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Background: Apoptosis is a type of cell death, which can produce abundant mediators to
modify the tumor microenvironment. However, relationships between apoptosis,
immunosuppression, and immunotherapy resistance of gastric cancer (GC) remain unclear.

Methods: Gene expression data and matching clinical information were extracted from
TCGA-STAD, GSE84437, GSE34942, GSE15459, GSE57303, ACRG/GSE62254,
GSE29272, GSE26253, and IMvigor210 datasets. A consensus clustering analysis
based on six apoptosis-related genes (ARGs) was performed to determine the
molecular subtypes, and then an apoptosisScore was constructed based on
differentially expressed and prognostic genes between molecular subtypes. Estimate R
package was utilized to calculate the tumor microenvironment condition. Kaplan-Meier
analysis and ROC curves were performed to further confirm the apoptosisScore efficacy.

Results: Based on six ARGs, two molecular subgroups with significantly distinct survival
and immune cell infiltration were identified. Then, an apoptosisScore was built to quantify
the apoptosis index of each GCpatient. Next, we investigated the correlations between the
clinical characteristics and apoptosisScore using logistic regression. Multivariate Cox
analysis shows that low apoptosisScore was an independent predictor of poor overall
survival in TCGA and ACRG datasets, and was associated with the higher pathological
stage. Meanwhile, low apoptosisScore was associated with higher immune cell, higher
ESTIMATEScore, higher immuneScore, higher stromalScore, higher immune checkpoint,
and lower tumorpurity, which was consistent with the “immunity tidal model theory”.
Importantly, low apoptosisScore was sensitive to immunotherapy. In addition, GSEA
indicated that several gene ontology and Kyoto Encyclopedia of Genes and Genomes
items associated with apoptosis, several immune-related pathways, and JAK–STAT signal
pathway were considerably enriched in the low apoptosisScore phenotype pathway.

Conclusion: Our findings propose that low apoptosisScore is a prognostic biomarker,
correlated with immune infiltrates, and sensitivity to immunotherapy in GC.
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INTRODUCTION

Gastric cancer (GC) is the fifth reason for incidence and fourth in
mortality among all cancers (Siegel et al., 2021). Due to delayed
diagnosis and less effective treatment in some cases, the overall
survival rate is poor (Smyth et al., 2020). PD-1/PD-L1 inhibitors
profoundly switched the treatment landscape of GC (Joshi and
Badgwell, 2021; Li et al., 2021). The ATTRACTION 2 trial of
patients with unresectable advanced or recurrent GC using
navuzumab showed a client remission rate of 11.2% and
demonstrated extended overall survival (OS) (Satoh et al.,
2020). However, while PD-1/PD-L1 inhibitors are a promising
treatment for patients with advanced GC, their response rate is
limited and the development of new strategies to maximize the
efficacy of ICI is necessary (Kono et al., 2020; Kole et al., 2022).
Seeking effective biomarkers to screen patients for
immunotherapy is essential to optimize the treatment strategy
for GC and improve the prognosis of patients.

Apoptosis is an active and procedural death process of cells in
the body, which is essential to preserve the homeostasis of the
intracellular environment. When cells receive apoptosis signals,
initiation caspases are activated through different signal
pathways, and effecting Caspases are activated, and then
related substrates are degraded, finally leading to cell apoptosis
(D’Arcy, 2019). Apoptosis is associated with the occurrence and
development of GC (Frejlich et al., 2013). Different drugs have
different mechanisms to regulate apoptosis: benzoxanthone
compounds regulating the Bcl-2 related protein and the Bcl-2
protein proportion block induced gastric cancer cell apoptosis
(Fu et al., 2022), paclitaxel can be through the regulation of
p53 gene-mediated apoptosis induced by cell signal transduction
pathways (Niapour and Seyedasli, 2022), cisplatin can also
through the apoptosis induced by regulating the cell cycle

(Guo et al., 2022). Different drugs can copy a cell block in
different stages, causing cells to fail to divide properly and die.

Apoptosis also can assist in the regulation of cancer immunity
as both the cell itself and environmental factors can affect the
apoptosis of GC cells; for example, T cells and NK cells can induce
the apoptosis of gastric cancer cells through perforation or Fas
pathway (Kume et al., 1999). At the same time, gastric cancer cells
can also evade immune monitoring through a variety of
mechanisms, resulting in reduced immune quantity, weakened
ability of DC cells to present tumor antigen, and inhibited
activation of initial T cells (Li et al., 2019). The apoptosis rate
of T lymphocytes in GC patients based on Fas/Fasl pathway was
significantly increased, suggesting that immune escape in GC cells
was related to the up-regulation of Fas ligand expression and
t-lymphocyte apoptosis. T cells, NK cells, and DC cells all express
Fas receptor after activation, so it is assumed that GC cells may
induce apoptosis of the above immune cells through Fas/Fasl
pathway by up-regulating Fas ligand (Katoh et al., 2000).

Workflow Figure 1 illustrates the workflow of our analysis.
We first present a comprehensive analysis of the apoptosis-
related gene (ARG) expression and prognostic profiling in
TCGA-STAD dataset, and found that six differentially
expressed and prognostic ARGs were identified. Further, GC
samples were classified as twomolecular subtypes based on the six
ARGs and further validated by KM plotter survival plot. To
further elucidate the potential functions of distinct molecular
subtypes, we identified 3,083 differentially expressed genes
(DEGs) and prognostic genes between the two molecular
subtypes and performed functional enrichment analysis on
these related genes. We also investigated the correlations
between the immune cell infiltration and the two molecular
subtypes. Next, GC samples were classified as two molecular
subtypes based on the 3,083 genes and further validated by the

FIGURE 1 | Flow chart of the study.
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KM plotter survival plot. Then, an apoptosisScore was
constructed based on 3,083 genes. We also examined the
correlations between the clinical characteristics and immune
cell infiltration and high and low apoptosisScore groups.
Finally, we evaluated the accuracy of this novel apoptosisScore
and prognostic differences between high- and low apoptosisScore
GC patients and analyzed the sensitivity of high- and low-
apoptosisScore groups of GC patients to immunotherapy. This
novel apoptosisScore model not only accurately predicts the
prognosis of GC patients but also offers new insights into the
heterogeneity of immunotherapy in GC patients.

