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Production-scale fermentation processes in industrial biotechnology experience gradients in process
variables, such as dissolved gases, pH and substrate concentrations, which can potentially affect the pro-
duction organism and therefore the yield and profitability of the processes. However, the extent of the
heterogeneity is unclear, as it is currently a challenge at large scale to obtain representative measure-
ments from different zones of the reactor volume. Computational fluid dynamics (CFD) models have pro-
ven to be a valuable tool for better understanding the environment inside bioreactors. Without detailed
measurements to support the CFD predictions, the validity of CFD models is debatable. A promising tech-
nology to obtain such measurements from different zones in the bioreactors are flow-following sensor
devices, whose development has recently benefitted from advancements in microelectronics and sensor
technology. This paper presents the state of the art within flow-following sensor device technology and
addresses how the technology can be used in large-scale bioreactors to improve the understanding of the
process itself and to test the validity of detailed computational models of the bioreactors in the future.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Fermentations in bioreactors form the core technology of a huge
and rapidly growing market, which is supplying products such as
amino acids, organic acids, polymers, enzymes, vitamins, antibi-
otics, biopharmaceuticals, and starter cultures for food production
[1]. Most of the production is carried out in submerged fermenta-
tions, which are broths consisting of growth media and a given
production microorganism of bacterial or fungal origin or a mam-
malian cell culture. The broth is contained in large stainless-steel
bioreactors, ranging from 20 m3 to 2000 m3 [2], whose purpose
it is to provide an optimal and axenic environment for the cells
to grow and produce. Together with the appropriate mixture of
nutrients and availability of molecular oxygen (for aerobic pro-
cesses), specific values for physical parameters such as pH and
temperature are crucial for an optimal environment. Therefore,
the bioreactor is purposefully designed to ensure mixing of the
broth, to ensure efficient gas-to-liquid mass transfer for oxygen,
and to guarantee efficient heat removal [3]. During aerobic growth,
the temperature rises because metabolic heat is released. The
growth also leads to a rise in oxygen consumption by the cells
which increases the overall oxygen demand in the bioreactor. In
addition, metabolites altering the pH of the broth may be pro-
duced. All these changes must be counteracted by a proper control
system. Additionally, most industrial fermentation processes are
run in fed-batch mode [4], which means that a substrate solution
is fed to the broth at a controlled rate, such that one substrate com-
ponent is growth rate limiting. The advantage of this approach is
that the reaction rate can be controlled using the dosing rate to
avoid engineering limitations with respect to cooling and oxygen
transfer and to avoid by-product formation [4]. Measurements
from sensors in the bioreactor such as temperature, pH and DO
sensors and offline samples from fixed sample ports, are typically
taken at only one point in the bioreactor [5]. This is of concern
because it is technically infeasible to obtain ideal mixing in
large-scale bioreactors. Hence, due to an interplay between the
rates of mixing, mass transfer and microbial reactions, such as sub-
strate consumption and growth rate, heterogeneities exist within
the bioreactor. Measuring or taking samples from a single specific
point in the reactor are therefore strategies that are likely to be
non-representative for the entire reactor volume. The hetero-
geneities may affect process performance because the cells experi-
ence fluctuations between favorable and unfavorable environments
during their trajectories in the bioreactor. These environmental
fluctuations can lead to a decreased product yield, reduced volu-
metric productivity and/or decreased product quality compared
to products obtained from operation of smaller-scale bioreactors,
in which the process has been developed and piloted [6,7].

The presence of gradients of important process variables, such
as substrate concentration and DO concentration, have been
demonstrated by measuring or extracting samples from multiple
locations in large-scale bioreactors [8–10] using custom built sen-
sor fixtures or sampling systems [11]. Nowadays, however, most
knowledge of heterogeneity in large-scale bioreactors is obtained
through computational methods, such as computational fluid
dynamics (CFD) models together with kinetic models or advanced
cell models [12]. These models offer a more detailed understanding
of the relevant phenomena in the bioreactor environment than the
local measurements [13]. However, high-quality experimental data
is fundamental to make rational model assumptions and to vali-
date these models, but only a handful of such data-sets from
large-scale bioreactors are available in the scientific literature
[14]. This is a concern as CFD studies of large-scale reactors provide
little [10,15,16] or in some cases no experimental validation
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[17–19]. Since the pioneering work by Lapin et al [20], the Euler-
Lagrange approach has been used to simulate environmental fluc-
tuations from the perspective of a microorganism, or more pre-
cisely a group of microorganisms. By simulating microorganisms
as particles, it is possible to extract time series of a variable of
interest, such as substrate concentration or DO concentration,
associated with the trajectories of the particles. The extracted time
series, which can be interpreted as the microorganisms perception
of the variation of given variables in time, are referred to as lifeli-
nes [20], and can be statistically analyzed to provide a comprehen-
sive insight of the environmental fluctuations experienced by the
microorganisms [15].

The same trend of studying fluctuating environments through
particles is present within measurement technology, where a
new generation of Lagrangian measurement techniques, the
autonomous, instrumented and flow-following sensor devices,
are emerging. Generally speaking, Lagrangian measurement tech-
niques make use of particles, which are embedded into the flow
itself and carried along with the agitation or convection induced
fluid motion [21,22]. Compared to established Lagrangian mea-
surement techniques, such as positron emission particle tracking
(PEPT) and computer-aided radioactive particle tracking (CARPT),
the sensor devices are particularly suitable for bioreactors
because of their ability to autonomously measure and store/-
transmit data which significantly simplifies the experimental
procedures. Moreover, the sensor devices are equipped with
one or more sensors to measure variables, such as temperature,
pH, DO, etc. In addition, sensors that provide information about
the position of the sensor device may be integrated. A simple
example of position tracking is a pressure sensor that provides
information about the immersion depth [23], thus allowing for
analysis of the bioreactor environment in both space and time.
As an example of the concept, Fig. 1 illustrates a heterogeneous
steady state bioreactor, with a gradient of some arbitrary vari-
able representing a compound that is continuously added at
the top and consumed within the reactor.

