 

2016). At this phase of the cell cycle, LEMD2 binds to the ESCRT-III subunit CHMP7 

(Thaller et al., 2019; Capella et al., 2020), which has been implicated in the nucleation of 

heteropolymeric filaments composed of other ESCRT-III proteins, including Did2/CHMP1, 

Vps2/CHMP2, Vps24/CHMP3, Vps32/CHMP4, and Ist1, at NE holes to promote the 

membrane remodeling necessary for NE sealing (Vietri et al., 2015, 2020a; Olmos et 

al., 2015). The precise mechanism by which ESCRT-III promotes membrane closure in 

this context remains unknown, although rapid assembly and dynamic restructuring of 

Vps32 spiral filaments have been implicated in nearly all other ESCRT-mediated scission 

events that take place on endosomes, lysosomes, autophagosomes, the ER, and the plasma 

membrane (Vietri et al., 2020a; Shen et al., 2014). In the majority of these cases, the 

ESCRT-III complex, together with the Vps4 ATPase, promotes membrane bending away 

from the cytoplasm, functioning at the curved inner surface of bud necks to facilitate the 

close apposition of two bilayers, which ultimately enables spontaneous fission (Vietri et al., 

2020a). This topology contrasts more canonical budding events that promote the formation 

of cytoplasmic transport intermediates, including those mediated by COPI, COPII, and 

clathrin. However, several recent studies have argued that the ESCRT machinery also 

participates in a subset of outward membrane bending and scission events, raising the 

possibility that ESCRT-III activity may exhibit more plasticity than previously imagined 

(Allison et al., 2013; McCullough et al., 2015; Mast et al., 2018; Bertin et al., 2020).

Ruptures in the NE that occur during interphase as a result of mechanical stress or other 

insults similarly result in ESCRT recruitment (Halfmann et al., 2019; Denais et al., 2016; 

Raab et al., 2016). Under these conditions, current models suggest that LEMD2 present on 

the INM becomes exposed to the cytoplasm, enabling the capture of CHMP7 present on ER 

membranes (Thaller et al., 2019; Capella et al., 2020; Gu et al., 2017; Vietri et al., 2015). 

Additionally, phosphatidic acids present in the INM may further facilitate this redistribution 

of CHMP7 (Thaller et al., 2021; Olmos et al., 2016). Subsequent recruitment of additional 

ESCRT subunits enables rapid NE repair. Somewhat surprisingly, inhibition of ESCRT 

function following NE rupture fails to significantly impact cell viability, suggesting that 

multiple parallel systems are in place to ensure NE repair and limit DNA damage (Halfmann 
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et al., 2019; Denais et al., 2016; Raab et al., 2016). The LEM domain proteins, including 

LEMD2, emerin, MAN1, and Ankle2, may function in this context, acting downstream 

of BAF, which coats chromatin and establishes a foundation upon which NE reformation 

occurs (Halfmann et al., 2019; Young et al., 2020). However, a mechanism by which the 

LEM proteins could drive NE sealing independently of ESCRT function remains undefined. 

Lastly, the underlying nuclear lamina also contributes to maintenance of the NE in the face 

of damage. In the absence of DNA repair machinery, mechanically strained cells rely on 

both a functional lamin mesh-work and the ESCRT machinery for viability, even in the 

presence of LEM domain proteins (Denais et al., 2016; Raab et al., 2016). These studies 

collectively suggest that several partially redundant systems exist, which likely work in a 

coordinated manner to ensure rapid NE sealing and maintenance of genome integrity.

To date, most studies examining ESCRT function at the NE have used mammalian tissue 

culture cells or yeast, with relatively little information available in developing animal 

models. Here, we leverage the C. elegans early embryo, which features a highly stereotyped 

first mitotic division, enabling quantitative measurements of NE dynamics. We demonstrate 

that animals lacking CHMP7 exhibit minimal defects in NE resealing after mitosis but 

instead accumulate membrane invaginations emanating from the INM into the nucleoplasm. 

This perturbation is further exacerbated by a hypomorphic mutation in the single C. 
elegans lamin gene that underlies dilated cardiomyopathy (DCM) (Wiesel et al., 2008), 

with double mutants exhibiting penetrant embryonic lethality that results from catastrophic 

chromosome missegregation events during mitosis. Additionally, we identify Vps60/CHMP5 

as another component of the ESCRT machinery that associates with LEM domain proteins 

and functions redundantly with CHMP7 and Vps32/CHMP4 to maintain nuclei within 

the germline. Taken together, our data are consistent with a model in which the ESCRT 

machinery acts within the nucleus to perform quality control over the INM.

RESULTS

Deletion of CHMP7 impairs NE function and exacerbates chromosome misalignment and 
missegregation caused by a hypomorphic lamin allele during mitosis

To determine the roles for the ESCRT-III subunit CHMP7 during early animal development, 

we identified the single C. elegans homolog encoded by open reading frame T24B8.2 

and used CRISPR-Cas9 technology to engineer an insertion/deletion (indel) mutation 

immediately downstream of the initiation codon to generate the chmp7 (hz12) allele, which 

eliminates more than 95% of the native locus based on sequence analysis (Figure S1A). 

Animals were subsequently backcrossed 4 times to reduce the potential presence of off-

target edits. In parallel, we generated affinity-purified rabbit polyclonal antibodies directed 

against full-length CHMP7 and confirmed by immunoblot analysis that the deletion mutant 

no longer produced the protein (Figure 1A). To determine whether the loss of CHMP7 
affects development, we examined the relative rate at which animals progress through each 

stage of the C. elegans life cycle, calculated the brood size of gravid adults, and measured 

embryo viability. In each case, we found no significant differences between control and 

chmp7 mutant animals (Figure S1B). Together, these studies demonstrate that CHMP7 is not 
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essential in C. elegans unlike most other ESCRT-III subunits, including CHMP1, CHMP2, 

CHMP3, CHMP4, and CHMP6 (Frankel et al., 2017).

Since our previous work highlighted important roles for the ESCRT-III machinery during de 
novo multivesicular endosome (MVE) biogenesis that occurs in newly fertilized one-cell 

stage embryos and mediates the degradation of numerous integral membrane proteins, 

we next examined whether CHMP7 functions in the ESCRT-mediated transport of a well-

characterized, ubiquitin-modified cargo, caveolin-1 (Frankel et al., 2017). In contrast to 

the impacts of depleting other components of the ESCRT machinery, an examination of 

caveolin-1 trafficking in chmp7 knockout animals revealed no visible delays in cargo 

degradation (Figure 1B). Nevertheless, similar to prior observations made in mammalian 

cells (Horii et al., 2006), we found that endogenous CHMP7 localizes to endosomes that 

are positive for the ESCRT subunit Vps4 when its ATPase function is impaired, although 

this may be the result of a titration effect caused by the aberrant accumulation of other 

ESCRT proteins (Figure S1C). To determine whether CHMP7 contributes directly to MVE 

biogenesis, we conducted a series of electron-microscopy-based studies in control and 

chmp7 knockout embryos. In contrast to the effects of depleting other ESCRT-III subunits 

(Frankel et al., 2017), deletion of CHMP7 failed to impact intralumenal vesicle formation 

within MVEs (Figure 1C). These data strongly suggest that CHMP7 does not normally 

function on endosomes with other components of the ESCRT machinery, which is consistent 

with prior studies (Vietri et al., 2015; Bauer et al., 2015).