MATERIALS AND METHODS

Data Source and Preprocessing
Eight independent GC cohorts were studied in the present study.
For the TCGA dataset, mRNA expression files were acquired
from the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov/), and corresponding clinicopathologic data were
gained from the cbioportal website (https://www.cbioportal.org/).
After removing incomplete data from the survival analysis, data
of 350 GC patients complying with the requirements were
obtained. Data for the GSE84437 (N = 431) (Yoon et al.,
2020), GSE34942 (N = 56) (Chia et al., 2015), GSE15459 (N =
191) (Ooi et al., 2009), GSE57303 (N = 70) (Qian et al., 2014),
ACRG/GSE62254 (N = 300) (Cristescu et al., 2015), GSE29272
(N = 126) (Wang et al., 2013), and GSE26253 (N = 432) (Lee et al.,
2014) were obtained from Gene expression omnibus (GEO)
genomics data repository (https://www.ncbi.nlm.nih.gov/geo/).
IMvigor210 CoreBiologies data was downloaded using the R
package provided by the following website (https://www.
nature.com/articles/nature25501) (Mariathasan et al., 2018).
The detail was shown in Table 1. R (version 4.0.5) was used

to conduct dataset processing and further analysis with R
Bioconductor packages.

Expression and Prognostic of
Apoptosis-Related Genes
By reviewing the previous literature, we identified 92 ARGs
(Supplementary Table S1). The expression landscape of ARGs
was generated with “limma” and “reshape2” package (|log FC|≥
1.0 and adj. p < 0.05) (Ritchie et al., 2015). The hazard ratio and
95% confidence intervals were calculated by the Cox proportional
hazard regression model (Fisher and Lin, 1999).

Consensus Cluster Analysis
We performed an unsupervised cluster analysis of OS samples by
ConsensusClusterPlus R package to identify different subtypes. In
this process, the number of clusters was set between 2 and 10, and
then the samples were classified using consistent clustering
(Wilkerson and Hayes, 2010). After screening for the most
optimal subtype classification, OS patients were divided into
different subtypes and survival analysis was performed on the
clustered samples by the Survival R software package, using log-
rank test statistics and plotting Kaplan-Meier curves to analyze
the survival differences between subtypes. Subsequently,
differential genes of different subtypes were screened by limma
R package. Differential genes met adj. p < 0.05 and |
log2FoldChange|>1.

Construction of apoptosisScore
Next, we used the principal component analysis (PCA) method to
quantify apoptosis-related subtypes of individual patients (David
and Jacobs, 2014). An apoptosisScore for each patient was
calculated according to the following formula:

ApoptosisScore � Σ(PC1i + PC2i),

TABLE 1 | Basic information of series used in this study.

Series Accession
Numbers

Platform Used No. of
Input

Patients

Region Survivval
outcome

Data Usage PMID

GSE84437 (GPL6947) Illumina HumanHT-12 V3.0 expression
beadchip

431 Korea OS Training; Internal
validation

32,293,340

GSE34942 (GPL570) Affymetrix Human Genome U133 Plus 2.0
Array

56 Singapore OS Training; Internal
validation

25,053,715

GSE15459 (GPL570) Affymetrix Human Genome U133 Plus 2.0
Array

191 Singapore OS Training; Internal
validation

19,798,449

GSE57303 (GPL570) Affymetrix Human Genome U133 Plus 2.0
Array

70 China OS Training; Internal
validation

24,935,174

ACRG/GSE62254
(GPL570)

Affymetrix Human Genome U133 Plus 2.0
Array

300 Asia OS Training; Internal
validation

25,894,828

GSE29272 (GPL96) Affymetrix Human Genome U133A Array 126 United States OS Training; Internal
validation

23,717,493

GSE26253 (GPL8432) Illumina HumanRef-8 WG-DASL v3.0 432 Korea RFS External validation 24,598,828
TCGA-STAD Illumina RNAseq 350 NA OS Training; Internal

validation
IMvigor210 Illumina RNAseq 348 NA OS External validation 29,443,960
Kim cohort Illumina RNAseq 45 Korean NA External validation 30,013,197

TCGA: the cancer genome atlas; STAD: stomach adenocarcinoma; ACRG: asian cancer research group; OS: overall survival; RFS: relapse free survival.
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where i is the TPM value of each screened gene.

ESTIMATE Algorithm
The ESTIMATE algorithm, which assessed stromal and immune
cells in pernicious tumor tissues using expression data, was used
to acquire immune-related score to predict the infiltration of
immune cells in GC. The analytical method is contained in the
“estimated” R package (Yan et al., 2019). The abundance of
immune cells was quantified through the ssGSEA (Bindea
et al., 2013; Finotello and Trajanoski, 2018).

Function Enrichment Analysis
We sought to identify the signaling pathways by functional
enrichment analysis. The R package “LIMMA” was utilized to
sort differentially expressed genes (DEGs) between the two ARGs.
cluster.The screened DEGs were examined using the R packages
“cluster Profiler”, “Rich plot” and “ggplot2” for Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis. Gene set enrichment analysis (GSEA) was
performed to explore whether the identified sets of genes
showed statistical differences between high and low
apoptosisScore groups (Subramanian et al., 2005).

