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Background: HIV-1 infection or systemic lupus erythematosus (SLE) disrupt B cell
homeostasis, reduce memory B cells, and impair function of IgG and IgM antibodies.

Objective: To determine how disturbances in B cell populations producing polyclonal anti-
bodies relate to the IgM repertoire, the IgM transcriptome in health and disease was
explored at the complementarity determining region 3 (CDRH3) sequence level.

Methods: 454-deep pyrosequencing in combination with a novel analysis pipeline was
applied to define populations of IGHM CDRH3 sequences based on absence or presence
of somatic hypermutations (SHM) in peripheral blood B cells.

Results: HIV or SLE subjects have reduced biodiversity within their IGHM transcriptome
compared to healthy subjects, mainly due to a significant decrease in the number of unique
combinations of alleles, although recombination machinery was intact. While major differ-
ences between sequences without or with SHM occurred among all groups, IGHD and
IGHJ allele use, CDRH3 length distribution, or generation of SHM were similar among study
cohorts. Antiretroviral therapy failed to normalize IGHM biodiversity in HIV-infected individ-
uals. All subjects had a low frequency of allelic combinations within the IGHM repertoire
similar to known broadly neutralizing HIV-1 antibodies.

Conclusion: Polyclonal expansion would decrease overall IgM biodiversity independent of
other mechanisms for development of the B cell repertoire. Applying deep sequencing as
a strategy to follow development of the IgM repertoire in health and disease provides a
novel molecular assessment of multiple points along the B cell differentiation pathway that
is highly sensitive for detecting perturbations within the repertoire at the population level.

Keywords: IgM antibody transcriptome repertoire, biodiversity, HIV-1, systemic lupus erythematosus, somatic
hypermutation, naïve B cells, IgM memory B cells, pyrosequencing

INTRODUCTION
HIV-1 infection and systemic lupus erythematosus (SLE) each
results in defective B cell activation and differentiation (1, 2). Both
conditions have decreased proportions of CD27+ class switched
memory B cells, increased B cell apoptosis, and increased expres-
sion of B cell activation markers (3–6). In HIV infection, disrup-
tion of B cell homeostasis and loss of normal B cell architecture
within lymphoid tissues occur early in disease and persist even
with control of viral replication following antiretroviral therapy
(ART) (7, 8). Individuals with SLE display defects in B cell check-
points in both early and late stage development contributing to
impaired tolerance and autoantibody production (9).

The dynamics between defects in B cell function and under-
lying molecular perturbations in the B cell repertoire during the

course of infection or autoimmunity have not been extensively
evaluated, reflecting in part the challenge of generating sufficiently
robust data sets by conventional clonal sequencing. Massively par-
allel deep sequencing has revolutionized the capacity to evaluate
the depth and breadth of the immunoglobulin (Ig) repertoire
(10). Application of deep sequencing to probe the Ig heavy chain
variable region (IGH) repertoire along the B cell developmental
pathway may pin point HIV-mediated defects over the antibody
maturation, and uncover evidence for elusive broadly neutraliz-
ing HIV-specific antibodies (bn-HIV-Ab) critical to development
of an effective HIV vaccine. This study focused on IGHM reper-
toire at early B cell developmental stage before isotype switch.
IgM is the initial antibody generated when encountering anti-
gen. Activated IgM B cells confer substantial response in acute
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HIV-infection (11–13). IgM antibodies demonstrated broad spec-
trum and high affinity to HIV-1 envelope glycoproteins, neutral-
ized HIV-1 more potently than IgG due to pentameric binding
nature, and prevented viral entry across the mucous membrane
(14, 15).

The limited repertoire of bn-HIV-Ab share biochemical, struc-
tural, and functional features resembling natural polyreactive
autoantibodies and are produced by individuals with autoimmu-
nity, particularly SLE, and a significant proportion of HIV-infected
individuals (16–25). Polyreactive autoantibodies and bn-HIV-Ab
are frequently IgG (26–28), or can be IgA (29–32). More than a
third of SLE individuals have IgM antibodies reactive with HIV-1
gp41-derived peptides (33), a CD4-reactive IgM Fab clone iso-
lated from a healthy individual inhibited HIV-1 replication (34),
and IgM autoantibodies blocked HIV-1 entry (35).