ESCRT-III has also been implicated in the regulation of NE sealing, both during its 

reformation following anaphase and its recovery after mechanical damage (Gu et al., 2017; 

Halfmann et al., 2019; Denais et al., 2016; Raab et al., 2016). In each case, CHMP7 

has been suggested to play a key role in recruiting Vps32 to initiate ESCRT-III filament 

assembly and membrane closure. To determine whether C. elegans CHMP7 may similarly 

play a role in regulating NE integrity, we leveraged a sensitized genetic background in 

which the nuclear lamina underlying the NE is compromised. Specifically, we used a strain 

that expresses a mutant form of the single C. elegans lamin gene (lmn1N209K), which 

corresponds to the N195K mutation in lamin A that underlies DCM and reduces the stability 

of the nuclear lamina (Wiesel et al., 2008; Penfield et al., 2018). Animals solely expressing 

this form of lamin exhibited elevated embryo lethality (~47% ± 13%) as compared with 

control animals. When additionally combined with a deletion in CHMP7, embryo lethality 

increased significantly (~90% ± 7%) (Figure 2A). This synthetic genetic interaction suggests 

that CHMP7 functions synergistically with the nuclear lamina to maintain NE structure and 

function. To our surprise, however, the penetrant embryo lethality was not accompanied 

by an increase in NE permeability, as quantitatively assayed by fluorescence intensity 

measurements of a GFP fusion to nuclear localized LacI following the first mitotic division 

(Figure 2B; Figures S1D and S1E). These findings argue against a solitary role for ESCRT 

function at the NE in membrane sealing.

Beyond providing rigidity to the NE, the nuclear lamina has also been shown to regulate 

chromatin dynamics and promote organization of the genome. In C. elegans, RNA 

interference (RNAi)-mediated depletion of lamin leads to chromosome misalignment and 

missegregation during mitosis, resulting in embryo lethality (100%) (Liu et al., 2000). 
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Animals expressing lmn1N209K also exhibited partial defects in mitotic chromosome 

dynamics, which correlates precisely with the level of embryo lethality we determined 

(Figure 2C) (Penfield et al., 2018). Strikingly, the additional absence of CHMP7 exacerbated 

mitotic chromosome alignment and segregation defects in animals expressing lmn1N209K 

(Figure 2C), leading to the accumulation of micronuclei in two-cell stage embryos more 

frequently (Figure 2D). Additionally, lmn1N209K mutant nuclei lacking CHMP7 appeared 

more elongated as compared with controls, particularly during migration ahead of the 

first mitotic division, consistent with a worsened defect in nuclear structure (Figure S1F). 

Together, these data suggest that CHMP7 possesses additional functions at the NE beyond 

regulating NE sealing.

CHMP7 acts at the INM in C. elegans embryos

Our data suggesting that there are coordinated roles for CHMP7 and the nuclear lamina to 

maintain genome integrity support a model in which both factors act within the nucleus. 

However, in mammalian tissue culture cells, overexpressed GFP-tagged CHMP7 localizes 

to the ER during most of the cell cycle and only transiently associates with the reforming 

NE after anaphase onset (Gu et al., 2017; Olmos et al., 2016; Vietri et al., 2020a). Similarly, 

when overexpressed in yeast, GFP-Chm7 localizes largely within the cytoplasm and is 

actively exported from the nucleus under steady-state conditions (Webster et al., 2016). 

To determine the localization of native C. elegans CHMP7 during early development, we 

immunostained embryos using our affinity-purified antibodies and demonstrated that it 

accumulates specifically at the NE throughout interphase (Figure 3A) despite the presence of 

a conserved nuclear export signal within its carboxyl-terminus (Figure S1G). To further 

refine our understanding of its distribution in living embryos, we used CRISPR-Cas9-

mediated genome editing to append a GFP tag onto the amino-terminus of endogenous 

CHMP7. Live cell imaging revealed an identical distribution as our immunostaining studies 

showed but also allowed us to demonstrate that CHMP7 transiently leaves the NE during 

NE breakdown (~180 s prior to anaphase onset) and associates in part with the ER until NE 

reassembly initiates (~45–50 s after anaphase onset) and the NE reseals (Figures 3B and 

3C). These data indicate that CHMP7 paralogs exhibit identical distributions in C. elegans 
embryos and human tissue culture cells during mitosis, transitioning from the broad ER 

network to the NE. However, during late telophase and the subsequent interphase, CHMP7 

remains associated with the NE in C. elegans, while it returns to the ER in human cells.

To determine whether CHMP7 associates with the ONM or the INM during interphase, 

we conducted a series of super-resolution imaging studies, leveraging stimulated emission 

depletion (STED) microscopy. Using animals expressing a GFP fusion to signal peptidase 

(SPCS1), which is concentrated specifically on the ONM and ER (Poteryaev et al., 

2005), we co-immunostained embryos at various stages of development with antibodies 

directed against endogenous CHMP7. In all cases, line scan analysis clearly demonstrated 

a juxtaposed localization of SPCS1 relative to CHMP7 around the nuclear periphery, with 

CHMP7 distributed on the inner face of the NE (Figure 3D). Consistent with these data, 

STED imaging also revealed a precise co-localization of CHMP7 with a functional GFP 

fusion to lamin, which decorates the INM (Figure S1H).
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Previous work has highlighted a role for the INM protein LEMD2 in recruiting CHMP7 

to the NE during late anaphase (Gu et al., 2017). To determine the role of the C. 
elegans LEMD2 paralog (LEM2) in regulating CHMP7 localization, we examined the 

distribution of GFP-CHMP7 in the tm1582 mutant, which introduces a large deletion into 

LEM2, eliminating the majority of exons 1 and 2 and causing a frameshift (Barkan et 

al., 2012). The resulting allele is predicted to produce only the first 21 amino acids of 

LEM2, truncating more than 95% of the protein. Using quantitative fluorescence imaging 

in one-cell stage embryos, we found that the absence of LEM2 resulted in a decline in 

CHMP7 accumulation at the NE as compared with control embryos prior to NE breakdown 

(Figure 3E). Moreover, we found that the recruitment of CHMP7 to the reforming NE 

during anaphase was delayed significantly, but not eliminated, in the absence of LEM2. 

Unlike control embryos in which CHMP7 and LEM2 both arrive at NE membranes ~45 s 

after anaphase onset, embryos lacking LEM2 accumulated CHMP7 at the NE ~105 s after 

anaphase onset (Figure 3F). In contrast, deletion of CHMP7 did not have an impact on 

the timing of LEM2 recruitment to the NE after anaphase (Figure S2A). Remarkably, the 

timing of CHMP7 accumulation in lem2 knockout embryos correlated precisely with the 

normal timing of C. elegans emerin (EMR1) accumulation at the NE during its reformation 

(Figure S2B). To determine whether EMR1 may function with LEM2 to recruit CHMP7 

onto the INM, we first measured the fluorescence intensity of NE-localized GFP-CHMP7 in 

embryos harboring a null allele of EMR1 (gk119). These studies revealed that EMR1 plays a 

relatively modest role in recruiting CHMP7 as compared with LEM2 (Figure 3E). However, 

following RNAi-mediated depletion of EMR1 in mutant embryos lacking LEM2, which was 

sufficient to result in penetrant embryo lethality, we found a dramatic reduction in CHMP7 

localization to the NE (Figures 3E and S2C). These data strongly suggest partially redundant 

functions for EMR1 and LEM2 in recruiting CHMP7 to the INM, although their affinities 

appear distinct. This difference may be a consequence of some LEM2 paralogs potentially 

harboring multiple CHMP7-binding regions both in their carboxyl-terminal winged-helix 

(WH) domains (Gu et al., 2017) and in their amino-termini (Webster et al., 2014, 2016), 

while EMR1 lacks a WH domain. Despite full-length EMR1 and LEM2 not being amenable 

to biochemical purification, we successfully demonstrated associations between CHMP7 

and both LEM domain proteins using yeast 2-hybrid studies, further supporting a model in 

which CHMP7 exploits multiple factors to associate with the INM (Figure 3G). Notably, 

CHMP7 also harbors a conserved hydrophobic motif near its amino-terminus, which was 

shown previously to mediate direct membrane association (Olmos et al., 2016), potentially 

accounting for residual binding of CHMP7 with the NE following inhibition of LEM2 and 

EMR1 (Figure S2D).