Immunohistochemistry
A total of 50 GC patients’ tissues and corresponding adjacent
tissues were collected to explore the expression of six marker
genes in the tissue samples by using immunohistochemical
staining (IHC). IHC staining was performed according to the
manufacturer’s instructions.

Quantitative Reverse Transcription
Polymerase Chain Reaction Assays
Total RNA from tissues was isolated using TRIzol (Invitrogen,
Canada) reagent, the specific operation is carried out with
reference to the instructions for the operation of the kit. RNA
(1 μg) was converted into cDNA using the RevertAid First Strand
cDNA Synthesis Kit (Takara, China). qRT-PCR was performed
using SYBR Green Mixture (Takara, China) in the ABI StepOne-
Plus System (ABI7500, United States). Target gene expression
was normalized against GAPDH.

Statistical Analysis
For the comparison of two groups of continuous variables, the
statistical significance of normally distributed variables was
estimated by independent Student t-test and differences
between non-normally distributed variables were analyzed by
Mann-Whitney U-test. Kaplan-Meier survival curves were used
to show survival differences, and Log-rank test was used to assess
the significance of differences in survival time between two
groups of patients. Receiver operating characteristic (ROC)
curves were obtained using the pROC R package, and the area
under the curve (AUC) was computed to assess the accuracy of
the score to estimate prognosis. Heatmap was used by R packages
to depict different group information. Additionally, univariate,
and multivariate Cox regression analyses were conducted to
assess the factors associated with prognosis in GC patients.

The analysis was performed using R software of RStudio.
Differences were considered significant at p < 0.05.

RESULTS

Identification of Differential Expression and
Prognostic of Apoptosis-Related Genes in
TCGA-STAD
First, GSEA was carried out to determine whether there was a
significant apoptosis enrichment between tumor and normal
tissues. The results suggested that the apoptosis pathway
(Normalize enrichment score = 1.94, adjusted p-value = 0.000)
was differentially enriched between tumor and normal tissues
(Figure 2A). Then, based on the cutoff criterion of |log FC|≥1.0
and adj. p < 0.05, 63 different expressions of ARGs were identified
(Supplementary Table S2). To explore the prognostic
significance of ARGs in GC, univariate Cox regression analysis
was performed on ARGs mRNA expression in GC. The analysis
revealed that 17 ARGs correlate with OS (Supplementary Table
S3). Then, 12 differentially expressed ARGs between tumor and
normal tissue that were correlated with OS were identified
(Figure 2B). Among them, six ARGs were protective genes,
and six ARGs were candidate risky genes. Six risky genes
(CAPN11, FLT1, FLT4, NOS3, PDGFRB, TGFBR1) were
utilized to form the prognostic signature.

As shown in Figure 2C, we found that five ARGs with a high
frequency of CNV gain were highly expressed in GC patients,
suggesting that CNVs may be a potential contributor to the
regulation of the expression of ARGs. The positive correlation
of six ARGs was illustrated in Figure 2D. Furthermore, these
ARG expressions were higher in tumor than in normal
(Figure 2E), and higher in T3 & T4 than in T1 & T2
(Figure 2F). Moreover, the AUC of ROC for CAPN11, FLT1,
FLT4, PDGFRB, TGFBR1, NOS3 was 0.761, 0.781, 0.708, 0.857,
0.739, and 0.791, respectively, suggesting that they have a good
diagnostic performance (Figure 2G). As we all know, tumor-
infiltrating immune cells are closely connected with the
development of cancer. Therefore, we evaluated the correlation
between the expression of six ARGs and the enrichment score of
T cells. The results showed that higher ARG expression had a
higher enrichment score of T cells (Figures 2H–M).

Molecular Subtype Categorization of
Gastric Cancer Based on Six
Apoptosis-Related Genes
After consensus clustering analysis of these samples by the
ConsensusClusterPlus algorithm based on six ARGs, it
revealed that the results were most stable at K = 2
(Supplementary Figure S1). Therefore, samples of the GC
patients (N = 1,524) were divided into ARGs.cluster.A (N =
866) and ARGs.cluster.B (N = 658) by this approach.
Subsequently, based on the grouped results, we collated the
clinical information of the correlated OS samples, including
the survival status and the overall survival days, the Kaplan-
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Meier survival analysis was carried out to compare the OS time
differences between the different molecular subtypes. It has been
shown that patients in the ARGs.cluster.A group have a worse
prognosis than the ARGs.cluster.B group (Figure 3A). After
obtaining the two molecular subtypes based on consensus
cluster analysis, ARGs.cluster.A and ARGs.cluster.B denoted a
marked discrimination against each other, suggesting there are
DEGs between the two groups (Figure 3B). Finally, 3,083 DEGs
that were correlated with OS were identified (Supplementary
Table S4). These genes were subjected to GO and KEGG pathway
analyses taking advantage of the R package “clusterProfiler,
enrichplot, ggplot2”. The genes were chiefly enriched in cell
death and immunocyte-related bioprocesses such as
necroptotic process, apoptosis, immune response, T-cell
activation, T-cell proliferation, neutrophil-mediated immunity,
neutrophil activation, and tumor necrosis factor superfamily
cytokine production (Figures 3C,D).

The correlation of tumor microenvironment condition and
ARGs.cluster was shown in Figure 3E. Using the ssGSEA
algorithm, the distribution of immunocyte in patients with GC
was plotted in a bar chart, which manifesting that the distribution
of various immune cell types varied significantly higher in the

ARGs.cluster.A than ARGs.cluster.B (Figure 3F). Using the
ESTIMATE algorithm, we discovered that score (ESTIMATE,
Stromal, and Immune) was notably higher in the ARGs.cluster.A
than ARGs.cluster.B. However, tumor purity score was lower in
the ARGs.cluster.A than ARGs.cluster.B (Figures 3G–J). It
revealed that group of ARGs.cluster.A patients were helpful
for the tumor immunity response. However, effective
antitumor immunity was still suppressed.