While polyreactive antibodies are well-characterized at the bio-
chemical level, molecular assessment of the Ig repertoire among
populations of B cells that produce polyreactive antibodies is lim-
ited. Our current in-depth analysis based on deep sequencing
of the IgM transcriptome was designed to examine the mole-
cular repertoire of IGH complementarity determining region 3
(CDRH3) in IgM among individuals with SLE or HIV-1 infection
and relate the findings to a group of healthy individuals by analy-
sis of biodiversity. Biodiversity is used in population genetics to
present a unified view of variation of life forms within habitats
based on the premise that genomes are taxonomically similar, ran-
domly distributed, and sufficiently large (36, 37). Assessments of
biodiversity from deep sequencing data provide unprecedented
views of the richness of immune loci in primates, zebra fish,
and humans (38–41). The goal for our study was to determine
how disturbances in B cell populations producing polyclonal anti-
bodies relate to biodiversity of the IgM repertoire by examining
key components, including allele usage, V-D-J recombination and
junctional diversity, and extent of somatic hypermutation (SHM),
which collectively contribute to differences in Ig biodiversity
between health and disease.

MATERIALS AND METHODS
STUDY COHORT
Sixteen individuals, enrolled in a protocol approved by the Insti-
tutional Review Boards of the University of Florida and the

University of South Florida, included four groups (n= 4 per
group): healthy controls (HC), subjects with SLE, and HIV-1
infected individuals either therapy-naïve (HIV) or receiving com-
bination antiretroviral therapy (cART) (HIVTx) (Table 1). Groups
within the cohort were age-balanced with median (25–75% quar-
tile range) age of 20 (16–22) years. SLE subjects were untreated
and diagnosed by clinical and laboratory criteria defined by the
American College of Rheumatology (42). Therapy-naïve subjects
were HIV-1 infected by sexual transmission for at least 6 months
(Table 1). HIVTx individuals were infected either through mater-
nal to child transmission or by contaminated blood products
for 16.0 (12.3–21.3) years, treated for 8.0 (1.5–17.5) years, and
achieved viral suppression (log10 HIV-1 RNA copies/ml < 1.7),
and CD4 > 25% for 1.9 (0.5–6.0) years at the time of study
(Table 1). No subject received any vaccination 30 days prior to
study entry, and/or had acute infection to reduce the chance of
plasma cell circulating in peripheral blood. Informed consent was
obtained from all subjects.

B CELL PROFILES BY MULTIPARAMETER FLOW CYTOMETRY
Immunofluorescence staining was performed using the whole
blood lysis method (43) and analysis by LSR2 flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA) with Diva software (BD Bio-
sciences, San Jose, CA, USA). Monoclonal antibody panel included
pan B cell marker PE Cy7-conjugated anti-CD19 (BD Biosciences),
memory B cell marker Qdot 655-conjugated anti-CD27 (Invitro-
gen, Carlsbad, CA, USA), and surface IgM with APC-conjugated
anti-IgM (BD Biosciences). B cell percentages ranged from 6.6 to
16.1% of peripheral blood mononuclear cells (PBMC) across the
groups, CD19+ IgM B cells ranged from 70 to 90% of total B cells
(Table 1).

GENERATION OF IGHM CDRH3 AMPLICON LIBRARIES
Analysis of the IGHM CDRH3 transcriptome was performed
using total peripheral blood mRNA without isolation of IgM
B cells. Specificity for the IgM transcriptome was achieved by
reverse amplification primers Cµ15, Cµ5, and Cµ2 homologous
to the IgM constant region (44) (Figure 1A). An amplicon library
was constructed for each subject by RT-PCR using SuperScript™
One-Step RT-PCR with Platinum Taq (Invitrogen) and GoTaq col-
orless Master Mix (Promega, Madison, WI, USA) from ∼200 ng

Table 1 | Demographic characterization of study cohort.

