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Widely thought to be a housekeep-
ing process, the regulation and

synthesis of rRNA emerges as a poten-
tially central mechanism for the mainte-
nance of synaptic plasticity and memory.
We have recently shown that an essential
component of late-phase synaptic plastic-
ity is rRNA biosynthesis — the rate-lim-
iting step in the production of new
ribosomes. We hypothesize that a partic-
ular population of ribosomes is generated
upon learning-associated neural activity
to alter the rate of synthesis of plasticity
factors at tagged synapses that will sup-
port the maintenance of synaptic plastic-
ity and memory.

In 1950, Katz and Halstead first pro-
posed that memory formation required
new protein synthesis1 —a hypothesis that
was not tested until decades later.2-4 It is
now well accepted that for memory to
become consolidated, new transcription
must accompany new, activity-dependent
protein synthesis.5,6

Persistent experience-evoked changes in
synaptic efficacy are widely believed to form
the basis of learning and memory (reviewed
by).7 Long-term potentiation (LTP) is a
persistent form of synaptic plasticity used to
investigate the physiological basis of long-
term memory (LTM) at the synaptic and
cellular level. Like memory, LTP can be
divided into a transient translation-inde-
pendent phase and an enduring late phase
(L-LTP) that requires new transcription
and protein synthesis.7,8 Because of the cru-
cial relevance of new transcription and pro-
tein synthesis for the transition between
transient to consolidated memory, most
efforts to understand experience-induced
changes in neuronal gene expression have
focused on the regulation and synthesis of

RNA polymerase II transcripts, that is, pre-
cursor mRNA, snRNA and microRNA and
their protein products.6,9

In a recent article we reported findings
that provide new insight into the molecu-
lar mechanism of long-term synaptic plas-
ticity. We demonstrated for the first time
that nucleolar integrity—and specifically,
new ribosomal RNA (rRNA) synthesis is
required for the maintenance of LTP.10

rRNAs are the transcription products of
RNA polymerase I (Pol I). Widely
thought to be a housekeeping process, the
regulation and synthesis of rRNA in learn-
ing and memory has remained largely
unexplored until now when it emerges as
a potentially central mechanism for the
maintenance of synaptic plasticity.

Hypothesis

The rRNAs are essential components
of ribosomes.11 The requirement of Pol I-
dependent transcription during LTP sug-
gests that during long-term synaptic plas-
ticity pre-existing rRNAs, in pre-existing
ribosomes, are not sufficient to sustain
LTP expression. Our overarching hypoth-
esis is based on a speculative model where
Pol I-dependent gene expression is selec-
tively regulated to produce new rRNA;
hence, new ribosomes, to carry out the
protein synthesis required to support
long-term synaptic plasticity at learning-
activated (“tagged”) synapses (Fig. 1). To
test our hypothesis we are addressing the
following questions: 1) How does synaptic
plasticity regulate the formation of new
ribosomes? 2) Are these plasticity-induced
new ribosomes functionally different from
other ribosomes? 3) How do these new,
and perhaps distinct, ribosomes support
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the maintenance of synaptic plasticity and
memory? And 4) do all forms of plasticity
and learning and memory require new
ribosomes? The latter question becomes
particularly relevant in light of a recent
article in which Pol I transcription was
disrupted in mouse hippocampal neurons
by the conditional knockout of the nucle-
olar transcription factor TIF-IA.12 TIF-

1A is required for Pol I directed rRNA
transcription. In characterizing the effect
of Pol I disruption 1 month or more after
tamoxifen induced TIF-1A ablation, the
authors observed impairment in tetanic
induced LTP (early and L-LTP), but no
changes in LTM as measured by perfor-
mance in the Morris Water Maze (a hip-
pocampus dependent spatial learning

task). However, at different times after
ablation the animals exhibited variable
changes in spatial learning and re-learning
skills, an apparent upregulation of the
mTOR pathway, and increased neurogen-
esis in the Dentate Gyrus suggesting a
robust activation of neuroprotective com-
pensatory mechanisms as a result of the
hippocampal TIF-1A ablation.12 An inter-
esting question is whether the spatial
learning tested in this study (Morris Water
Maze) would be affected by acute disrup-
tion of Pol I activity.