In such a system, the fixed sensor measures a steady value
around the setpoint, while the sensor devices move to zones where
the variable concentration could be critically high or critically low.
This means that the variable concentration deviates from the nor-
mal operating or quality range in certain zones of the reactor vol-
ume, which could represent a major quality concern. Sensor
devices may therefore serve as a process analytical technology
(PAT), to monitor critical process parameters (CPPs) during phar-
maceutical manufacturing.

The aim of this paper is to present the state-of-the-art within
sensor device technology, and to discuss how this emerging tech-
nology can be applied in large-scale bioreactors to gather detailed
spatio-temporal information and how this information can be
merged with computational models that have been developed for
large-scale bioreactors.

The paper is organized as follows: Section two extends the
introduction with some considerations about flow following capa-
bilities, which are important when sensor devices are used to
examine flows or when the measurements are interpreted as what
the microorganisms experience. Section three presents the devel-
opment of Langrangian technologies leading to the state-of-the-
art flow-following sensor devices, while addressing some advan-
tages and limitations of the different technologies. Section four
contains a discussion on the application of flow-following sensor
devices in large-scale bioreactors and how they synergize with cur-
rent state of the art CFD models. Finally, a summary of this review
paper is provided combined with an outlook towards future devel-
opment of the technology.



Fig. 1. Illustration of the use of sensor devices in a large-scale stirred tank bioreactor. The sensor devices will be carried around with the liquid flow and measure relevant
variables that potentially represent what microorganisms would experience when travelling throughout the volume. The measured values may deviate from the normal
operating range in certain zones of the reactor volume.
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2. Flow following capabilities

Recent CFD studies of large-scale bioreactors have shown a con-
siderable interest towards understanding the fluctuations in pro-
cess variables that the microorganisms may experience in the
reactors [15,17–19]. It is therefore also obvious to interpret mea-
surements from Lagrangian techniques as if they were microorgan-
isms moving around with the liquid streamlines in the bioreactor.
Lagrangian techniques have also proven useful in studies of flow
and mixing [24–28], especially the Lagrangian techniques which
are appropriate for the use in large-scale bioreactors [26]. No
experimental approaches are readily available to study the flows
in large-scale bioreactors in detail [29] and the knowledge about
mixing is often limited to the mixing time [22]. Exactly how the
information obtained by Lagrangian techniques can be used to
study flow and mixing in bioreactors may vary with the individual
technology. These methods will be covered when introducing the
Lagrangian technologies in the following section. However, for
any of these applications to be justified, the particles must exhibit
flow following behavior. Lagrangian techniques having this trait
are also known as flow-followers.

The Lagrangian particles behave more like the liquid when they
are neutrally buoyant, i.e. when the density of the particles is equal
to the surrounding liquid. However, the condition of neutral buoy-
ancy poses a problem in aerated bioreactors, where the apparent
density of the gas–liquid dispersion is reduced when air is intro-
duced. The apparent density of the gas–liquid dispersion is calcu-
lated as qapp = (1 � e)ql � eqg, where ql is the liquid density, qg

the gas density, and e the volumetric gas-holdup [30]. The term
eqg is often negligible as the gas density is only a fraction of the liq-
uid density at fermentation conditions. In such a system, Middle-
ton [31] showed that flow-following particles which are large
compared to the mean bubble size, experience the mean density
of the gas–liquid dispersion, whereas flow following particles that
are smaller than the mean bubble size, experience the liquid den-
sity. Therefore, large particles (i.e. larger than the mean bubbles
size) that are neutrally buoyant in a liquid, will be settling with a
given velocity when aeration is introduced in the liquid.

Besides experiencing minimal effect from buoyancy or settling
forces on the velocity, the particles must also be able to respond
to the changes in the velocity field. If the response of the particle
is too slow, the particle will detach from the liquid streamlines
and will therefore represent the hydrodynamics inaccurately.
Moreover, if lifeline studies are the motivation, the environment
that the particle experiences will only have a weak relation to
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the environment that a microorganism would experience. The trait
of being able to respond to changes in the velocity field can be
quantified by the Stokes Number: St = sp/sf, where sp represents
the momentum response time of a particle and sf is some time
characteristic of the flow field [32]. St � 1 means that the response
time of the particles to changes in the velocity field is much lower
than the characteristic time associated with the flow field; there-
fore, the particle behaves like the fluid, which is exactly what is
desired for flow-following particles. On the other hand, if St � 1,
then the particle will have no time to respond to the fluid velocity
changes and will likely detach from the fluid streamlines. From a
practical point of view, it can be stated that the condition
St < 0.1, returns an acceptable flow tracing accuracy with errors
below 1% [32]. A generalized form of the equation for momentum
response time is shown in Eq. (1) [33].

sp ¼ 4
3
� qp � d2

p

lf � Rep � CD Rep
� � ; ð1Þ

with the Reynolds number for particles Rep defined in Eq. (2).

Rep ¼
qf � dp � u� vj j

lf
: ð2Þ

Eqs. (1) and (2) can be combined to obtain Eq. (3).

sp ¼ 4
3
� qp

qf
� dp

u� vj jCDðRepÞ ; ð3Þ

where qp (kg/m3) and qf (kg/m3) are the particle density and fluid
density, respectively, dp (m) is the particle diameter, CD (–) the drag
coefficient, v (m/s) the particle velocity and u (m/s) the fluid veloc-
ity [33].