Study

group

Sex Age

(year)

Length of

infection

(year)

ART

length

(year)

CD4 % Viral loada Length

of viral

suppression

(year)

B cell

count

(cells/µl)

CD27− IgM

B cells (%)

CD27+ IgM

B cells (%)

M F Median (25–75% quartile range)

HC 2 2 22 (18–22) N/A N/A N/A N/A N/A 49 (37–112) 68 (52–83) 33 (17–48)

SLE 1 3 15 (14–20) N/A N/A N/A N/A N/A 72 (18–165) 78 (75–85) 22 (15–25)

HIV 1 3 22 (17–24) 0.8 (0.5–2.5) Naive 34 (26–53) 4.0 (2.5–4.9) N/A 254 (124–308) 56 (52–81) 44 (19–48)

HIVTx 1 3 20 (15–25) 16.0 (12.3–21.3) 8.0 (1.5–17.5) 29 (24–31) 1.7 (1.7–1.7) 1.9 (0.5–6.0) 93 (57–440) 63 (60–71) 37 (29–40)

aLog10 HIV-1 RNA copies/ml plasma; N/A, not applicable.

HC, healthy control group; SLE, subjects with systemic lupus erythematosus; HIV, therapy-naïve HIV-infected subjects; HIVTx, HIV-infected individuals with antiretroviral

treatment.
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mRNA (equivalent to about 100,000 B cells or 80,000 IgM B cells)
extracted from total PBMC by MicroPoly[A]Purist™ kit (Ambion,
Austin, TX, USA).

Forward inner primer pan VH-FR3 is located in framework
3 and does not overlap CDRH3 (44). Using the software Oligo

FIGURE 1 | Amplicon libraries and bioinformatic pipeline. (A) Library
construction. IgM specificity was determined by reverse primers
sequences specific for IgM constant region without IgM B cell purification.
(B) Bioinformatic pipeline. Quality sequences (blue box) were analyzed by
querying: (1) customized IGH V-D-J recombination reference sequence
database, (2) IMGT/Junction Analysis, (3) ESPRIT (yellow boxes) to
generate three reports (pink boxes).

(Molecular Biology Insights, Inc., Cascade, CO, USA), pan VH-
FR3 primer was predicted to bind with similar capacity to a
unique sequence in each IGHV family when evaluated against
IGHV family specific reference sequences. In contrast, the pan VH-
FR1 primer (44) displayed different binding capacity to different
IGHV families. Specifically, pan VH-FR1 primer bound prefer-
entially to IGHV3; displayed low binding capacity with IGHV4,
IGHV5, and IGHV7; failed to bind to IGHV2 or IGHV6; and
bound to false priming sites in IGHV1, IGHV4, and IGHV5.
To overcome the different binding capacity of the published
primer sequence, we designed a modified panVH-FR1∗ primer
(CAGGTGCAGCTGGAGCAGTCTGG_) that was one nucleotide
shorter and substituted A and C for T and G in the pub-
lished primer sequence, respectively. When evaluated by Oligo, the
modified panVH-FR1∗ primer displayed similar binding capacity
to each IGHV family reference sequence and no binding to
false priming sites. Forward and reverse primers, pan VH-FR3,
and Cµ2, in the final amplification were conjugated at 5′ ends
with A (GCCTCCCTCGCGCCATCAG) or B (GCCTTGCCAGC-
CCGCTCAG) adaptor, respectively, to generate amplicons ranging
from 150 to 200 nucleotides. Gel-purified amplicons were sub-
mitted to the Interdisciplinary Center for Biotechnology Research
(University of Florida) for 454-pyrosequencing using a Genome
Sequencer FLX (454 Life Sciences) according to the manufacturer’s
protocol.

BIOINFORMATICS PIPELINE
A bioinformatics pipeline was developed to facilitate analysis of
large numbers of relatively short IGHM CDRH3 sequences that
could not be processed by conventional IMGT/V-QUEST analysis
(Figure 1B) (45). Raw reads ranged from 4,500 to 21,000 pyrose-
quences per subject. A quality control step filtered 9–21% low
quality reads with ambiguous nucleotides, more than one error
in either primer tag, or failure to align to reference sequences
in the germ line IGH V-D-J recombination amino acid refer-
ence sequence database (see below), leaving 4,000–17,000 quality
sequences per sample with no significant difference in number of
sequences among the groups (Table 2).