The ESCRT machinery regulates INM morphology

Our finding that CHMP7 localizes to the INM during interphase raises the intriguing 

possibility that it may function there to facilitate ESCRT-mediated membrane remodeling 

after NE resealing is complete. To explore this possibility, we first used animals expressing a 

functional, GFP-tagged form of lamin to examine INM morphology during NE reformation 

and expansion that accompanies the first C. elegans mitotic division (Link et al., 2018). 

In control embryos, we found that lamin begins to concentrate on segregated chromatin 

discs as cleavage furrow ingression initiates (starting ~50 s after anaphase onset), nearly 
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equivalent to the timing of CHMP7, LEM2, and Nup54/NPP1 accumulation at the reforming 

NE (Figures 4A and S2E). Over the subsequent ~300 s, the NE expanded dramatically, 

increasing in surface area by approximately 4-fold. During early phases of this expansion 

process, we reproducibly identified numerous invaginations emanating from the INM 

(greater than 400 nm in length) that penetrated the nucleoplasm in control embryos (Figures 

4A and 4B). However, the presence of these invaginations declined significantly as NE 

expansion proceeded (Figure 4B). By contrast, in the absence of CHMP7, the presence of 

lamin-positive NE invaginations persisted throughout NE expansion, continuing even after 

the NE reached it maximal size in two-cell stage embryos (Figures 4B and 4C). Using 

electron tomography, we analyzed NE morphology, revealing numerous small (on average, 

336 ± 84 nm in length) and narrow (25 ± 3 nm in width) invaginations, which decorated 

the INM in control embryos, while the ONM exhibited a relatively smooth topology (Figure 

4D). In animals lacking CHMP7, INM tubulation was exacerbated, highlighted by INM 

tubules that were up to nearly 1 μm in length and 34 nm (±5 nm) wide (Figure 4E). These 

data indicate that the ESCRT machinery plays a role in regulating INM morphology, akin to 

a quality control mechanism.

We also tested the impact of depleting the core ESCRT-III subunit Vps32/CHMP4 on NE 

morphology. To our surprise, Vps32/CHMP4 knock down that was sufficient to cause 100% 

embryo lethality failed to impact INM quality control as compared with control embryos 

(Figure 4B). However, depletion of Vps32/CHMP4 in animals lacking CHMP7 resulted 

in more frequent INM invaginations, as observed by fluorescence light microscopy, many 

of which appeared fragmented (12 out of 27 invaginations examined using multiplane 

imaging), resulting in the accumulation of untethered, lamin-positive tubules within the 

nucleoplasm (Figure 4F). Depletion of the Vps4 ATPase was also sufficient to cause 

an increased number of INM invaginations, which were further exacerbated in size and 

frequency by the additional loss of CHMP7 (Figures S2F and S2G). Together, these data 

suggest that multiple ESCRT components function in parallel to restrict the prolonged 

presence of INM invaginations.

Since weakening of the nuclear lamina is incompatible with the viability of embryos 

lacking CHMP7 and results in penetrant chromosome segregation defects, we additionally 

determined how NE morphology was affected under these conditions. For this work, we 

examined the distributions of two integral membrane proteins, SPCS1 to mark the ONM 

and SUN1, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex, 

to mark the INM (Malone et al., 2003). Based on diffraction-limited confocal imaging, 

one-cell stage embryos expressing lmn1N209K failed to exhibit nucleoplasmic membrane 

tubules that harbored either marker (Figures 5A and 5B). When CHMP7 was additionally 

eliminated however, we reproducibly identified SUN1-positive NE invaginations (Figure 

5B). In contrast, SPCS1 was not found on membrane tubules penetrating the nucleoplasm 

under these conditions, suggesting that the invaginations form specifically from the INM 

(Figure 5A). These studies contrast our prior work highlighting the impact of excess 

phosphatidylinositol (PI) synthesis, which leads to the invasion of ER membranes into 

the nucleoplasm (Penfield et al., 2020). To further confirm this distinction, we depleted 

enzymes that mediate PI production in animals lacking either CHMP7 or LEM2 and 
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demonstrated that stabilization of nuclear membrane invaginations resulting from impaired 

ESCRT function was unaffected (Figure S2H).

To better understand the impact to NE morphology in mutant animals that lack CHMP7 

and express lmn1N209K as their sole source of lamin, we conducted a series of electron-

tomography-based studies, which highlighted the presence of complex networks of 

membrane tubules emanating specifically from the INM (Figures 5C and 5D). Moreover, we 

reproducibly identified nascent budding structures and intranuclear vesicles approximately 

55.4 nm (±2.6) in diameter at the termini of multiple tubules, suggesting that impaired 

ESCRT function results in kinetically delayed vesiculation of INM invaginations (Figure 

5D; Video S1). These data strongly suggest that the ESCRT machinery remodels the INM to 

regulate its morphology.

Multiple ESCRT-III subunits act redundantly at the INM to facilitate nuclear maintenance

To determine which components of the late-acting ESCRT machinery function at the INM, 

we leveraged an assay developed previously in which the NE is acutely perturbed by 

partial RNAi-mediated depletion of lamin (Penfield et al., 2018). Under these conditions, 

LEM2 hyperaccumulates at one or more of the subdomains of the NE, promoting local 

ESCRT-III recruitment. Using our toolbox of reagents directed against the endogenous 

ESCRT-III subunits, we systematically demonstrated that CHMP1/Did2, CHMP2/Vps2, 

CHMP3/Vps24, CHMP4/Vps32, CHMP5/Vps60, CHMP7, Ist1, and Vps4 are recruited 

to LEM2-positive structures at the NE (Figures 6A and 6B). In contrast, we failed to 

find evidence for CHMP6/Vps20 accumulation at these sites, consistent with the idea that 

CHMP7 substitutes for it in promoting ESCRT-III complex assembly at the NE. In all cases, 

hyperaccumulation of ESCRT-III subunits at the NE was at least partially dependent upon 

the presence of CHMP7, emphasizing its importance to downstream ESCRT-III assembly 

(Figures 6B, 6C, and S3A). Notably, embryos lacking CHMP7 failed to accumulate LEM2 

at NE subdomains to a similar extent as found in control embryos (Figure 6D). These 

data suggest that the ESCRT machinery and LEM domain proteins are at least partially 

interdependent for their localized accumulation at the NE under reduced levels of lamin 

expression. In addition, similar to the impact of inhibiting CHMP7, partial lamin depletion 

also results in an increased frequency of NE invaginations (Figure S3B), and we found 

that components of the ESCRT machinery associated with these nucleoplasmic membrane 

tubules, consistent with their function in membrane remodeling within the nucleus (Figures 

6A and 6E).