Ribosome Diversity

In 2002, Mauro and Edelman pro-
posed the “ribosome filter” hypothesis
introducing the idea that differential bind-
ing of mRNAs to the ribosomal subunits
may affect the efficiency of translation.12

Ribosomal subunits would act as regula-
tory elements that mediate interaction
between particular mRNAs and compo-
nents of the translational machinery.13,14

This notion suggests that ribosomes may
not simply be the homogeneous indis-
criminant arbiters of translation as tradi-
tionally assumed, but might exhibit
sufficient heterogeneity to play a regula-
tory role in translation. Sources of ribo-
some heterogeneity include: 1) ribosomal
protein composition (paralogues), 2) post-
translational modification of ribosomal
proteins and ribosome-associated factors,
3) post-transcriptional modification of
rRNA, and 4) rRNA gene (rDNA)
sequence variants.15-17

In eukaryotes, rDNA exist as multiple
tandem repeats totaling, in some cases,
hundreds of copies. Each transcription
unit produces a 45S precursor rRNA that
contains highly conserved coding regions
as well as variable ones. Length and
sequence heterogeneity in the non-coding
and coding regions of rDNA allows for
the possibility of functional rRNA variants
(v-rRNAs) as have been described for
mice16 and humans.17 Therefore, it seems
possible that rDNA variants might pro-
vide the structural and/ or catalytic basis
for specialized ribosomes and ribosomal
diversity during plasticity and memory.

Recently, the existence of physiologi-
cally relevant v-rRNAs has been confirmed

Figure 1. Hypothetical Model for the Transduction of Synaptic Stimuli to Long-Term Plasticity.
Synaptic stimulation triggers adenylate cyclase (AC) resulting in the rapid release of cAMP and the
activation of the cAMP-PKA-ERK pathway. Stimuli leading to long-term plasticity activate mTOR-
dependent translation of preexisting RNA granules (red). Simultaneously, the PKA-ERK pathway
induces the synthesis and activation of chromatin remodeling factors (e.g. PARP-1) that opens the
chromatin allowing plasticity-dependent transcription to take place. Crucial among the new tran-
scripts are precursor rRNAs required for the formation of new ribosomes. We hypothesize that new
and qualitatively different ribosomes are assembled into new RNA granules (green) and shipped to
activated synapses to maintain, through local protein synthesis, the long-lasting changes required
for long-term synaptic plasticity and memory.
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in organisms ranging from Arabidopsis
thaliana to Homo sapiens.17,18 For exam-
ple, in Arabidopsis, 4 v-rRNAs were iden-
tified that differed in their expression
according to tissue type and stage of devel-
opment.18 In mice, 7 v-rRNAs were
cloned and characterized as being differen-
tially expressed.16 As in the Arabidopsis
study, the 7 v-RNAs were found to be
transcriptionally regulated in a manner
corresponding to differences in DNA
methylation sites. Interestingly, the epige-
netic regulator poly(ADP-ribose) poly-
merase-1 (PARP-1) has been shown to
regulate DNA methylation patterns
(reviewed by),19 chromatin availability
and transcriptional activation in response
to environmental cues (reviewed by),20

and ribosome biogenesis.21

Many studies have noted an increase in
RNA synthesis, including rDNA gene
expression, in correlation with neural plas-
ticity and learning and memory models
(See for example,).14,22-25 In our recent
article, we show for the first time that an
essential component of late-phase, activ-
ity-dependent gene expression is rRNA
biosynthesis — the rate-limiting step in
the production of new ribosomes.10 The
requirement for de novo rRNA synthesis
provides a new insight into the mecha-
nism of long-term synaptic plasticity and
suggests that ribosomal quantity and /or
quality regulates the maintenance of long-
term synaptic plasticity. Ribosomal bio-
genesis requires both Pol I driven tran-
scription and the efficient processing of
nascent rRNA transcripts — 2 processes
that have been shown to be regulated by
PARP-1.21,24 Our finding that plasticity-
induced Pol I activity depends upon
PARP adds to the evidence for a key role
of this epigenetic regulator in long-term
synaptic plasticity and memory.10,24,26–28

Klann and Sweatt29 have proposed that
a self-perpetuating positive feedback
mechanism maintains an altered pattern
of local translation that is required for the
formation and maintenance of a memory
engram. In agreement with this model, we
propose that a particular population of
ribosomes is recruited at or nearby
selected (tagged) synapses to alter the rate
of synthesis of plasticity factors that will
support the maintenance of synaptic plas-
ticity and memory. While there is good

evidence supporting ribosomal diversity,
our goal is to determine whether func-
tional ribosome diversity is a cellular strat-
egy important for the maintenance of
synaptic plasticity and memory.

Nucleolar Integrity and
Neurodegenerative Disorders

An important hallmark of neurodegen-
erative diseases is the occurrence of aberra-
tions in the epigenetic code of acetylation,
methylation and PARylation30 (reviewed
by).31,32 Nucleolar impairment may be a
common denominator in several neurode-
generative disorders such as Huntington’s,
Parkinson’s and Alzheimer’s disease
(reviewed by).33 Our data demonstrate
that nucleolar integrity is necessary for
long-term synaptic plasticity and strength-
ens the connection between the structure
and function of the nucleolar complex.
We suggest that the impairment of mem-
ory and cognition occurring in the above-
mentioned neurodegenerative disorders
manifest through nucleolar function
deficits and aberrant nucleolar DNA
methylation.
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