To overcome the limitation of IMGT/V-QUEST for high
throughput classification of relatively short sequences, a novel cus-
tom reference sequence database containing over 700,000 germ

Table 2 | Sequence profiles.

Group Raw

sequences

Removal (%) Quality

sequences

Sequences with

1 nucleotide

substitution (%)

Final quality

sequences

Mean±SD

HC 15,005±2,514 19.9±4.3 11,951±1,490 12.5±0.9 10,460±1,351

SLE 9,613±3,102 16.0±4.7 8,171±2,936 16.3±2.1 6,822±2,411

HIV 7,727±2,236 17.0±5.4 6,341±1,573 13.4±0.9 5,482±1,326

HIVTx 14,746±7,101 18.0±4.4 12,140±5,797 14.8±1.3 10,388±5,034

HC, healthy control group; SLE, subjects with systemic lupus erythematosus; HIV, therapy-naïve HIV-infected subjects; HIVTx, HIV-infected individuals with

antiretroviral treatment.
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line IGH V-D-J amino acid (aa) sequences was established by
generating in silico all possible combinations of germ line IGHV
(285 unique aa sequences), IGHD [44 unique nucleotide sequences
translated in 6 reading frames (RF) producing 222 aa sequences],
and IGHJ (13 unique aa sequences) alleles downloaded from
IMGT (45). Each reference sequence was annotated for IGHV,
IGHD, and IGHJ allele use, IGHD RF in the header with C104
and W118, the 5′ and 3′ boarders of CDRH3, marked by align-
ing to germline IGHV and germline IGHJ reference sequences
using FASTA (http://fasta.bioch.virginia.edu/fasta_www2/fasta_
down.shtml) (46). After removing adapter sequences, query
sequences were then aligned to the reference sequences using
FASTY. Use of IGHV, IGHD, and IGHJ alleles, and IGHD RF of
each query 454-sequence was extrapolated from the header of the
best-matched reference sequence, the C104 and W118 positions
of each query sequence were identified, the part of the query
sequence matched to the C104-W118 region of the reference
sequence was extracted from the entire sequence, and CDRH3
charge and hydropathy index calculated using an in-house code
(47, 48). IMGT/Junction Analysis was then performed allowing
3D-GENEs (49). Using this strategy, the frequency distribution of
IGHD and IGHJ alleles, with IGHD2, IGHD3 and IGHD6, and
IGHJ4 as the dominant genes, was similar to previous reports
(50, 51). However, due to the relatively short IGHV sequence,
we observed some ambiguity in IGHV4 allele assignment; conse-
quently, no comparisons of IGHV alleles without or with SHM
were made.

The total number of mutations including silent- and non-
silent-mutations in CDRH3 between C104 and W118 (40) was
calculated to summarize extent of SHM as: (ΣSHM within
CDRH3 in each SHM+ sequence÷ΣCDRH3 nucleotide length
in each SHM+ sequence)× 100 nucleotides. The effect of N and
P nucleotides to the SHM was similar among the study groups
because the number of N and P nucleotides was minimized when
the setting for D-GENES was 3, and the frequency of sequences
with one D, D-D fusion and D-D-D fusion was similar among
study groups (data not shown).

To avoid potential ambiguity in scoring SHM, an average of
14.3± 0.6% of reads among groups with a single nucleotide differ-
ence from aligned reference sequences was removed from analysis
(Table 2) (40). IGHM sequences with two or more mutations
in CDRH3 were classified as SHM+ representing IgM memory
B cells, while SHM− sequences represent naïve B cells. After
correction of deletion and insertion, the PCR and pyrosequencing-
induced rate of misincorporation tested in our control analysis of
clones of sequences was 0.18 errors per 200 nucleotides, the longest
sequence length, similar to other reports (52–54) and well below
the level of SHM identified in the IgM populations.