Based on the large number of ESCRT-III subunits involved in INM quality control and 

their potential for redundancy in membrane remodeling processes, we questioned whether 

the relatively subtle phenotypes associated with the deletion of CHMP7 may result from 

the existence of redundant mechanisms underlying ESCRT-III complex assembly. To test 

this idea, we first used yeast 2-hybrid studies to screen for additional components of the 

ESCRT machinery that could associate with the LEM domain proteins LEM2 and EMR1. 

In addition to CHMP7 and Vps32/CHMP4, which have both been previously shown to 

associate with LEM2 homologs in other systems (Gu et al., 2017; Webster et al., 2016), 

we found that Vps60/CHMP5 also bound to both LEM domain proteins, while none of the 
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other ESCRT-III subunits exhibited this capability (Figures 7A and S3C). Additionally, yeast 

2-hybrid studies showed that Vps60/CHMP5 binds to CHMP7, similar to Vps32/CHMP4 

(Figures 7A and S3C), and appears to be highly promiscuous in binding other ESCRT-III 

subunits (Figure S3D), consistent with previous immunoprecipitation studies performed 

from yeast extracts (Heinzle et al., 2019).

To determine the role of Vps60/CHMP5 at the NE, we first used CRISPR-Cas9 to 

incorporate an indel just downstream of its initiation codon, causing an early frameshift 

predicted to result in truncation of the protein immediately upstream of its first helical 

domain (Figure S3E). Immunoblot analysis confirmed the absence of Vps60/CHMP5 at the 

protein level in knockout animals (Figure 7B). Similar to one-cell stage embryos lacking 

CHMP7, we failed to identify a function for Vps60/CHMP5 in cargo sorting at MVEs based 

on the trafficking and degradation rate of caveolin-1, and elimination of Vps60/CHMP5 

did not dramatically impact embryo viability or brood size relative to control animals 

(Figures S3F and S3G). To determine whether Vps60/CHMP5 acts redundantly with other 

components of the ESCRT machinery, we depleted it in animals lacking CHMP7 and 

created a double mutant lacking both Vps60/CHMP5 and CHMP7. These animals were 

fertile and continued to produce viable progeny, although we consistently observed an 

increased frequency of NE invaginations (Figures 7C and S3B), similar to that observed in 

animals lacking CHMP7 and depleted of Vps32. Additionally, we identified a significant 

increase in germline apoptosis, as indicated by an elevated number of compartments 

encircled by the engulfment protein CED1/SREC (Figures 7D and 7E). Inhibition of 

Vps32/CHMP4 resulted in a similar increase in germline apoptosis, which was not further 

exacerbated by the additional removal of Vps60/CHMP5 and CHMP7 (Figure 7D). These 

data suggest that all three ESCRT-III subunits function in a common pathway to regulate 

germline apoptosis. In contrast, depletion of Vps20/CHMP6, which functions on endosomes 

but not the NE, failed to increase the frequency of germline apoptosis as compared with 

controls (Figure S3H). Taken together, these data further indicate that the ESCRT machinery 

plays a critical function to ensure the proper maintenance of nuclear architecture.

DISCUSSION

The human ESCRT-III components are sometimes referred to as chromatin-modifying 

proteins (CHMPs), based largely on the identification of CHMP1/Did2 as a putative 

binding partner for Polycomb-group protein Polycomblike (Pcl), a factor important for 

gene silencing during development (Stauffer et al., 2001). Subsequently, another screen 

implicated both CHMP1/Did2 and CHMP5 in chromatin remodeling, but these studies 

provided limited mechanistic insights into how the ESCRT machinery contributes to 

chromatin organization (Tsang et al., 2006). Most recently, ESCRT-III and Vps4 were 

implicated in resolving attachments between heterochromatin and a LEM2 complex in 

fission yeast by promoting the disengagement of CHMP7 from LEM2 (Pieper et al., 

2020). As release of membrane-chromatin contacts has been demonstrated to be essential 

for normal chromosome segregation during mitosis, these findings provide one possible 

explanation for genomic instability that arises following inhibition of ESCRT function 

(Champion et al., 2019). Other work has suggested that a complex of CHMP1B and Ist1 can 
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associate directly with nucleic acids, although it remains unclear whether this charge-based 

interaction holds physiological relevance in cells (Talledge et al., 2018).

Our findings support a distinct model to describe how the ESCRT machinery regulates 

chromatin organization, which does not rely on a direct association between these membrane 

remodeling factors and DNA or DNA-associated proteins. Instead, through its ability to 

promote the vesiculation and clearance of nucleoplasmic membrane invaginations, ESCRT-

III complexes together with Vps4 to ensure the normal topology of the INM, which is 

critical for heterochromatic gene regulation (Buchwalter et al., 2019). Our work is consistent 

with a model in which INM tubules penetrate persistently into the nuclear interior in 

the absence of ESCRT function. As the membrane tubules contain factors that bind and 

organize heterochromatic DNA, this abnormal topology may disrupt the normal separation 

of heterochromatic and euchromatic DNA. This impact is further exacerbated under 

conditions where the nuclear lamina is weakened. Based on prior work, such a disruption to 

chromatin organization may impact its ability to compact properly during mitosis, leading 

to defects in chromosome segregation and cell death (Batty and Gerlich, 2019). Notably, 

inhibition of ESCRT-III or Vps4 has also been shown to affect centrosomes, causing 

the accumulation of multipolar or monopolar spindles, which would further contribute to 

chromosome missegregation during mitosis (Morita et al., 2010). Together, our studies 

combined with previous work in the field highlight the multiple integral roles that the 

ESCRT machinery plays to maintain genome integrity. Alternatively, as loss of ESCRT 

function causes significant perturbations to nuclear membrane morphology, especially when 

combined with impaired nuclear lamina assembly, the effect on chromatin organization 

may be indirect. Instead, the irregular INM topology following inhibition of the ESCRT 

machinery may impact the ability of the NE to withstand dynein-mediated pulling forces 

required to position nuclei during zygotic development (Penfield et al., 2018), which 

could promote increased chromosome missegregation observed during the first embryonic 

division.

Despite these important nuclear functions, the major ESCRT-III nucleator at the NE, 

CHMP7, is not essential for development or viability in C. elegans, unlike its endosomal 

counterpart Vps20/CHMP6 (Frankel et al., 2017). This finding strongly suggests a 

redundancy in processes regulated by the ESCRT machinery at the NE, including resealing 

and INM remodeling. In particular, several LEM-domain-containing proteins have been 

implicated in resolving disruptions to the NE, and their collective inhibition has been shown 

to strongly perturb NE architecture (Halfmann et al., 2019). In contrast, loss of individual 

ESCRT-III components, including the key scaffolding protein Vps32/CHMP4 that plays 

a central role in all other ESCRT-mediated membrane remodeling events (Vietri et al., 

2020a), results in relatively minor impacts to the NE in embryos. Only upon co-depletion 

of multiple ESCRT-III subunits did we identify severe consequences to NE morphology, 

which were limited to the INM. These data highlight an important contrast between INM 

remodeling during embryogenesis, in which different ESCRT-III subunits likely act in a 

partially redundant manner, and intralumenal vesicle (ILV) formation at endosomes that 

requires non-redundant activities of multiple individual ESCRT-III components (Frankel et 

al., 2017). Topologically, membrane scission at these two sites occurs in opposite manners. 