From this Eq. (3) it is apparent that a reduction of the particle
diameter leads to a reduction in the momentum response time
and therefore a reduction in Stokes number. Hence, this is leading
to the intuitive conclusion that smaller particles have better flow
following capabilities. This becomes important with respect to sen-
sor devices, which due to the incorporation of batteries, electronics
and sensor technology, face limitations with respect to the diame-
ter. In this case, a lower tracing accuracy may be considered
acceptable but should be taken into consideration when interpret-
ing the results. In contrast to a smaller diameter, a higher drag
coefficient leads to better flow following capabilities, as this lowers
the momentum response time and the Stokes number. The drag
coefficient is associated with the contribution from particle shape
and orientation on the hydrodynamic drag. A higher drag coeffi-



Fig. 2. Timeline highlighting important developments in Lagrangian technologies for bioreactors (See above mentioned reference for further information).
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cient implies a higher drag force acting on the particle. The drag
coefficient is not a constant, but rather a function of Reynolds num-
ber. In fact, the drag coefficient decreases with increasing Reynolds
number, e.g. from increasing the particle diameter [33,34].
Nonetheless, the overall contribution from an increased particle
diameter still results in a higher momentum response time.
Increasing viscosity, on the other hand, results in a higher drag
coefficient and an overall reduction of the momentum response
time and the Stokes number. The contribution from drag on the
flow-following capabilities makes sense as the term ‘‘flow-
following” entails that the particle is getting dragged along with
the liquid which has forces acting in the direction of the flow.
Fig. 3. Instrumented sensor devices: a) Sens-o-sphere [58]. b) smartCAPS (pH
version) [42]. c) Bio-capsule [43]. d) bPod [44].
3. Evolution of Lagrangian technologies for bioreactors

Lagrangian technologies, and more specifically sensor devices,
have developed rapidly in the last decades, which is apparent from
the timeline in Fig. 2; the timeline highlights important develop-
ments within the area. Advances in nanofabrication have signifi-
cantly reduced the size of integrated circuits, enabling the
miniaturization of electronics, while advances within microma-
chining have led to the production of microelectromechanical sys-
tems (MEMS) and microsensors [35]. These technologies constitute
key components in the state-of-the-art sensor devices, with some
examples of MEMS being pressure sensors and accelerometers.
Examples of the microsensors include certain types of pH and dis-
solved oxygen sensors.

The application of Lagrangian sensor technologies in industrial
biotechnology dates back to the late sixties where J. Bryant devel-
oped a radio pill for his PhD thesis in 1969 [36]. The radio pill was a
plastic encapsulated and battery powered radio transmitter, which
could be detected when the radio signal was picked up by a prox-
imate antenna. The radio pill technology was later used by Fields
et al. [45] to study circulation time distributions (CTDs) in a
pilot-scale air-lift bioreactor of approximately 0.5 m3, using a
dilute xanthan solution as the model fluid. The CTD provides more
information than the mean circulation time, or the mixing time, as
the tail of the distribution may reveal long and critical circulation
times. The CTD is valuable when examining the residence time in
fluctuating microenvironments that the microorganisms may be
exposed to, which is exactly what is necessary to understand the
effect of heterogeneity [46]. The air-lift type bioreactors are similar
to bubble column bioreactors but contain an inner cylinder which
divides the flow into an upwards going fraction in the middle of the
reactor, and a downwards going fraction at the side. The diameter
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of the applied radio pill measured only 10 mm. The CTD was deter-
mined by fixing an antenna at the middle height of the bioreactor.
Thereby, each circulation was detected in the downwards flow
stream at the side, where the radio pill came close to the antenna.
The radio pill offered several advantages compared to existing
technologies; it enabled flow analysis of a system which could
otherwise not be visualized because of opaque media, bubbles or
a stainless steel bioreactor wall, and it offered an alternative to tra-
ditional conductive tracers, which may alter the rheology of xan-
than gum solutions [47].

The radio pill was later applied in a study of liquid circulation in
an industrial bioreactor [26,37,38]. The examined system consisted
of a 25 m3 bioreactor with a gas–liquid volume of 19 m3 which was
agitated by two Rushton-type impellers. Antennas were placed
inside the bioreactor in planar networks around the impellers to
detect passages of the radio pill. Different circulation scenarios
were thereby defined based on consecutive detections of the radio
pills, from which the CTD and mean circulation time could be
determined. In this study, the density of the radio pill was adjusted
such that it was neutrally buoyant in water, while a gas–liquid dis-
persion was examined. Therefore, a significant part of the study
was focused towards interpreting the data with the help of a
model, which introduced several assumptions about the flow.
Thereby, the effect from the ‘‘rate of fall”, which was determined
experimentally in a glass cylinder, could be obtained from the
gas fraction in the compartment and corrected from the CTD based
on a ‘‘falling” probability.

During the late eighties and early nineties, positron cameras,
electronics for timing and algorithms were developed in order to
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efficiently track and process data from positron-emitting particles
[48,49]. The technique is referred to as positron emission particle
tracking (PEPT). Concurrently, a similar technology - computer-
aided radioactive particle tracking (CARPT) - was developed and
refined [50,51]. The data obtained from these technologies are time
series of 3D coordinates which reflect the particle trajectories. This
Lagrangian information can be used to derive valuable flow charac-
teristics, such as the CTD, or be converted into an Eulerian velocity
map to examine the overall flow structure in the reactors [27,28].
PEPT and CARPT have been used extensively in lab scale to better
understand the flow in both bubble columns and stirred tank reac-
tors [27,28,39,51,52]. The velocities and CTD obtained by CARPT
have also been used to validate Lagrangian CFD predictions in a
stirred tank reactor [28].

The tracer particles used in PEPT are as small as 100 mm [53].
The small size of the tracer particles makes them superior in terms
of flow-following capabilities compared to the relatively large
radio pill. Moreover, with PEPT and CARPT it is possible to obtain
3D trajectories, while the radio pill can only detect circulations.
PEPT and CARPT are therefore muchmore suitable for detailed flow
studies compared to the radio pills. However, they suffer from
practical implications which limits the use in large-scale bioreac-
tors. First, the detection of the particles requires that the examined
system is encased by detectors. Second, both PEPT and CARPT rely
on gamma radiation which suffers an intensity loss through stain-
less steel and liquid. It is therefore unlikely that the signal can
cover the entire volume of a large bioreactor. Further drawbacks
are the special precautions that may have to be taken when work-
ing with radiation [22].

3.1. Current state of sensor devices

3.1.1. Sensor devices without position tracking
Sensor devices differ from the previously discussed Lagrangian

measurement techniques in the sense that they can measure
autonomously, which involves performing measurements in a con-
trolled fashion, dictated by a microcontroller unit (MCU).