ESPRIT was applied to study the biodiversity (genetic com-
plexity) of nucleotide sequences as well as V-D-J combinations
of the IGHM CDRH3 transcriptome repertoire by clustering
the sequences at 0% genetic distance (55). Rarefaction analysis
measures increase in biodiversity along the depth of sequencing
(number of sequences). The deeper the initial slope is, the higher
the biodiversity. Left shift or right shift of the curve indicates an
increase or decrease of biodiversity. Chao1 analysis inferred maxi-
mum biodiversity within the input templates (55, 56). Biodiversity

is influenced by input cell number, the coverage (sequence num-
ber/input cell number), and clonality (frequency of clusters with
more than 10 repeated sequences). Coverage was ∼10% in each
individual to minimize the influence of preferential amplification
of replicate templates. Biodiversity was weighted by the absolute
number of input IgM B cells (calculated from the absolute lym-
phocyte count multiplied by the percentage of CD19+ IgM B cells)
to make the data comparable among study groups. To avoid a
potential bias from sequence number, clonality was averaged on
the same number of sequences randomly drawn 1,000 times from
each sequence pool.

To rule out an influence by differences in sequence numbers
among individuals, a bootstrap resampling method was used to
generate 1,000 rarefaction curves and Chao1 values from random
data sets with the same number of sequences for each individ-
ual. Calculated and estimated biodiversity derived from averages
of 1,000 rarefaction curves produced similar findings (result not
shown).

STATISTICAL ANALYSIS
Comparisons among study groups were performed by ANOVA.
Kolmogorov–Smirnov test was used to test Gaussian distribution.
Overall difference of distribution of CDRH3 length frequencies,
and charge and hydropathy along CDRH3 lengths among study
groups were evaluated as described (57). Comparison of frequency
of sequences in each gene allele, or each CDRH3 length between
SHM+ and SHM− sequences was performed by paired t -test. Pear-
son correlation evaluated the relationship between frequency of
SHM+ sequences and frequency of peripheral CD27+ IgM B cells.
A primary purpose of this pilot study with relatively small sam-
ple size was to detect meaningful trends, thus parametric methods
instead of conservative non-parametric methods were performed.

FIGURE 2 | Frequency of SHM+ IgM sequences exceeds the frequency
of CD27+ IgM B cells in peripheral blood. Frequency of SHM+ IgM
sequences in HIV and HIVTx (treated) groups was similar to HC (healthy
controls), but significantly reduced in individuals with SLE (systemic lupus
erythematosus) (p=0.02). Frequency of SHM+ IgM sequences was
significantly greater than the proportion of CD27+ IgM B cells in each group
(HC, **p=0.001; SLE, ***p < 0.0001; HIV, *p=0.004; HIVTx,
***p < 0.0001). Reduced frequency of CD27+ IgM B cells in SLE
individuals compared to HC failed to reach statistical significance.
Frequency of SHM+ sequence did not correlate with percent of CD27+ IgM
B cells (r 2

=0.06, p=0.35). Symbols: square, IGHM CDRH3 sequences
with SHM; circle, CD27+ IgM B cells.
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P values were unadjusted for multiple tests to increase sensitivity
to identify differences. Statistical analyses were performed using
SAS version 9.1 (SAS Institute, Cary, NC, USA) with p < 0.05 (two
sided) defined as significant.

RESULTS
SOMATIC HYPERMUTATIONS
IGHM CDRH3 sequences were initially classified by absence or
presence of SHM as a molecular means to distinguish naïve B cells
from IgM memory B cells. Frequency of sequences with SHM in
HIV or HIVTx groups was similar to HC group, but significantly
reduced in individuals with SLE (p= 0.02) (Figure 2). In contrast,
extent of SHM (mutations/100 nucleotides) in IGHM CDRH3
among groups was similar. While the proportion of B cells express-
ing CD27+ IgM memory phenotype was similar among groups,
percentage of phenotypically mature CD27+ IgM B cells was sig-
nificantly less than the frequency of IgM sequences with SHM
within each group (Figure 2). No correlation occurred between
the proportion of CD27+ B cells and SHM (r2

= 0.06, p= 0.35).

Subsequent analysis of the IgM transcriptome was based on mol-
ecular assessments of sequences without or with SHM in IGHM
CDRH3.