At the INM, the ESCRT machinery likely functions at the outer surface of membrane 
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tubules, akin to the localization of dynamin during endocytosis from the plasma membrane, 

while ILV formation requires ESCRT activity on the inner surface of a bud neck (Vietri et 

al., 2020a; Mettlen et al., 2018). The differing complexities associated with these unique 

membrane rearrangements likely necessitate distinct requirements for ESCRT-III assembly 

and activity, with ILV formation imposing stricter demands for polymer nucleation and 

dynamic restructuring to ultimately achieve the close membrane apposition needed for 

spontaneous vesicle fission. In contrast, since a majority of ESCRT-III subunits, including 

CHMP1, CHMP2, CHMP3, CHMP4, CHMP7, and Ist1, exhibit an ability to oligomerize 

on bent membranes and alter bilayer organization (McCullough et al., 2015; Pfitzner et al., 

2020; Nguyen et al., 2020; von Filseck et al., 2020; von Appen et al., 2020; Saksena et al., 

2009; Mierzwa et al., 2017), our findings suggest that they can act redundantly to facilitate 

INM tubule vesiculation. Given their overlapping roles, it is perhaps unsurprising that the 

activities of ESCRT-III complexes on the INM have been overlooked until now. Notably, our 

data further support a role for Vps60/CHMP5 at the INM, likely via an ability to polymerize 

on membranes and facilitate scission, although this remains to be demonstrated.

In contrast to embryonic cells, which are constantly undergoing cycles of NE assembly 

and disassembly, germline nuclei that share a common syncytium and only divide in the 

mitotic distal tip appear highly vulnerable to the loss of nuclear ESCRT-III activity. One 

explanation for this finding relates to the susceptibility of pachytene-stage germ cells to 

undergo DNA-damage-induced apoptosis, unlike somatic cells (Gartner et al., 2000). The 

absence of even a single nuclear ESCRT-III subunit such as Vps32/CHMP4 may increase 

the likelihood of genotoxic stress within the germline either due to an impaired ability to 

reseal the NE in response to damage that occurs normally within the syncytium or a defect 

in INM morphology that results in perturbations to heterochromatin organization (Link et 

al., 2018). Irrespective of the specific pathway leading to increased apoptosis, however, the 

large number of germ nuclei produced in C. elegans limits the overall impact of ESCRT-III 

inhibition on the ability to continue embryo production.

At a mechanistic level, CHMP7 has been suggested to undergo LEM2-stimulated polymer 

formation to promote NE sealing after its assembly following chromosome segregation (von 

Appen et al., 2020). In contrast, C. elegans embryos lacking CHMP7 failed to exhibit a 

delay in the timing of NE compartmentalization, indicating a more limited role for the 

ESCRT machinery during this essential process in some animal cells. Instead, under these 

conditions, NE invaginations into the nucleoplasm persisted, suggesting a kinetic delay 

in the pruning of INM invaginations by ESCRT-III during interphase, a finding that is 

consistent with prior work conducted using mammalian cells (Arii et al., 2018). Surprisingly, 

a recent study found that constitutive co-assembly of LEM2-CHMP7 complexes at the INM 

results in exaggerated membrane distortions that compromise nuclear integrity (Vietri et 

al., 2020b). However, this effect may be a consequence of CHMP7 overexpression within 

the nucleus, which may promote ESCRT-III mediated membrane remodeling in a non-

physiological manner (Vietri et al., 2020b). Nevertheless, this finding raises the interesting 

question of how nuclear ESCRT-III activity is properly tuned to enable maintenance of 

INM topology. One possibility is that the CHMP7-LEM2 interaction is tightly regulated 

to prevent hyperactivity during interphase. Consistent with this idea, CHMP7 has been 

shown to be phosphorylated in a cell-cycle-dependent manner, which limits its ability to 
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co-polymerize with LEM2 (Gatta et al., 2021). Additionally, CHMP7 association with 

phosphatidic acid and/or the ESCRT-III regulator CC2D1B may also affect its function 

(Thaller et al., 2021; Ventimiglia et al., 2018). Alternatively, the presence of highly bent 

membranes within the nucleus may be sufficient to activate the ESCRT machinery (Fyfe et 

al., 2011). Based on our finding that co-inhibition of CHMP7 and CHMP4 results in the 

accumulation of deep INM invaginations, it is unlikely that ESCRT-III activity is responsible 

for their formation. Instead, these tubules may form during the initial stages of NE 

reformation when heterochromatin and euchromatin remain intertwined and INM proteins 

begin to associate with heterochromatic factors scattered throughout the decondensing DNA 

mass (Buchwalter et al., 2019). In this model, the ESCRT machinery acts to vesiculate 

remaining tubules as the chromatin becomes organized within the expanding nucleus. Based 

on cryoelectron microscopy (cryo-EM) studies, small ER-derived intranuclear vesicles are 

routinely observed in mammalian cells (Hoffman et al., 2020), which may be a product of 

ESCRT-III activity within the nucleus. Future studies aimed at defining the origin of these 

vesicles will be necessary to resolve this question unambiguously.

Limitations of the study

Although our data strongly support a model in which the ESCRT machinery functions at 

the INM to prune membrane invaginations that form during NE reformation, the precise 

mechanisms by which ESCRT-III complexes promote membrane scission at this site remain 

unclear. Future studies leveraging high-resolution cryo-EM will likely be necessary to 

define the precise distribution of ESCRT-III filaments during this process. Additionally, 

reconstituting the interactions between CHMP7, Vps60/CHMP5, and the LEM-domain-

containing proteins will help to determine how these factors co-assemble to promote 

efficient ESCRT-III polymer formation and membrane remodeling. Unfortunately, we were 

unable to biochemically purify soluble Vps60/CHMP5, LEM2, and EMR1 to resolve this 

question. This limits our ability to understand whether Vps60/CHMP5 polymers form at the 

INM during its formation and expansion after chromosome segregation. Additionally, a clear 

understanding of the exacerbation of mitotic chromosome alignment and segregation caused 

by CHMP7 deletion in the lmn1N209K mutant background remains to be defined. This is 

complicated by defects in NE morphology observed in the double mutant animals analyzed, 

leaving open questions around the mechanism by which ESCRT-III directly facilitates 

genome maintenance.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Anjon Audhya (audhya@wisc.edu).

Materials availability—All reagents generated in this study are available from the Lead 

Contact with a Material Transfer Agreement.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.
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• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans strains were grown on Nematode Growth Media (NGM) agar plates seeded with 

E. coli OP50 and maintained at 20°C. Genome editing to create chmp7 (hz12), istr1 (hz16) 

and vps60 (hz20) deletion alleles, as well as an amino-terminal GFP fusion with endogenous 

CHMP7, was carried out in the Bristol strain N2 (or a derivative) as described previously 

(Paix et al., 2015). Alleles were combined using standard genetic methods.

METHOD DETAILS

Larval development assay—Larval development was assayed by monitoring the growth 

rate of individual 2-cell stage embryos through adulthood. Embryo lethality was calculated 

during a 24-hour period after animals began egg laying, and brood size was measured based 

on the sum of hatched and unhatched embryos laid during that time interval.

RNA interference (RNAi)—Templates for double stranded RNAs used in RNAi 

experiments were generated by PCR from N2 genomic DNA or cDNA. L4 larvae were 

incubated in dsRNA for 24 hours in humidified chambers and subsequently recovered 

for approximately 48 hours before imaging or used for brood size and lethality assays. 

For VPS32, EMR1, and CDGS1 depletions, worms were recovered onto plates seeded 

with bacteria expressing the corresponding dsRNA. For all other depletions, worms were 

recovered onto plates seeded with OP50 or HT115.

Antibody production—Production of rabbit polyclonal antiserum directed against 

CHMP7 and Vps60/CHMP5 was outsourced (Pacific Immunology, Ramona, CA). Rabbits 

were immunized with GST fusions to each protein, which were purified from Escherichia 

coli. Affinity purification was carried out as described previously (Mayers et al., 2013). 