Such sensor devices have been introduced in a commercial ser-
ies of single parametric sensor devices named smartCAPS (Fig. 3b),
which are capable of measuring either temperature, pH, accelera-
tion, pressure or conductivity in bioprocess applications amongst
others [42]. To the best of our knowledge, there is only literature
available on early prototypes of these products. The earliest intro-
duced prototypes, termed smart particles, were spheres with a
diameter of 21 mm, which were able to measure temperature
and wirelessly transmit the data via radio frequencies. The ‘smart
particles’ were presented in a study which examined the convec-
tive flow in a rectangular container (40 � 40 � 10 cm) consisting
of 25 mm thick poly(methyl methacrylate) with a cooled plate
on the top and a heated plate on the bottom. Due to the fast
response time of the temperature sensor of 0.06 s, it was possible
to accurately describe the periodic temperature fluctuations mea-
sured by the sensor device. A successor to the smart particle, called
smartPART, was built on the same concept as the smart particle,
but included a three-dimensional (3D) accelerometer instead of a
temperature sensor [54]. The research group presented a mathe-
matical framework, which based on the acceleration signal enables
the analysis of turbulent flow by identifying various flow struc-
tures, e.g. large vortex structures. This is demonstrated in a special-
ized mixing unit at lab-scale, which generates turbulent flow by
two opposite counter rotating impellers [25]. The sensor device
provides a simple approach to obtain insight on turbulent flows,
as the characterization of a flow condition can be carried out in
approximately 30 min and the sensor device can be used for 6 to
36 h depending on the power needed to transmit the acceleration
signals. This makes the sensor device very versatile compared to
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other particle trackingmethods, for instance PEPT, where the activ-
ity of the produced tracer decays over time and tracking time may
be limited to 5 h [27]. However, the sensor device has a diameter of
25 mm, which in comparison to a PEPT particle in the micrometer
scale, greatly limits the flow following capabilities and the length
scale of the coherent turbulence structures which can be
examined.

With respect to the application in a large-scale bioreactor, tem-
perature gradients are typically not expected in processes main-
tained at constant temperature, as no significant variations have
been measured at different positions in large-scale bioreactors
[9,55]. Therefore, a temperature sensor may not provide much
new information. Information on turbulence structures, on the
other hand, could provide valuable mixing insight as these struc-
tures are responsible for providing the energy to introduce new
surface area, i.e. breakage of fluid elements and/or air bubbles.
However, the application of the sensor devices is based on contin-
uous data transmission which is not possible to maintain at any
time in large-scale bioreactors, as the signal is dampened by the
steel walls and the liquid volume.

Another sensor device, called the Sens-o-sphere, has been
developed and is currently the smallest sensor device with its
diameter of 7.9 mm (Fig. 3a) [56,57]. The sensor device is capable
of measuring temperature with a response time of 7 s and wire-
lessly transmit the data to a base station, using radio frequencies.
The relatively long response time of the temperature sensor is
due to the thermal conductivity of the sensor device shell, as the
temperature sensor is not penetrating the shell. At the moment
the research group developing the sensor device focuses on lab-
scale experiments and validation of CFD models for different
implementation scenarios [57,58], together with the development
of a localization system for the sensor devices based on inductive
localization [59], which makes use of the wireless charging system
in the sensor devices. Therefore, these sensor devices are not of
immediate interest in large-scale applications, as temperature
measurements are unlikely to reveal heterogeneity, as mentioned
before. However, the sensor device may provide a non-invasive
method to measure in applications where access to the process is
limited, such as tubular reactors [56].

A sensor device capable of measuring conductivity, pH and con-
centrations of potassium, sodium and glucose, called the bio-
capsule, has been presented by Todtenberg and co-workers [43].
The bio-capsule is a spherical sensor device with a diameter of
44 mm (Fig. 3c). One hemisphere is permeable to the fermentation
broth and contains the sensors and the antenna used for data
transmission while the other hemisphere is waterproof and con-
tains the rest of the electronics required for operation of the sensor
device. The device has been tested in a pilot-scale tubular glass
photobioreactor containing a nutrient solution, where the focus
was on the radio transmission. No details are presented with
respect to sensor validation, except for the pH sensor, which was
tested in reference solutions, showing voltage responses as
expected [60]. The applied glucose sensor is an amperometric type
sensor and due to the nature of the measurement method, reaction
related mediator substances deposit on the electrode surface over
time which attenuates the signal. Therefore, the estimated lifetime
of the sensor device is limited to two weeks [60]. Based on the lim-
ited details presented on the sensor package in this study, it is dif-
ficult to assess the usefulness of this sensor device in large-scale
bioreactors.

A recent study [44] aimed to develop a sensor device to study
DO gradients in large-scale production of pharmaceuticals in stir-
red bioreactors. An electrochemical dissolved oxygen sensor was
fabricated and integrated into a device with a diameter of
60 mm, named the bPod (Fig. 3d). The DO sensor was tested in a
2 L glass vessel where a steady state sensor response was achieved



Fig. 4. Sensor devices with axial position tracking: a) Sensor particle [61]. b)
Fermsense 3D [66].
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after 4 s. The sensor device was finally evaluated in a 10 L lab-scale
bioreactor where DO measurements from the sensor device were
compared with measurements collected by a commercial DO probe
under different DO concentrations. The study showed promising
results for DOmeasurements in sensor devices. However, this early
prototype still suffered from a significant sensor drift and a short
sensor lifetime.

Sensor devices have come a long way with respect to sensors
which have been miniaturized and integrated, which is evident
from the wide range of sensors in the presented sensor devices.
However, little sensor validation and no lifeline studies are pre-
sented by the different research groups involved in such sensor
development, which causes doubt about the robustness of the
technologies. The sensor devices rely on wireless transmission,
which suffers from some of the same limitations as PEPT and
CARPT regarding signal loss in large stainless-steel bioreactors.
However, the technologies seem promising as process analytical
technologies for single use bioreactors in pharmaceutical
manufacturing.
3.1.2. Sensor devices with position tracking
The sensor devices presented in the previous section provide

time series of given process variables. This information can be used
to investigate the fluctuations in these process variables that
microorganisms may encounter during their trajectories in the
bioreactor, similar to information obtained from Euler-Lagrange
simulations. However, no information about the trajectory itself
is obtained which can complicate the data interpretation, espe-
cially regarding the flow following capabilities of the sensor
devices, considering their relatively large size and possible inaccu-
rate density. Hence, the sensor device may be spending most of its
time in the bottom or the top of the liquid which cannot be
inferred from the measurements.