Consensus Clustering of 3,083 Genes
Identified Two Clusters in Gastric Cancer
After consensus clustering analysis of these samples by
ConsensusClusterPlus algorithm based on 3,083 genes, it revealed
that the results weremost stable at K= 2 (Supplementary Figure S2).
Therefore, samples of the GC patients (N = 1,524) were divided into
ARGs.gene.cluster.A (N = 464) and ARGs.gene.cluster.B (N = 1,060)
by this approach. Subsequently, based on the grouped results, the
Kaplan-Meier survival analysis was carried out to compare the OS
time differences between the differentmolecular subtypes. It has been
demonstrated that patients in the ARGs.gene.cluster.A group have a
worse prognosis than the ARGs.gene.cluster.B group (Figure 4A).

FIGURE 2 | Identification of differential expression and prognostic of ARGs in TCGA-STAD. (A)GSEA showed that the apoptosis pathway are differentially enriched
in GC patients. (B) Venn diagram to identify differentially expressed genes between tumor and normal tissue that were correlated with overall survival. (C) Frequencies of
CNV gain, loss, and non-CNV among six ARGs. (D) Correlation heat map of six ARGs. The size of the colored squares represents the strength of the correlation; red
represents a positive correlation. The darker the color is, the stronger correlation is. (E) The illustration shows the expression distribution of six ARGs between
normal (blue) and GC (red) tissues. (F) The illustration shows the expression distribution of six ARGs between T1&T2 (blue) and T3&T4 (red). (G) ROC analysis showing
that six ARGs has good diagnostic performance. (H–M) The correlation between the expression of six ARGs and enrichment score of T cells.
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The correlation of tumor microenvironment condition and
ARGs.gene.cluster was shown in Figure 4B. Using the ssGSEA
algorithm, the distribution of immunocyte in patients with GC
was plotted in a bar chart, which manifesting that the
distribution of various immune cell types varied
significantly higher in the ARGs.gene.cluster.A than
ARGs.gene.cluster.B (Figure 4C). Using the ESTIMATE
algorithm, we discovered that score (ESTIMATE, Stromal,

and Immune) was notably higher in the
ARGs.gene.cluster.A than ARGs.gene.cluster.B. However,
tumor purity score was lower in the ARGs.gene.cluster.A
than ARGs.gene.cluster.B (Figures 4D–G). It disclosed that
group of ARGs.gene.cluster.A patients were helpful for the
tumor immunity response. However, the effective antitumor
immunity was still suppressed. The above results proved the
effectiveness and stability of ARG patterns.

FIGURE 3 | The molecular subtypes categorization of GC base on six ARGs. (A) Kaplan-Meier curve showed a significant difference between the two ARGs
clusters. (B) UMAP analysis for the transcriptome profiles of ARGs.cluster.A and ARGs.cluster.B, showing a remarkable difference on transcriptome between different
group. (C) GO enrichment analysis (D) KEGG enrichment analysis for the different expression that were correlated with OS genes. (E) The correlation of tumor
microenvironment condition and ARGs.cluster. (F) The abundance of each TME infiltrating cell in two ARGs clusters. The upper and lower ends of the boxes
represented the interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. (G–J) The ESTIMATE score, stromal
score, immune score, and tumor immunity levels in the ARGs.cluster.A and ARGs.cluster.B groups by using ESTIMATE algorithm. (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001).
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Establishment of a apoptosisScore
We constructed an apoptosisScore base on 3,083 genes to
quantify the apoptosis index of each GC patient by using
the PCA method (Supplementary Table S5). We discovered
that apoptosisScore was notably lower in ARGs.cluster.A and
ARGs.gene.cluster.A than in ARGs.cluster.B and
ARGs.gene.cluster.B (Figures 5A,B). Meanwhile, it has been
shown that patients with the low apoptosisScore had a worse
prognosis than the high apoptosisScore (Figure 5C).
Moreover, the AUC of ROC for apoptosisScore was 0.77,
suggesting that they have a superior diagnostic performance
(Figure 5D). The correlation between tumor
microenvironment condition and apoptosisScore was
illustrated in Figure 5E. It indicated that the relative
abundance of most of the infiltrating immune cell types
increased in the low apoptosisScore group than in high
apoptosisScore group (Supplementary Figure S3). We also
discovered that score (ESTIMATE, Stromal, and Immune) was
notably higher in low apoptosisScore group than the high
apoptosisScore group. However, the tumor purity score was

lower in the low apoptosisScore group than the high
apoptosisScore group (Figures 5–I). These results indicate
that tumor-infiltrating lymphocytes in the low
apoptosisScore group were unable to recruit to the tumor site.

Then, the GSEA results suggested that regulation of the
immune effector process, regulation of inflammatory response,
T-cell activation involved in immune response, apoptosis
pathway, natural killer cell-mediated cytotoxcity pathway,
and T-cell receptor signaling pathway were differentially
enriched in low apoptosisScore phenotypes (Figures 5J,K).
Function enrichment analysis results strongly indicated that
low apoptosisScore is closely related to the tumor immune
microenvironment (TIME), and thus worthy of further
analysis.