Antibodies directed against other C. elegans ESCRT proteins have been described previously 

(Shen et al., 2014; Frankel et al., 2017; Fyfe et al., 2011; Schuh et al., 2015), and antibodies 

against β-actin (Sigma-Aldrich, St. Louis, MO) and GFP (Rockland Immunochemicals Inc, 

Pottstown, PA) were obtained from commercial sources. Antibodies were used at a final 

concentration of 1 μg/mL for immunofluorescence and immunoblotting studies.

Fluorescence imaging studies—Confocal imaging was conducted either using a 

Prairie Technologies swept-field confocal scanhead mounted onto a Nikon Eclipse Ti-E, 

equipped with Planapo oil immersion objectives and a CoolSNAP HQ2 CCD camera 

or a Yokogawa W1 confocal scanhead mounted onto a Nikon Ti2 microscope with a 

Hamamatsu Orca Flash 4 camera. STED microscopy was performed on a Leica TCS 

SP8 using a 775 nm depletion laser, a 100x, 1.4NA Planapo oil immersion objective, 

and HyD detectors. For immunofluorescence studies, embryos were fixed using cold 

methanol and stained as described previously (Audhya et al., 2007). Alternatively, for 

live imaging, dissected embryos were mounted onto 2% agarose pads and imaged under 

minimal compression in M9 minimal medium (Wang and Audhya, 2014). For germline 

Shankar et al. Page 14

Cell Rep. Author manuscript; available in PMC 2022 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examination, animals were anesthetized for 15–30 minutes in freshly prepared 0.1% Tricaine 

and immobilized in polystyrene beads on 4% agarose pads. For assessment of nuclear 

envelope permeability after mitotic exit, data analysis was performed using ImageJ. Gross 

chromosomal segregation defects were scored manually.

Electron microscopy studies—C. elegans were loaded into 100 μm deep aluminum 

sample holders (Technotrade, Manchester, NH) coated with 1-hexadecene, and a suspension 

of OP50 bacteria was used as a cryoprotectant. High pressure freezing was carried out 

using a Balzers HPM 010 or Leica EM ICE. After freezing, samples were substituted into a 

solution of 1% OsO4 and 1% H20 in acetone over 3–4 hours (McDonald, 2014), followed 

by centrifugation into increasing concentrations of epoxy EMbed 812 resin (Electron 

Microscopy Sciences, Hat-field, PA) to allow resin infiltration and polymerization (60°C for 

24 hours). Animals were mounted on BEEM capsules and sectioned along the longitudinal 

axis. Sections were collected on copper slot grids coated with Pioloform or Formvar 

film for transmission electron microscopy (~80 nm) or electron tomography (~300 nm). 

Samples were post-stained with 8% uranyl acetate in 50% ethanol, followed by Reynold’s 

lead citrate. For tomography, sections were additionally floated on drops containing 10 

nm colloidal gold particles, to aid in tomographic reconstruction (Frankel et al., 2017). 

Samples (~80 nm sections) were imaged using a Philips CM120 TEM operated at 80 kV 

and equipped with an AMT Biosprint 12 series digital camera. Dual-axis tilt series were 

acquired on a 300 kV Tecnai TF-30 equipped with a Gatan 2k × 2k Ultrascan camera using 

SerialEM software. Tilt series images were captured at 23000X (0.467 nm/pixel) from −60° 

to +60° at 1° increments (Frankel et al., 2017). Reconstruction and modeling of tilt series 

was carried out using IMOD and 3dmod software.

Yeast two-hybrid studies—All plasmids used were sequence verified. Transformed 

yeast strains (James et al., 1996) were grown overnight at 30°C in selective media, diluted 

to an optical density of 0.25 in minimal media, and subsequently 10-fold serial dilutions 

were prepared. Each dilution was spotted onto selective plates and incubated at 30°C for ~72 

hours before imaging.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was conducted using Graphpad Prism 8.0 software. Linescan analyses 

and other fluorescence intensity measurements were conducted using Nikon Elements or 

ImageJ software, following background subtraction. A paired t-test was used to compare two 

conditions, while multiple conditions were compared using a two-way ANOVA followed by 

Tukey’s multiple comparison test or Dunnett’s test. See figure legends for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Chmp7 becomes essential when the nuclear lamina is partially compromised

• Chmp7 localization is mediated by two LEM domain proteins

• Impaired ESCRT function increases inner nuclear membrane invaginations

• Multiple ESCRT-III subunits function to maintain inner nuclear membrane 

morphology
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Figure 1. Loss of CHMP7 does not impair MVE biogenesis or ESCRT-mediated endosomal 
protein sorting
(A) Representative immunoblot of extracts generated from control and chmp7 (hz12) mutant 

animals (n = 3 each) using antibodies directed against CHMP7 (top) and beta-actin (bottom; 

load control).

(B) Anesthetized control and CRISPR-Cas9-edited animals harboring deletion mutations 

in CHMP7 or ISTR1 and expressing a GFP fusion to C. elegans caveolin-1 were imaged 

using swept-field confocal microscopy. Caveolin-1 is normally degraded prior to embryos 

reaching the two-cell stage (Frankel et al., 2017). The relative positions of oocytes and 

embryos are highlighted. Images are representative of at least 10 animals of each genotype. 

Bar, 10 μm.

(C) High-pressure frozen control and chmp7 (hz12) mutant animals were processed for 

thin section electron microscopy to visualize MVEs within the one-cell stage embryo. 

Micrographs are representative of at least 50 MVEs. Bar, 200 nm. A summary of MVE and 

ILV sizes is also shown.

See also Figure S1.
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Figure 2. CHMP7 becomes essential under conditions where the nuclear lamina is weakened
(A) Control and chmp7 (hz12) mutant animals expressing a RNAi-resistant form of lamin 

(either wild-type or mutant N209K) were depleted of endogenous lamin. After 48 h, 

hermaphrodites were moved to individual plates and allowed to lay eggs. The percentage of 

embryos that failed to hatch in each case was calculated, and all experiments were repeated 

at least two times. Error bars represent mean ± SEM. **p < 0.01 and *p < 0.05, compared 

with controls using an ANOVA with Tukey’s multiple comparison test.

(B) The relative nuclear versus cytoplasmic fluorescence ratio of a GFP fusion to LacI was 

measured at different timepoints following anaphase onset in control and mutant embryos 

as shown. Error bars represent mean ± SEM. No statistically significant differences were 

observed at any time point. Bar, 5 μm.

(C) Chromosome dynamics were analyzed in control and chmp7 (hz12) mutant embryos 

expressing an mCherry fusion to histone H2B and a RNAi-resistant mutant form of lamin 

(N209K) following depletion of endogenous lamin. Images shown are representative of the 

major defects identified, the frequencies of which are highlighted in the bar graph. Bar, 5 

μm.
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(D) The percentages of two-cell stage embryos harboring micronuclei following the first 

mitotic division were calculated for control and chmp7 (hz12) mutant animals expressing the 

mutant, RNAi-resistant form of lamin (N209K) following depletion of endogenous lamin.

See also Figure S1.
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Figure 3. CHMP7 localizes to the inner nuclear membrane in a manner that depends upon 
multiple LEM domain proteins
(A) Wild-type embryos were fixed and stained using antibodies directed against CHMP7 

(green) and nuclear pore complexes (NPCs; recognized by monoclonal antibody mAb414; 

red) and imaged using confocal microscopy. Images are representative of more than 10 

embryos analyzed. Bar, 10 μm; inset bar, 2 μm.