This problem has been solved by Thiele et al. [41] who have
developed a sensor device for application in biogas digesters and
wastewater treatment plants, which is capable of measuring tem-
perature, pressure and 3D acceleration. In contrast to other devel-
oped sensor devices which are spherical, this sensor device has a
cylindrical geometry (Fig. 4a). The advantage of this sensor device
is the pressure measurement, which has been used to derive the
immersion depth of the sensor device using Pascal’s principle:
Dh = DP/(qg), with Dh (m) being the immersion depth or the
height of the fluid column above the measurement point, DP (Pa)
is the hydrostatic pressure, q (kg/m3) is the fluid density and g
(m/s2) is the gravitational acceleration [23]. The sensor device also
differs from other sensor devices with respect to data collection
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strategy, which in this case focusses on storing the data internally
rather than immediately transmitting it. Offline data collection
may be the only option in large-scale bioreactors because wireless
transmission through lossy transmission channels, such as metallic
barriers, liquid conductivity, multiphase fluid and long distances,
are currently infeasible. Since the original prototype, the sensor
device has been further developed by the research group and has
been equipped with a 3Dmagnetometer, 3D gyroscope and a buoy-
ancy control unit [61]. The buoyancy control unit consists of an
electronically controlled piston, which can rise to increase the vol-
ume of the sensor device and thereby reduce its density. With the
buoyancy unit, the density can be adjusted automatically in stag-
nant process fluids, which therefore eliminates the need for disas-
sembly and manual adjustment of the density. The buoyancy unit
is also of importance with respect to retrieval of the sensor devices
from a process. The sensor devices can be programmed to lower
their density after a period of time, whereby each device floats to
the liquid surface for retrieval. An offset in the density of 6% was
found to force the sensor device to the liquid surface in fully turbu-
lent flows [61]. This feature is very relevant for continuous fermen-
tations run in an open and non-axenic way, while most axenic
processes in industrial biotechnology applications are run as fed-
batch processes. Here, the sensor device could potentially be col-
lected by a filter in the outlet stream after the process has been
ended.

Reinecke et al. from the same research group showed that axial
residence profiles derived from the immersion depth of the sensor
device can provide valuable information about the homogeneity in
bioreactors. They showed that by changing the impeller clearance
from 0.2 m to 0.324 m in a 1 m3 model fermenter with a highly vis-
cous straw suspension, the homogeneity and axial dynamics in
terms of axial velocity improved [23]. Similar results were shown
in a pilot biogas digester of similar size, where better homogeneity
could be obtained with roughly the same power input by increas-
ing the impeller diameter and reducing the rotation speed [62].

The accelerometer was used to examine tendencies in the flow
dynamics and to determine collisions of the sensor device with the
impeller, which was detected by a peak in the acceleration mea-
surements. It was demonstrated that the CTD could be determined
from either the pressure measurements or the acceleration mea-
surements [23]. In the case of acceleration, the frequency of the
peaks was considered equal to the circulation time. The pressure
approach utilized an arbitrary plane (of immersion depth). A circu-
lation was then defined as consecutive intersections of the sensor
device trajectory with this plane [23]. The approach to determine
circulation time via measurements of hydrostatic pressure could
in principle be used to determine the circulation rates between
and inside the specific axial zones by modifying the location of
the detection planes. Reinecke et. al compared and found good
agreement between the average circulation times obtained by
the sensor devices and the circulation times predicted by CFD sim-
ulations in a pilot-scale bioreactor. In this case, the sensor device
was simulated as a dispersed phase using the Euler-Euler approach
and the circulation time was derived from the streamlines [63].
The research group also proved that this concept could be applied
to aerated bioreactors, by examining and comparing axial resi-
dence profiles and circulation times between a bubble column
reactor and an air-lift reactor. A circulation time based analysis
of the Peclet number, which describes the ratio of advective flow
to diffusion, showed that a higher degree of back mixing was pre-
sent in the bubble column reactor while the air-lift reactor was
dominated by advective flow, which is expected from the enforced
axial flow direction [62].

The magnetometer has been applied in the study of circulation
times in a large 30 m3 pilot oval biogas digester. Measurements of
the magnetic field enabled the sensor device to occasionally deter-



Table 1
Overview of the sensor devices which have been developed for specific use in biotechnology applications.

Name Diameter Measured variables Derived variables References

Sens-o-sphere 7.9 mm � Temperature � Spatially resolved variables [57,69]
smartCAPS 25 mm � Single variable quantified (temperature, acceleration, pH, conductivity or pressure) � Spatially resolved variables

� Hydrodynamic signature
[42]*
[25,70]

Bio-capsule 44 mm � Potassium concentration,
� Sodium concentration
� Conductivity
� pH
� Glucose concentration

� Spatially resolved variables [43,60]

bPod 60 mm � Dissolved oxygen � Spatially resolved variables [44]*
Sensor particle 52.8 mm** � Temperature

� Pressure
� Acceleration
� Magnetic field

� Spatially resolved variables
� Circulation time
� Axial position
� Axial velocity

[41,61,71]

FermSense 3D 45 mm � Temperature
� pH
� Acceleration
� Pressure

� Spatially resolved variables
� Flow patterns

[55,66]*

* Not from peer reviewed literature.
** Volume equivalent particle diameter (cylinder).

Fig. 5. Stokes number as a function of the characteristic time for the reviewed sensor devices. The relationship is presented for water (0.001 Pa s) and for a low (0.01 Pa s) and
a high viscosity (0.1 Pa s) fermentation. The figure serves as a comparison of how the diameter of the sensor devices and the fluid viscosity affects the flow following
capabilities. The presented values are only rough estimates as the velocity of the sensor devices compared to the fluid is assumed to be constant, at 0.05 m/s. In addition,
perfect buoyancy (qp/qf) = 1 is assumed.
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mine its position when it was in the proximity of a local position
marker [24]. The research group is currently working on applying
magnetic fields for data transmission and for expanding position-
ing with radial components [64,65].