Prognostic Value of apoptosisScore in
Gastric Cancer Patients
In the above, we reported that apoptosisScore may have
prognostic significance in GC. In order to further explore

FIGURE 4 | Consensus clustering of 3,083 genes identified two clusters in GC. (A) Kaplan-Meier curve showed a significant difference between the two
ARGs.gene.clusters. (B)The correlation of tumor microenvironment condition and ARGs.gene.clusters. (C) The abundance of each TME infiltrating cell in two
ARGs.gene.clusters.The upper and lower ends of the boxes represented the interquartile range of values. The lines in the boxes represented median value, and black
dots showed outliers. (D–G) The ESTIMATE score, stromal score, immune score, and tumor immunity levels in the ARGs.gene.clusters.A and
ARGs.gene.clusters.B groups by using ESTIMATE algorithm. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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apoptosisScore as a separate prognostic indicator in GC
patients. Multivariate analyses showed that low
apoptosisScore was a separate prognostic indicator in GC
patients (ACRG cohort: HR = 2.33, 95% CI = 1.89–2.86,

p < 0.001, TCGA cohort: HR = 1.33, 95% CI = 1.09–1.62,
p = 0.004) (Figures 6A,B).

To continue exploring the potential malignant behavior of
apoptosisScore, patients with apoptosisScore in the TCGA

FIGURE 5 | Construction of apoptosisScore. (A) Differences in apoptosisScore among two ARGs. (B) Differences in apoptosisScore among two
ARGs.gene.clusters. (C) Kaplan-Meier curves for high and low apoptosisScore groups. (D) The predictive value of apoptosisScore. (E) The correlation of tumor
microenvironment condition in high and low apoptosisScore patient groups. (F–I) The ESTIMATE score, stromal score, immune score, and tumor immunity levels in high
and low apoptosisScore groups by using ESTIMATE algorithm. (J)GSEA GO identified high and low apoptosisScore groups related signaling pathways in GC. (K)
GSEA KEGG identified high and low apoptosisScore related signaling pathways in GC.
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and ACRG cohorts were analyzed (Figures 6C,D).
Specifically, we compared the differential level of
apoptosisScore in different subgroups stratified by

molecular subtypes, EBV status, ADJC status in ACRG
cohort, stage, age, MSI status in TCGA cohort. As shown
in Figures 6E–J, based on the ACRG cohort, apoptosisScore

FIGURE 6 | The prognostic value of apoptosisScore in GC patients. (A) Multivariate Cox regression analysis for apoptosisScore in ACRG cohort shown by the
forest plot. (B) Multivariate Cox regression analysis for apoptosisScore in TCGA cohort shown by the forest plot. (C) Heatmap showing the dependence between
apoptosisScore and clinicopathologic characteristics in ACRG cohort. (D) Heatmap showing the dependence between apoptosisScore and clinicopathologic
characteristics in TCGA cohort. (E–G) Differences in apoptosisScore between molecular subtypes, EBV status, ADJC status in ACRG cohort. (H–J) Differences in
apoptosisScore between stage, age, MSI status in TCGA cohort.
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was significantly different among subgroups stratified by
molecular subtypes, EBV status, ADJC status, in ACRG
cohort, and stage, age, MSI status in TCGA cohort.

Internal and External Validation of
apoptosisScore
Kaplan-Meier survival analysis was conducted to contrast the
OS of patients with high and low apoptosisScore and

determine whether apoptosisScore can be used as a stable
marker for GC patients. The similar above results showed that
patients with low apoptosisScore had poorer OS (6 GEO
cohorts: HR = 1.63, 95% CI = 1.38–1.93, p < 0.001, TCGA-
STAD cohort: HR = 1.49, 95% CI = 1.07–2.07, p = 0.020,
GSE15459 cohort: HR = 1.88, 95% CI = 1.22–2.89, p = 0.004,
GSE62245 cohort: HR = 1.99, 95% CI = 1.44–2.75, p < 0.001,
GSE84437 cohort: HR = 1.76, 95% CI = 1.33–2.33, p = 0.020)
(Figures 6A,C,E,G,I). The AUC of ROC for apoptosisScore

FIGURE 7 | Internal and external validation of apoptosisScore. (A) Kaplan-Meier curves for high and low apoptosisScore groups in six GEO datasets (GSE84437,
GSE34942, GSE15459, GSE57303, ACRG/GSE62254, and GSE29272). (B) The predictive value of apoptosisScore in six GEO dataset. (C) Kaplan-Meier curves for
high and low apoptosisScore groups in TCGA-STAD. (D) The predictive value of apoptosisScore in TCGA-STAD. (E) Kaplan-Meier curves for high and low
apoptosisScore groups in GSE15459. (F) The predictive value of apoptosisScore in GSE15459. (G) Kaplan-Meier curves for high and low apoptosisScore groups
in GSE62254. (H) The predictive value of apoptosisScore in GSE62254. (I) Kaplan-Meier curves for high and low apoptosisScore patient groups in GSE84437. (J) The
predictive value of apoptosisScore in GSE84437. (K)Relapse-free survival analysis of apoptosisScore in GSE26253 cohort. (L) The predictive value of apoptosisScore in
GSE26253.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 92116310