(B) Genome-edited embryos expressing native levels of a GFP fusion to CHMP7 (green) 

and a mCherry fusion to histone H2B (red) were imaged using time-lapse confocal 

microscopy (n = 10 animals). Time relative to anaphase onset is shown (bottom left of each 

image). Arrows highlight the initial concentration of CHMP7 on chromatin discs following 

anaphase onset based on line scan analysis. Bar, 10 μm.

(C) Genome-edited embryos expressing native levels of a GFP fusion to CHMP7 (green) 

and a mCherry fusion to the ER protein SPCS1 (red) were imaged using confocal 

microscopy (n = 10 animals). Representative cortical (right and bottom left) and medial 

(top left) sections are shown (time relative to anaphase onset). Bar (cortex), 10 μm; bar 

(medial), 5 μm; bar (2.5× zoom), 5 μm.

(D) Embryos expressing a GFP fusion to SPCS1 (ER marker) were fixed and stained 

using antibodies directed against CHMP7 (red) and GFP (green) and imaged using STED 

microscopy. Images are representative of more than 10 embryos analyzed. Line scan 
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analysis was used to define the distribution of CHMP7 on the inner nuclear membrane 

(INM) relative to SPSC1, which is present on the outer nuclear membrane (ONM). Bar, 2 

μm.

(E) Genome-edited embryos expressing native levels of a GFP fusion to CHMP7 (green) in 

the presence or absence of LEM domain proteins were imaged using confocal microscopy 

(left). Times indicated are relative to anaphase onset. The ratio of fluorescence intensities 

at the nuclear membrane as compared with the nucleoplasm is shown (right; prior to 

pronuclear meeting and before nuclear envelope (NE) structure is severely perturbed). Error 

bars represent mean ± SEM. **p < 0.01 and *p < 0.05, as compared with control, using an 

ANOVA with Dunnett’s test. Bar, 10 μm.

(F) The timing of CHMP7 accumulation on chromatin after anaphase onset is shown in 

control embryos and embryos lacking LEM2. Error bars represent mean ± SEM. **p < 0.01, 

as compared with control, using a t test.

(G) Yeast co-expressing plasmids encoding CHMP7 (bait fusion) and two distinct prey 

constructs were plated (10-fold dilutions, left to right) on either selective (−ura, −leu, −his) 

or histidine-supplemented medium for 72 h (n = 3).

See also Figures S1 and S2.
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Figure 4. Inhibition of ESCRT-III function leads to increased persistence of nuclear membrane 
invaginations
(A) Embryos expressing a functional GFP fusion to lamin were imaged using time-lapse 

confocal microscopy (n = 10 animals). Time relative to anaphase onset is shown. An arrow 

highlights the initial concentration of lamin on chromatin discs following anaphase onset 

based on line scan analysis, and an arrowhead indicates a nuclear membrane invagination 

that forms normally during NE reformation and expansion. Bar, 10 μm; inset bar, 5 μm.

(B) The number of nuclear membrane invaginations was quantified during NE expansion in 

control two-cell stage embryos and embryos lacking components of the ESCRT machinery. 

Time shown is relative to anaphase onset. Error bars represent mean ± SEM. **p < 0.01, as 

compared with control at an identical time point after anaphase onset, using an ANOVA with 

Dunnett’s test.

(C–F) Embryos expressing a functional GFP fusion to lamin in the presence or absence of 

specific ESCRT-III components were imaged using time-lapse confocal microscopy (n = 10 

animals each at a minimum). Time relative to anaphase onset is shown. Arrowheads indicate 

nuclear membrane invaginations or severed lamin-positive nuclear membrane tubules that 

persist during NE reformation and expansion. Bars, 10 μm; boxed inset bars, 2 μm.
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(D and E) Representative nuclear invaginations identified in control embryos and embryos 

lacking CHMP7 were imaged using electron tomography (more than 5 embryos examined 

each). An individual slice and reconstructed models (bars, 100 nm) are shown.

See Figure S2.
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Figure 5. ESCRT-III specifically remodels the INM and promotes the formation of intranuclear 
vesicles
(A and B) Control and chmp7 (hz12) null embryos expressing a GFP fusion to SPCS1 (A) 

or a mRuby fusion to SUN1 (B) and the mutant, RNAi-resistant form of lamin (N209K) 

were imaged using confocal microscopy 370 s after anaphase onset following depletion of 

endogenous lamin (n = 10 embryos each). An arrowhead indicates an INM invagination (B). 

Bars, 10 μm.

(C and D) Representative INM invaginations identified in embryos lacking CHMP7 and 

expressing a mutant, RNAi-resistant form of lamin (N209K) were imaged using electron 

tomography following depletion of endogenous lamin (more than 5 embryos examined). 

Individual slices (bars, 50 nm in C and 100 nm in D) and a reconstructed model (bar, 

100 nm) are shown. Arrows in (D) highlight the formation of intranuclear vesicles from 

membrane invaginations.

See also Figure S2 and Video S1.
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Figure 6. ESCRT-III accumulates on INM invaginations
(A, C, and E) Embryos expressing a mCherry fusion to LEM2 (red) were fixed and stained 

using antibodies directed against CHMP2/Vps2 (green; A and C) or CHMP1/Did2 (green; 

E) and imaged using confocal microscopy following partial depletion of lamin in the 

presence (A and E) or absence (C) of CHMP7. Images are representative of more than 

10 embryos analyzed. Bars, 10 μm (A and C) or 2 μm (E); inset bars, 2 μm.

(B) A summary highlighting the ESCRT-III components that accumulate on the NE together 

with LEM2 and their dependence on CHMP7.

(D) Embryos expressing a mCherry fusion to LEM2 were imaged live using confocal 

microscopy 370 s after anaphase onset, following partial depletion of lamin in the presence 

and absence of CHMP7. Images are representative of more than 10 embryos analyzed. Bar, 

10 μm; inset bar, 2 μm. Hyperaccumulation of LEM2 on NE subdomains was quantified 

under both conditions (right). Error bars represent mean ± SEM. *p < 0.05, as compared 

with control, using a t test.

See also Figure S3.
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Figure 7. Inhibition of ESCRT-III function leads to an increase in germline apoptosis
(A) Yeast co-expressing plasmids encoding VPS60 (bait fusion) and different prey 

constructs as indicated were plated (10-fold dilutions, left to right) on either selective (−ura, 

−leu, −his) or histidine-supplemented medium for 72 h (n = 2). In all cases, constructs were 

shown not to promote auto-activation.

(B) Representative immunoblot of extracts generated from control and vps60 (hz20) mutant 

animals (n = 2 each) using antibodies directed against VPS60 (top) and beta-actin (bottom; 

load control).

(C) The number of nuclear membrane invaginations was quantified during NE expansion in 

embryos lacking CHMP7 and/or VPS60. Time shown is relative to anaphase onset. Error 

bars represent mean ± SEM. *p < 0.05, as compared with single mutants at an identical time 

point after anaphase onset, using an ANOVA with Dunnett’s test.

(D and E) The germlines of animals co-expressing a GFP fusion to CED1 and a 

mCherry fusion to histone H2B were imaged in the presence and absence of different 

ESCRT-III subunits. Quantification of the number of CED1-positive compartments (D) and 

representative images (E) are shown. Error bars represent mean ± SEM. **p < 0.01, as 

compared with control, using an ANOVA with Tukey’s test. Bar, 50 μm.