The use of sensor devices has also been validated in a real pro-
cess, consisting of a 2077 m3 activated sludge basin at a wastewa-
ter treatment plant [62]. The sensor devices were successfully
density adjusted and retrieved using the automated buoyancy con-
trol. The activated sludge basin was analyzed with respect to flow
behavior in terms of axial velocity and inertial measurements, as
well as thermal characteristics [62].

Another commercial sensor device is Fermsense 3D developed
by Freesense ApS [66,67]. This spherical sensor device with a diam-
eter of 45 mm (Fig. 4b) is currently being commercially applied in a
data-based mapping service of industrial fermentation processes
[68]. FermSense 3D has recently been successfully deployed in an
industrial scale bubble column, where temperature and pH were
measured and linked to a pressure derived axial position over
the duration of an entire E. coli fermentation [55]. The measure-
ments revealed that no thermal gradients were present, but minor
transient fluctuations were present in the pH in the lower part of
the bioreactor due to the location of the ammonia gas addition
[55].

The key features of the technologies reviewed in this section are
summarized in Table 1.
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The Stokes numbers for the reviewed sensor devices as a func-
tion of the characteristic time for flow in water and two common
fermentation viscosities are shown in Fig. 5 [16].

The Stokes number is calculated from Eqs. (1) and (2), with the
drag coefficients estimated by correlations for spherical and non-
spherical particles by Levenspiel and Haider [72]. The estimations
of the Stokes number in Fig. 5 only exemplify the effects of diam-
eter differences and should not be taken as accurate predictions, as
a constant particle to fluid velocity difference of 0.05 m/s is
assumed, together with perfect buoyancy (qp/qf) = 1.

The time scale, i.e. the characteristic time, of the phenomena
that the sensor devices can accurately represent are drastically
reduced with reductions in the sensor device diameter and
increases in the viscosity. Because of the drag coefficient, the effect
of increased diameter is greater than the proportional relationship
of particle diameter and relaxation time shown in Eq. (3). Due to
the similarities in the particle diameters, the Bio-capsule and
Fermsense 3D show identical behaviors and it is difficult to distin-
guish the lines in the figure. The same applies to the bPod sensor
device and the sensor particle. Some examples of characteristic
times which may be of interest for sensor devices in bioreactors
are the impeller diameter to tip speed ratio, which implies an
intermediate mixing scale between turbulence and bulk mixing,
or the circulation time in the bioreactor, which implies bulk mixing
of the process [23].
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It should be mentioned that most viscous fermentation broths
exhibit shear thinning behavior, which means that the viscosity
varies spatially depending on the local shear rates in the bioreactor
[16]. Therefore, the flow following capabilities may also vary
locally.

Sensor devices with position tracking have proven useful in the
study of flow and mixing. However, the information that can be
obtained about position is limited to the axial direction together
with a few local reference points, e.g. the impeller or locally
installed position markers. Nevertheless, the practical simplicity
and the scalable positioning methods make them promising tech-
nologies for large-scale bioreactors.
4. Discussion

The overview of sensor devices in Table 1 shows that a range of
variables can currently be measured with sensor devices. Temper-
ature sensors are present in most of the sensor devices, even
though temperature gradients are supposedly not a big issue in
large-scale bioreactors. However, it should not be ruled out that
very viscous broths or bioreactors with poorly designed cooling
systems may suffer from temperature gradients. The main reason
that temperature sensors are so widespread is probably because
the underlying technology is simple and inexpensive in terms of
space and battery usage. Temperature sensors are usually also
accompanying the majority of sensors by default, as temperature
compensation is required for most sensor technologies. Several of
the developed sensor devices also include a pH sensor. Measure-
ments of the pH value are interesting in relation to heterogeneity
because accumulation of acidic by-products during cell growth
demands pH control, usually by addition of base [73]. Therefore,
in the case of deficient mixing in the bioreactor, considerable tran-
sient fluctuations of pH are expected near the base addition zone,
which have already been demonstrated using sensor devices
[55]. Spatial gradients in pH have been shown to promote the for-
mation of by-products and to reduce the viability of the production
organism [73–75]. Glucose concentration and DO concentration
are arguably the most important variables in relation to gradients,
as both may be rapidly consumed at high cell growth rates and are
continuously added to the fermenter in most industrial fermenta-
tions. Consequently, their spatial distribution depends on the mix-
ing and mass transfer conditions in the bioreactor. Despite their
great importance, glucose and DO sensors are uncommon in sensor
devices. The reason is that there are considerable challenges asso-
ciated with the technologies. One of these challenges is the
response time of the sensors. In a bioreactor with axial velocities
up to two meters per second, as determined in a CFD study of a
large-scale aerated bioreactor [17], a sensor response time of half
a second is required to get a spatial resolution of one meter in
the axial direction. The reported response time for the DO sensor
was approximately 4 s [44]. No response time was reported for
the glucose sensor, but is expected to be even longer than 4 s based
on response times of currently available technologies [76].
Response times much slower than a couple of seconds render the
sensors unsuitable for measuring differences between different
zones in high velocity processes, for example in industrial fermen-
tation processes, as they will merely measure an averaged contri-
bution of the variable for the entire bioreactor. However, sensors
with slower response times are still relevant for processes with
lower fluid velocities, which also have a higher probability of expe-
riencing gradients. Another challenge is that the most widely uti-
lized glucose sensors are enzyme-based (glucose oxidase) [77]
and therefore cannot undergo steam sterilization, as the high tem-
peratures will inactivate the enzymes immobilized in the sensor.
Steam sterilization is the most widespread approach to ensure an
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axenic environment in industrial fermentation processes, and
therefore the introduction of the sensor device after the bioreactor
has been sterilized poses a potential contamination risk to the
process.