Yuan et al. Apoptosis-Related Genes and Gastric Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 8 | ApoptosisScore in the role of anti-PD-1/L1 immunotherapy in IMvigor210 cohort. (A) Survival analyses for low and high apoptosisScore groups in
IMvigor210 cohort. (B) The predictive value of apoptosisScore in IMvigor210 cohort. (C) The proportion of patients with response to PD-L1 blockade immunotherapy in
low or high apoptosisScore groups. (D) Differences in apoptosisScore among distinct anti-PD-1 clinical response groups. (E) Distribution of apoptosisScore in distinct
anti-PD-L1 clinical response groups. (F–H)Differences in apoptosisScore between immune subtypes, Lund2 subtypes, and TCGA subtypes. (I) The abundance of
each TME infiltrating cell in high and low apoptosisScore groups. (J) Differences in checkpoint expression between low and high apoptosisScore groups. (K–N) The
ESTIMATE score, stromal score, immune score, and tumor immunity levels in high and low apoptosisScore groups by using ESTIMATE algorithm.
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were 0.769 in six GEO cohorts, 0.671 in TCGA-STAD cohort,
0.776 in GSE15459 cohort, 0.972 in GSE62245 cohort, 0.926 in
GSE84437 cohort, respectively, suggesting that a prominent
fitting prediction (Figures 7B,D,E,H,J). In addition, the
results also showed that patients with low apoptosisScore
had poorer RFS (GSE26253 cohort: HR = 1.45, 95% CI =
1.07–1.97, p = 0.016) (Figure 7K). The AUC of ROC for
apoptosisScore was 0.829 in GSE26253 cohort, also had a
prominent fitting prediction in GSE26253 cohort (Figure 7L).

Prognostic Validation of apoptosisScore in
the Immune IMvigor210 Cohort
First, after consensus clustering analysis of these samples by
ConsensusClusterPlus algorithm based on six ARGs in
IMvigor210 cohort, it revealed that the results were most
stable at K = 2 (Supplementary Figure S4). Then, 1822
DEGs that were correlated with OS were identified
(Supplementary Table S6). Finally, we constructed an
apoptosisScore base on 1822 genes (Supplementary Table
S7). Based on the IMvigor210 cohort, we performed survival
analyses, patients with low apoptosisScore had a worse clinical
prognosis for bladder cancer (HR = 1.51, 95% CI = 1.15–1.97,
p = 0.003) (Figure 8A). The AUC of ROC for apoptosisScore
was 0.770 in IMvigor210 cohort, and also had a prominent
fitting prediction in IMvigor210 cohort (Figure 8B). The
proportions of complete response (CR)/partial response
(PR) and stable disease (SD)/progressive disease (PD) were
15 and 85% in the low apoptosisScore group and 33 and 67%
in the high apoptosisScore group, correspondingly (p < 0.05)
(Figure 8C). ApoptosisScore also varied statistically in the
CR/PR and SD/PD groups, apoptosisScore was notably lower
in SD/PD group than CR/PR group (Figure 8D). We also
found that apoptosisScore was notably lower in SD or PD
groups than in CR or PR groups (Figure 8E). The above
results suggest that apoptosisScore was sensitive to
immunotherapy. Various histologically and
transcriptionally immune tumor subtypes were
distinguished, including inflamed, excluded, and desert
immune tumors. Various histologically and
transcriptionally immune tumor subtypes were
distinguished, including inflamed, excluded, and desert
immune tumors. ApoptosisScore also varied statistically in
the three immune tumor subtypes, five Lund2 subtypes, and
three TCGA subtypes, suggesting that apoptosisScore is
closely related to the proposed immune subtypes and
molecular subtypes (Figures 8F–H) (Table 2).

Using the ssGSEA algorithm, the distribution of
immunocyte in patients with GC was plotted in a bar chart,
which manifests that the distribution of various immune cell
types varied significantly higher in the low apoptosisScore
than in high apoptosisScore (Figure 8I). Utilizing the
ESTIMATE algorithm, we discovered that score
(ESTIMATE, Stromal, and Immune) was notably higher in
the low apoptosisScore group than high apoptosisScore group.
However, the tumor purity score was lower in the low
apoptosisScore group than high apoptosisScore group

(Figures 8K–N). It revealed that the group of low
apoptosisScore group patients was helpful for the tumor
immunity response. However, effective antitumor immunity
was still suppressed. Based on patients with bladder cancer in
the IMvigor210 cohort, the relationship between
apoptosisScore and immune checkpoint genes was
investigated. We found that immune checkpoint genes were
significantly higher in the low apoptosisScore group than in
high apoptosisScore group, which was consistent with the
“immunity tidal model theory” (Figure 8J).

Next, we used an advanced gastric cancer immune cohort
(Kim cohort) to detect the relationship between apoptosisScore
and immunotherapy. The detail of patient characteristics and
apoptosisScore of advanced gastric cancer treated with anti-PD-1
immunotherapy was shown in Supplementary Table S8.
Specifically, apoptosisScore also varied statistically in the CR,
PR, SD, and PD groups, apoptosisScore was notably lower in SD
or PD groups than in CR or PR groups (Figure 9A). We also

TABLE 2 | Summary of detailed clinical information of IMvigor210 (mUC) cohort.

IMvigor210 Cohort Low (n = 199) High (n = 149) Total (n = 348)

Vital Status
Alive 54 (27.1%) 62 (41.6%) 116 (33.3%)
Dead 145 (72.9%) 87 (58.4%) 232 (66.7%)
Gender
Female 41 (20.6%) 35 (23.5%) 76 (21.8%)
Male 158 (79.4%) 114 (76.5%) 272 (78.2%)

Overall response
CR 14 (8.2%) 11 (8.7%) 25 (8.4%)
PR 12 (7.0%) 31 (24.4%) 43 (14.4%)
SD 40 (23.4%) 23 (18.1%) 63 (21.1%)
PD 105 (61.4%) 62 (48.8%) 167 (56.0%)

Binary response
CR/PR 26 (15.2%) 42 (33.1%) 68 (22.8%)
SD/PD 145 (84.8%) 85 (66.9%) 230 (77.2%)

Enrollment IC
IC0 41 (20.6%) 58 (38.9%) 99 (28.4%)
IC1 75 (37.7%) 57 (38.3%) 132 (37.9%)
IC2 83 (41.7%) 34 (22.8%) 117 (33.6%)