See also Figure S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-actin Sigma-Aldrich Cat# A1978-200UL
Lot# 087M4850V; 
RRID:AB_476692

Anti-GFP Rockland Immunochemicals Inc Cat# 600-101-215
Lot# 33301; RRID:AB_218182

Anti-chmp7 This study N/A

Anti-vps32 Shen et al. (2014) N/A

Anti-vps60 This study N/A

Anti-vps2 Frankel et al. (2017) N/A

Anti-did2 Frankel et al. (2017) N/A

Anti-vps24 Frankel et al. (2017) N/A

Anti-vps20 Schuh et al. (2015) N/A

Anti-ist1 Frankel et al. (2017) N/A

Anti-vps4 Frankel et al. (2017) N/A

ECL Anti-mouse IgG, Horseradish Peroxidase linked whole 
antibody from donkey

GE Healthcare Cat# NA934V
Lot# 17197685; 
RRID:AB_772206

ECL Anti-mouse IgG, Horseradish Peroxidase linked whole 
antibody from sheep

GE Healthcare Cat# NA931V
Lot# 16908225; 
RRID:AB_772210

Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 594

Thermo Fisher Scientific Cat# A-11058; 
RRID:AB_2534105

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 647

Thermo Fisher Scientific Cat# A-31573; 
RRID:AB_2536183

Bacterial and virus strains

Escherichia coli OP50 Caenorhabditis Genetics Center (CGC) N/A

Escherichia coli HT115 Caenorhabditis Genetics Center (CGC) N/A

Escherichia coli HT115 RNAi library Caenorhabditis Genetics Center (CGC) N/A

Chemicals, peptides, and recombinant proteins

Cas9 Integrated DNA Technologies, Inc. Cat# 1081059 I

Tricaine Sigma-Aldrich Cat# E10521

EMbed 812 Electron Microscopy Sciences Cat# 14120

Pierce Anti-HA Agarose Thermo Fisher Scientific Cat# 26182

Critical commercial assays

SuperSignal West Femto Maximum Sensitivity Substrate Fisher Scientific Cat# PI34095

MEGAclear Kit Invitrogen Cat# AM1908

MEGAscript T7 Invitrogen Cat# AM1334

MEGAscript T3 Invitrogen Cat# AM1338

Experimental models: Organisms/strains

N2 (Caenorhabditis elegans wild type) Caenorhabditis Genetics Center (CGC) N/A

chmp-7(hz12) II This study MSN772
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istr-1(hz16) V; unc-119(ed3) III; hzIs100[pie-1p-GFP::CAV-1; 
unc-119 + ]

This study MSN836

vps-60(hz20) V; unc-119(ed3) III; hzIs100[pie-1p-GFP::CAV-1; 
unc-119 + ]

This study MSN912

gfp::chmp-7 II This study MSN793

unc-119(ed3) III; hzIs100[pie-1p-GFP::CAV-1; unc-119 + ] Sato et al. (2006) OD176

unc-119(ed3) III; ltIs156 [pie-1/VPS-4(EQ)::GFP; unc-119 (+)] Frankel et al. (2017) MSN431

unc-119(ed3) III; ltSi491 [pRB10; lmn-1 3kb::LMN-1 (WT) RR 
(AA:105–176); cb-unc-119(+)] II

Penfield et al. (2018) OD1004

unc-119(ed3) III; ltSi493 [pRB19; lmn-1 3kb::LMN-1 (N209K) 
RR (AA:105–176); cb-unc-119(+)] II

Penfield et al. (2018) OD1323

unc-119(ed3) III; ltIs76 [pie-1/mCherry::SP-12; unc-119 (+)] Joseph-Strauss et al. (2012) MSN99

unc-119(ed3) III; ItIs51 [pie-1/SP12::GFP; unc-119(+)] Poteryaev et al. (2005) MSN67

lem-2(tm1582) II Poteryaev et al. (2005) MSN244

emr-1(gk119) I Poteryaev et al. (2005) MSN203

bqSi242 [lem-2p::lem-2::mCherry + unc-119(+)] IV Morales-Martínez et al., 2015 MSN1160 (Derived from 
BN243)

bqSi235 [emr-1p::emr-1::GFP + unc-119 (+)] II Morales-Martínez et al., 2015 MSN1164 (Derived from 
BN243)

unc-119(ed3) III; ltIs37 [pie-1/mCHERRY::HIS-58; unc-119 (+)] McNally et al. (2006) OD56

lmn-1(tm1502) I; Jfsi68[lmn-1(4kb 5’ UTR)::GFP cb-unc-119 
(+)] II

(Franz et al., 2005) UV120

unc-119(ed3) III; ltIs37 [pie-1/mCHERRY:: HIS-58; unc-119 
(+)]; qaIs3546 [pie-1p/GFP::npp-8; unc-119(+)]

Ródenas et al. (2009) BN13

unc-119(ed3) III; ltIs37 [(pAA64) pie-1p::mCherry::his-58 + 
unc-119(+)] IV; jjIs1092 [(pNUT1) npp-1::GFP + unc-119(+)]

Golden et al. (2009) OCF3

unc-119(ed3) III; ieSi21 [sun-1p::sun-1::mRuby::sun-1 3’UTR + 
Cbr-unc-119(+)] IV

Rog and Dernburg, 2015 CA1219

unc-119(ed3) III; ltIs75 [pie-1/ GFP::LacI; unc-119 (+)];ltIs37 
[pie-1/mCHERRY::HIS-58; unc-119 (+)]

Yuen et al. (2011) MSN147

bcIs39 [lim-7p::ced-1::GFP + lin-15(+)];ltIs37 [pie-1/
mCHERRY::HIS-58; unc-119 (+)]

Zhou et al. (2001) MSN388

Saccharomyces cerevisiae MATa trp1-901 leu2-3,112 ura3-52 
his3-200 gal4Δ gal80Δ GAL2-ADE2 LYS2::GAL1-HIS3 
met2::GAL7-lacZ

James et al. (1996) PJ69-4A

Oligonucleotides

chmp-7 sgRNA1: 5’ CTTCCTATCTCCCTTCCGAA 3’ This study N/A

chmp-7 sgRNA2: 5’ CAAAGAAGTAACGCCAGAAG 3’ This study N/A

istr-1 sgRNA1: 5’ TGAAAACTAATCTTCGATTG 3’ This study N/A

vps-60 sgRNA1: 5’ GCATTGTTGAGATCTGGTGG 3’ This study N/A

vps-60 sgRNA2: 5’ GAAGCGGAATTGGCGATGCT 3’ This study N/A

Recombinant DNA

pDBD-Chmp7 This study N/A

pAD-Empty James et al. (1996) pGAD-C1

pAD-Lem2 This study N/A

pAD-Emr1 This study N/A

pDBD-Vps60 This study N/A

pAD-Chmp7 This study N/A
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pAD-Vps32 This study N/A

pAD-Vps20 This study N/A

pDBD-Empty James et al. (1996) pGBDU-C1

Software and algorithms

FIJI v1.53c https://imagej.net/software/fiji/ N/A

IMOD and 3dmod v4.9.12 https://bio3d.colorado.edu/imod/ N/A

Graphpad Prism v8.4.3 https://www.graphpad.com/ N/A

NIS Elements AR and Analysis v4.30.02 Nikon Instruments Inc N/A

SerialEM v3.6.22 https://bio3d.colorado.edu/SerialEM/ N/A

Other

Polybead Polystyrene
0.10micron Microspheres

Polyscience, Inc Cat# 00876–15
Lot# A789968
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