The sensor device from Thiele et al. and the Fermsense 3D sen-
sor device offer the possibility to link the measured variables to an
axial position. Even though the flows in the bioreactors are highly
three-dimensional, the axial position by itself is valuable, as a sig-
nificant part of the dynamics in large-scale bioreactors are axial,
because the height to diameter ratio of such bioreactors is usually
greater than two [10,15–19]. The axial position has also proven
valuable for characterizing axial flow and to determine CTDs in
the bioreactors. The drawback of using the hydrostatic pressure
to calculate the immersion depth is that knowledge about the fluid
density is required. The bubbles themselves do not affect the pres-
sure measurements, as the total pressure inside the bubbles is
equal to the pressure of the surrounding fluid. While the broth
density is easily determined from extracted samples of the broth,
the apparent density of gas–liquid dispersions is more difficult to
estimate accurately in bioreactors [30]. This can therefore result
in inaccuracies of the calculated immersion depth by Pascal’s prin-
ciple. For example, in a situation where the apparent density of the
fluid is estimated to 800 kg/m3, but the actual apparent density is
900 kg/m3. From Pascal’s principle it follows that for a given mea-
sured pressure difference, Dhactual = Dhestimate(qestimate/qactual).
Therefore, the estimated height of the fluid above the sensor
device, i.e. the immersion depth of the sensor device, is 1.125 times
greater than the actual height of the fluid above the sensor device.
Correspondingly, the velocities obtained from the derivative are
inaccurate by a factor of 1.125. This also means that the total error
will be largest at the largest pressure difference, i.e. when the sen-
sor device is furthest away from the reference pressure at the liq-
uid surface.

In addition, the apparent density may vary locally, e.g. over the
liquid height of the bioreactors. This could especially be the case in
tall bubble column bioreactors. Here, the gas expansion and chang-
ing equilibrium between bubble coalescence/break-up with hydro-
static pressure, affects the superficial gas velocity and the gas hold-
up. The actual extent of occurrence of gas hold-up gradients in
large bioreactors is uncertain, but CFD simulations show variations
of the gas hold-up from 18% to 24 % in the majority of the volume
in a 125 m3 bubble column reactor, while a greater difference
exists when including zones in the vicinity of the top and bottom
[19]. This means that a measured pressure difference of 7500 Pa
may correspond to a change in axial position of approximately
one meter for the lower part of the reactor where the gas hold-
up is 24%, while the same pressure difference corresponds to a
change in the axial position of 0.93 m at the upper part of the reac-
tor where the gas hold-up is 18%.

Accurate axial flow characteristics and CTDs can be directly
compared to, and serve as validation, for CFD simulations with par-
ticle tracking. The current sensor devices are still limited in terms
of important variables that can be measured, such as concentra-
tions of substrates, products of by-products. CFD models which
may have been validated by the axial flow profiles, CTDs or even
DO profiles obtained from sensor devices could be used to model
some of these variables that are challenging to measure. The tech-
nologies can therefore synergize to provide a better understanding
about gradients in general and their impact on the production
organisms. To the best of our knowledge, no studies that compare
sensor device measurements with CFD simulations have been pub-
lished thus far, besides the comparison of circulation times
obtained by sensor devices and CFD simulations by Reinecke
et al. [62]. In the future, more studies concerning CFD modelling
of large-scale bioreactors could greatly benefit from comparisons
with sensor device measurements.
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An extension of the axial position with the two radial compo-
nents (i.e. 3D positioning) is required to also be able to examine
gradients in the radial direction. This is relevant because the addi-
tion of substrate, acid/base or even oxygen may be located some-
where away from the center axis. The three-dimensional
trajectories are also the ideal input for validation of CFD models.
However, a 3D positioning system has not yet been realized for
large-scale bioreactors as the stainless-steel tanks and the turbu-
lent opaque broths with a large fraction of dispersed gas prevent
visibility and seriously limit transmission options. Inertial naviga-
tion systems (INS) based on measurements of acceleration and
angular velocities in three dimensions using MEMS sensors have
been studied in detail for applications such as pedestrian naviga-
tion and unmanned drone technology [78–80]. This type of posi-
tioning system is interesting because the position can in theory
be derived from on-board sensors. The position and absolute rota-
tion from an initial state can be obtained through double integra-
tion of acceleration and integration of angular velocity,
respectively. However, in practice the MEMS sensors are subject
to non-linear noise, which if integrated, quickly accumulates to
large errors in the position, making the estimates valid for short
periods of time only. Buntkiel et al. have proposed to use an INS
in bioreactors with the sensor particle (Table 1) with additional
inputs from a magnetometer and the pressure sensor to the posi-
tioning system [81]. The system has shown to produce accurate
results in an experimental setup, but is yet to be investigated
in situ (i.e. for sensor devices circulating in bioreactors) [64,81].
A concept which combines the INS with radio frequency time-of-
flight measurements has also been proposed for the use in large-
scale biogas reactors. The position can be determined using radio
signals when the sensor devices are at the liquid surface, while
the INS takes over once the sensor devices are submerged. When
the sensor devices rise to the surface once again, the position
determined by the INS can be checked against the time-of-flight
measurements [82].

It should be mentioned that measurements of a variable in time
without information about the position could still be relevant for
the validation of lifeline studies with Euler-Lagrange simulations,
i.e. with a statistical comparison of the trajectory measurements.
However, to the best of our knowledge, such studies have also
not been published at the time of writing. It should also be empha-
sized that the sensor devices presented in Table 1 are 3–4 orders of
magnitude larger than the cells of commonly used production
organisms. It is therefore expected that the sensor device’s repre-
sentation of the cell trajectories is limited with respect to accuracy.
A microorganism with a diameter of 1 lm has a Stokes number
that is approximately eight orders of magnitudes lower than a
spherical sensor device with a diameter of 45 mm, when the vis-
cosity is equal to that of water. This means that the microorgan-
isms will practically behave as the liquid in the bioreactors.
While this is not true for sensor devices, they are generally able
to follow the bulk circulation flows. It can be seen from Fig. 5 that
under high viscosity conditions, flow tracing accuracy errors of less
than 1% can be obtained for circulation times >10 s. This is the case
even for the largest sensor devices. Viscous processes with high
characteristic times because of low velocity fields or large volumes
are therefore ideal systems for macroscopic sensor devices. Specific
types of bioreactors, such as biogas digesters, fit this profile well
with even higher viscosities than exemplified in Fig. 5. Reinecke
et al. demonstrated that the relatively large sensor device (sensor
particle, Table 1), should be able to follow the circulation flows
with an error that is less than 1%, even in a model system at pilot
scale [23]. An acceptable tracing accuracy (St < 1) may still be
obtained for most circulation flows with circulation times >5 s by
the large sensor devices in Table 1, in the worst case of water-
like viscosity. Still, there should be continued motivation towards
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reducing the size of the sensor devices to improve accuracy for a
wide range of processes, especially when interpreting the mea-
surements from a cell lifeline perspective. Statistical analysis of
measured variables and the determined circulation times could
provide indications of the time distribution of microorganisms in
critical zones. However, the results should be interpreted with
the flow following capabilities of the sensor devices in mind. For
example, the residence time in zones of high energy input may
potentially be biased towards lower residence times because the
flow structures in these zones are much smaller and will entrain
the microorganisms, but not the sensor devices.