IC level
IC0 38 (19.2%) 59 (39.6%) 97 (28.0%)
IC1 76 (38.4%) 56 (37.6%) 132 (38.0%)
IC2+ 84 (42.4%) 34 (22.8%) 118 (34.0%)

TC Level
TC0 145 (73.2%) 130 (87.2%) 275 (79.3%)
TC1 10 (5.1%) 12 (8.1%) 22 (6.3%)
TC2+ 43 (21.7%) 7 (4.7%) 50 (14.4%)

Immune phenotype
Desert 27 (16.9%) 49 (39.5%) 76 (26.8%)
Excluded 75 (46.9%) 59 (47.6%) 134 (47.2%)
Inflamed 58 (36.3%) 16 (12.9%) 74 (26.1%)

TCGA cluster
I 44 (22.1%) 74 (49.7%) 118 (33.9%)
II 41 (20.6%) 54 (36.2%) 95 (27.3%)
III 61 (30.7%) 8 (5.4%) 69 (19.8%)
IV 53 (26.6%) 13 (8.7%) 66 (19.0%)

Lund2
Basal/SCC-like 62 (31.2%) 4 (2.7%) 66 (19.0%)
Genomically unstable 14 (7.0%) 56 (37.6%) 70 (20.1%)
Infiltrated 90 (45.2%) 2 (1.3%) 92 (26.4%)
UroA 17 (8.5%) 85 (57.0%) 102 (29.3%)
UroB 16 (8.0%) 2 (1.3%) 18 (5.2%)
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discovered that apoptosisScore was notably lower in SD/PD
group than in CR/PR group (Figure 9B). The above results
suggest that apoptosisScore was sensitive to immunotherapy.
We also compared the differential level of apoptosisScore in
different subgroups stratified by MSI type, EBV status, TCGA

subtypes, and CPS score groups. As shown in Figures 9C–F,
based on the Kim cohort, apoptosisScore was significantly higher
in MSI type group, positive EBV status group, EBV group, MSI-H
group and high CPS score group. We found that immune
checkpoint genes were significantly higher in the low

FIGURE 9 | Patient characteristics and apoptosisScore of advanced gastric cancer treated with anti-PD-1 immmunotherapy. (A) Distribution of apoptosisScore in
distinct anti-PD-L1 clinical response groups. (B) Differences in apoptosisScore among distinct anti-PD-1 clinical response groups. (C) Differences in apoptosisScore
between MSI type. (D) Differences in apoptosisScore between EBV status. (E) Differences in apoptosisScore between TCGA subtypes. (F) Differences in
apoptosisScore between high and low CPS score groups. (G) Differences in checkpoint expression between low and high apoptosisScore groups in advanced
gastric cancer treated with anti-PD-1 immmunotherapy.
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apoptosisScore group than in high apoptosisScore group
(Figure 9G).

Validation the Prognosis of apoptosisScore
in Gastric Cancer in an Independent Cohort
To further validate apoptosisScore in GC, we measured the six
ARG protein levels by immunohistochemistry, and the result
showed that compared with normal group, the CAPN11, FLT1,
FLT4, NOS3, PDGFRB, and TGFBR1 levels were significantly
higher in GC group (Figures 10A–F). In addition, RT-qPCR was
used to detect the six marker genes mRNA expression in GC.
Compared with the normal group, the six marker genes mRNA
level was significantly higher in the GC group (Figures 10G–L).
We also discovered that apoptosisScore was notably lower in

ARGs.cluster.A and ARGs.gene.cluster.A than in ARGs.cluster.B
and ARGs.gene.cluster.B (Figures 10M,N). Kaplan-Meier
analysis revealed that the prognosis of patients with low
apoptosisScore was significantly poor than that of patients
with high apoptosisScore (Figure 10O).

DISCUSSION

In this study, analysis of information from the eight GC cohorts
and immune IMvigor210 cohort indicated that low
apoptosisScore is related to poor prognosis for GC. We
investigated that low apoptosisScore was interrelated with
clinicopathologic features such as molecular subtypes, EBV
status, ADJC status, stage, age, and MSI status, suggesting that

FIGURE 10 | The expression and overall survival of six ARGs in GC. (A–F) Representative immunohistochemistry images of six ARGs expression in normal tissues,
and GC tissue. (G–L) six ARGs mRNA levels are shown for the GC and normal tissue. (M) Differences in apoptosisScore among two ARGs. (N) Differences in
apoptosisScore among two ARGs.gene.clusters. (O) Kaplan-Meier analysis of overall survival based on apoptosisScore in 50 cases of GC patients.
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low apoptosisScore participates in a role in the malignant
behavior of GC. Multivariate Cox regression analyses indicated
that low apoptosisScore is an independent adverse factor affecting
the prognosis of GC patients, which was also confirmed in five
additional validated cohorts. Kaplan-Meier survival analysis was
utilized to contrast the OS of patients with high and low
apoptosisScore, and the results showed that low
apoptosisScore could be used as a prognostic indicator for GC
patients. ROC curve evaluation suggested that apoptosisScore
could be invoked as a useful diagnostic marker. Moreover,
apoptosisScore may also participate in a critical part in TIME
of GC by regulating the infiltration of immune cells, suggesting
that apoptosisScore might be used as a therapeutic target to
regulate the anti-tumor immune response.