Fermentation processes with changing density profiles could be
dealt with by deploying multiple sensor devices with a range of
densities and by interpreting several datasets corresponding to dif-
ferent periods of the process. In addition to affecting the Stokes
number, the discrepancy between sensor device density and the
fluid density also affects buoyancy of the sensor devices. As pre-
sented previously, Barneveld et al. measured falling velocities of
the radio pill to correct the measured circulation times in a gas–liq-
uid dispersion [26]. A gas holdup of 20% resulted in a falling veloc-
ity of the radio pill of 0.27 m/s, when the radio pill was adjusted to
be neutrally buoyant in water. As with the Stokes number, falling/
rising velocity calculations may only serve as an initial estimate,
because the drag force is not directly opposing the gravity when
the fluid is in motion [83]. In practice, major discrepancies
between the sensor device density and fluid density are expected
to be readily visible from the axial residence times of the sensor
devices. As an example, Reinecke et al. purposefully forced the
devices to the liquid surface by introducing a density offset of 6%
[61]. This was confirmed by measurements of hydrostatic pressure,
which showed that the sensor devices spent most of the time near
the liquid surface. To be able to reach the surface, the rising veloc-
ity should exceed the dynamics in the velocity field of the flow.

To validate the flow following capabilities of the sensor devices
rather than relying on estimations of the Stokes number, it would
be obvious to compare the derived trajectories and velocities of the
sensor devices with established methods, such as PEPT and CARPT,
which utilize particles with diameters in the micrometer range. To
the best of our knowledge, such studies have not yet been pub-
lished. Cross-checking with PEPT and CARPT might not be an easy
task as the macroscopic sensor devices may not be compatible
with the same systems as PEPT or CAPRT, and vice versa. PEPT
and CARPT provide accurate flow predictions, but the technologies
are not readily scalable to large bioreactors, while sensor devices
will suffer from inaccurate flow predictions in smaller bioreactors
due to poor flow following capabilities and effects from bound-
aries, e.g. collisions with impellers, walls, baffles etc. A pilot scale
bioreactor with low velocity field and high viscosity could prove
to be a compatible system for both technologies.
5. Summary and outlook

Computational fluid dynamics (CFD) with coupled microbial
kinetics or advanced cell models allow for predictions about gradi-
ents and their consequences in large-scale bioreactors. However, it
is often not possible to demonstrate their validity with experimen-
tal data, because the access to high quality data in large-scale
bioreactors is very limited. During production, only measurements
from fixed sensors or samples extracted from sample ports are
available, so complex custom-built sensor setups are sometimes
developed to get a better understanding of the environment in
the bioreactors. Flow following sensor devices offer a completely
different perspective, which enables the acquisition of detailed
spatial information in a relatively simple way. Direct measurement
of variables linked to a position enables us to quantify potential
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occurrence of gradients and together with derived parameters,
such as circulation time, this can provide the necessary input to
validate the CFD models.

The sensor devices can improve the knowledge of large-scale
bioreactors by:

� Confirming the presence and the spatial distribution of
gradients

� Determine flow characteristics of the macroscopic flow, such as
circulation time and velocity field.

� Examine the evolution of process parameters in space and time,
which can be interpreted as what a microorganism experiences
(i.e. lifeline analysis).

With respect to confirmation of spatial gradients, there are still
some limitations related to the diversity of the variables that can
be spatially resolved. Sensor devices with DO and glucose sensors
are emerging, and the focus here should be on improving the tech-
nologies with a faster response time and increased precision and/
or higher accuracy.

The determination of flow characteristics would benefit from
the development of smaller sensor devices, leading to better flow
following capabilities. Future studies that validate sensor device
trajectories against established methods, such as PEPT and CARPT,
would provide a better understanding of the limitations of sensor
devices with different shapes and sizes. Currently, the spatial infor-
mation that can be obtained is limited to the axial direction and
the development of a more complete positioning system will
enable characterization of the bioreactor environment in even
greater detail, which can significantly improve our knowledge on
large-scale bioreactors. The microorganism lifeline analysis will
benefit greatly from both sensor development and improvement
in the flow following capabilities.

It is obvious that the analyses from macroscopic sensor devices
are not flawless, but compared to the currently available methods,
they are a major step towards a better understanding of the envi-
ronment in large-scale bioreactors. The sensor devices should
therefore also be applied in validating CFD models, which are cur-
rently considered a state-of-the-art tool for understanding large-
scale bioreactors.

Furthermore, a large quantity of a new type of data is being gen-
erated by the sensor devices. Therefore, novel data-processing
methods are needed to fully exploit the available data from differ-
ent sensor outputs and convert it into interpretable figures and
visualizations.

It is also worth mentioning that many of the presented sensor
devices are considered prototypes, and some general features
should be developed further for the application in large-scale
bioreactors, such as mechanical resistance, heat resistance, chemi-
cal resistance and sampling capacity to meet the requirements of
the production facilities.

Many of these issues can, and will be resolved in the future, but
it should be clear that these developments may require a consider-
able amount of time, before a flexible and versatile technology is
available that can provide spatially resolved measurements of a
range of relevant parameters in large-scale reactors. The sensor
device technology will continue to benefit from technological
advances within MEMS, microsensors and battery technology.
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