We discovered that 3,083 DEGs were correlated with OS
between the two ARGs.cluster, which is correlated with
various immune-related biological processes. Functional
enrichment analysis found that these genes in GC patients,
which has a significant impact on immune-related biological
processes, primarily manifests in immune response, T-cell
activation, T-cell proliferation, neutrophil-mediated immunity,
Toll-like receptors (TLRs), HIF-1 signaling pathway, P53
signaling pathway, and neutrophil activation. GSEA findings
indicated that a low apoptosisScore phenotype is positively
correlated with processes related to immune effector process,
regulation of inflammatory response, T-cell activation involved in
immune response, natural killer cell-mediated cytotoxcity
pathway, and T-cell receptor signaling pathway. Moreover,
TLRs belong to the pattern recognition receptor superfamily,
which typically activates and mediate the pro-inflammatory
response of innate immune cells by identifying invading
pathogens (Vinnakota et al., 2013). Hypoxia can lead to
maladjustment of cell cycle checkpoint by inducing
posttranslational modification of wild-type p53, ultimately
promoting malignant tumor progression (Cobbs et al., 2003).
In particular, antigen-targeting cytotoxicity of T lymphocytes is
now identified as a critical factor in the relationship between the
immune system and cancer prevention (Waldman et al., 2020).
Interestingly, our study indicates that low apoptosisScore is
closely interrelated with the above-mentioned immune
pathways, and therefore, we believe that low apoptosisScore is
closely interrelated with the TIME of GC tissues.

In essence, we identified an interrelation between
ARGs.cluster, apoptosisScore, and TIME, in which the
behavior of tumor cells determines the outcome of the tumor
and affects the biology of TIME cells (Ansell and Vonderheide,
2013). Using the ESTIMATE and ssGSEA algorithm, we
discovered that infiltrating immune cell types, ESTIMATE
score, stromal score, and the immune score increased in the
low apoptosisScore group, and tumor purity decreased in the low
apoptosisScore group. The immune score was originally used to
assess the stage and prognosis of cancer patients, and patients
with a high immune score generally have a better prognosis
(Galon et al., 2012). However, Kaplan-Meier survival analysis in
the present study found that the clinical outcome of patients with
high low apoptosisScore was markedly worse than that of the high
apoptosisScore group. Therefore, we hypothesize that

apoptosisScore affects the type of immune infiltrating cells in
GC. TFHs aid the activity of B cells in germinal center responses
and reduce immunosuppression through the inflammatory
response and helping to organize tertiary lymphoid structures
to achieve anti-tumor effects, which was reported in breast,
colorectal and other tumors (Gu-Trantien et al., 2013; Hetta
et al., 2020). We found that immune checkpoint genes were
significantly higher in low apoptosisScore group than in high
apoptosisScore group, which was consistent with the “immunity
tidal model theory” that high expression of both conciliatory and
contributory immune checkpoints caused an immunosuppressive
phenotype in tumors (Zhu et al., 2011). However, the precise
mechanism requires further study.

The development of new immunotherapies has advanced
rapidly in the field of oncology in recent years, and immune
checkpoint inhibition is examined as a potentially important
method for the treatment of GC. Mechanisms that suppress
the activation and/or effector function of immune cells are
called immune checkpoints (Kalbasi and Ribas, 2020; Wang
et al., 2020). In this study, we examined the dependence
between apoptosisScore and various immune checkpoints. Our
result showed that immune checkpoint genes were significantly
higher in low apoptosisScore group than in high apoptosisScore
group. Indeed, considerable progress has been made in targeting
these receptors, such as PDCD1/PDL1 (also known as CD274),
CD47 blockade therapies (Barclay and Van den Berg, 2014; Feng
et al., 2019). A recent tumor study found that TGFBR1 modified
T-cell function by blocking the PD-1/PD-L1 checkpoint, to
achieve an anti-tumor effect (Neviani et al., 2019). These
studies show that apoptosis participates as a critical part in the
PD-1/PD-L1 axis, similar to our results in that low apoptosisScore
was positively correlated with PD-1 and PD-L1. It is worth noting
that the first generation of immune checkpoint inhibitors, such as
inhibitors of CTLA-4 and PD-1, targeted the most distinctive
immune checkpoints and thus represents the most mature
immunotherapy agents (Marshall and Djamgoz, 2018).
Moreover, low apoptosisScore was correlated with other
second-generation immune checkpoint genes, including CD40,
TNFSF14, BTLA, and HAVCR2. Thus, we considered the
possibility of low apoptosisScore as a novel therapeutic target
for GC patients, as it could provide an important new basis and
direction for immunotherapy in GC patients. As tumor immune
resistance is characterized by the co-expression of multiple
immune checkpoint pathway molecules, double or multiple
checkpoints blocked may produce more powerful anti-tumor
immunotherapy effects; therefore, additional immune targets
need to be identified.

There are numerous restrictions in the present study. First,
this study was inspired by preliminary data and hypothesis-
generating predictions. Second, although we found that
apoptosisScore was interrelated with patient prognosis and
immune invasion in GC, we could not prove that low
apoptosisScore affects prognosis through immune invasion,
which has to be verified using cell lines. In addition,
elucidating the mechanisms by which apoptosisScore regulates
the infiltration of immune cells will require further study. The
experimental evidence of whether the expression of
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apoptosisScore will affect the abundance of immune cell
infiltration is a deficiency of our study, and it will become a
direction of follow-up research. The apoptosisScore with an AUC
of 0.671 in TCGA-STAD cohort, which is lower than PDGFRB,
FLT1, NOS3, and higher than CAPN11, FLT4, TGFBR1.
However, the AUC of apoptosisScore is 0.972 in ACRG (Asian
Cancer Research Group)/GSE62254. Therefore, the prediction
accuracy of apoptosisScore is higher among Asian people, the
results of our study should be further validated using more
multicenter clinical data. However, this subject is new and
worthy of further study.

In conclusion, our study suggests that low apoptosisScore is a
latent marker for determining the prognosis of GC patients. Low
apoptosisScore may also participate a critical part in TIME of GC
by egulating the infiltration of immune cells, suggesting that low
apoptosisScore might be used as a therapeutic target to regulate
the anti-tumor immune response.
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