BIODIVERSITY OF IGHM CDRH3 TRANSCRIPTOME REPERTOIRE IN
HEALTH AND DISEASE
Deep sequencing data sets support application of novel rarefaction
analysis to Ig biodiversity that cannot be inferred from analysis
of limited numbers of sequences. Rarefaction curves provide
comparison of biodiversity along with the depth of sequencing
among study groups; deeper slopes indicate greater biodiver-
sity. IGHM CDRH3 among healthy young adults displayed a
range of biodiversity that overall was greater than biodiversity
in SLE or HIV-1 infection (Figures 3A,B). Differences in biodi-
versity between health and disease were apparent in populations
of IgM sequences without SHM, and to a greater extent among
sequences with SHM due to contribution of SHM. At the depth
of sequencing, none of the rarefaction curves reached satura-
tion, indicating a preponderance of unique sequences and an

FIGURE 3 | Greater biodiversity among populations of IGHM CDRH3
sequences in health control group than in groups with SLE or HIV-1
infection in sequences without or with SHM. Biodiversity in IGHM
CDRH3 sequences without (A) or with (B) SHM in young adults with SLE
(blue lines) and among HIV-infected individuals (red lines, untreated; green
lines, treated) in comparison to healthy counterparts (black lines). Maximum

IGHM CDRH3 biodiversity in input IgM B cells without (C) or with (D) was
significantly lower in SLE (SHM−, p=0.031; SHM+, p=0.021), HIV (SHM−,
p=0.006; SHM+, p=0.004), and HIVTx (SHM−, p=0.020; SHM+,
p=0.010) in comparison with HC. ART failed to normalize IGHM CDRH3
biodiversity in SHM− or SHM+ IGHV CDRH3 repertoire in HIV-infected
subjects (HIVTx vs. HIV, p > 0.05).
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extent of IGHM CDRH3 diversity that exceeded the depth of
sequencing.

When maximum IGHM CDRH3 biodiversity was inferred, the
SHM-negative repertoire within healthy individuals displayed sig-
nificantly greater maximum biodiversity than SLE (p= 0.031),
HIV (p= 0.006), or HIVTx (p= 0.020) (Figure 3C). Likewise,
the repertoire with SHM among healthy individuals also dis-
played significantly greater biodiversity than SLE (p= 0.021), HIV
(p= 0.004), or HIVTx (p= 0.010) (Figure 3D). ART failed to nor-
malize biodiversity in IGHM CDRH3 repertoire either without or
with SHM in HIV-infected subjects (Figures 3C,D).

Multiple factors contribute to biodiversity. SHM is one factor,
but extent of SHM was similar among study groups. Likewise,
extent and distribution of clonality were similar among sequences
without or with SHM in each study group with a frequency of
∼99% for unique clusters about 0.2% of clusters with more than
10 repeated sequences. Consequently, to identify molecular dif-
ferences that might contribute to reduced biodiversity without or
with SHM among SLE or HIV-infected groups, CDRH3 length
variation, charge, and hydropathy distribution, as well as IGHD
and IGHJ allelic use, and diversity of allele combinations were
investigated.

CDRH3 LENGTH VARIATION
In all groups, CDRH3 length variation displayed Gaussian distri-
butions (Figure 4). CDRH3 regions without SHM ranged from
4 to 31 amino acid residues with a peak frequency of 15 amino
acids (Figure 4A). SHM+ CDRH3 regions ranged from 5 to
34 amino acids, with lengths of 14 amino acids occurring most
frequently (Figure 4B). Overall length distribution differed sig-
nificantly between sequences without or with SHM (p= 0.004)
(Figure 4C). In general, CDRH3 lengths of 10–17 amino acids
occurred with greater frequency among sequences with SHM
than in sequences without SHM (p < 0.0001). The frequency of
long CDRH3 regions (27–34 amino acids) ranged from 0.03 (±
0.06%) to 0.13% (± 0.12%) in sequences without SHM and 0.13
(± 0.04%) to 0.16% (± 0.10%) in sequences with SHM with
no significant differences among study groups (Figure 5). Charge
and hydropathy distribution across CDRH3 amino acid length
range were similar among all groups indicating that junctional
modifications in sequences without or with SHM were unchanged
(Figure 6).

ALLELIC FREQUENCY OF IGHD AND IGHJ GENES
Nearly 90% of the 44 IGHD alleles were detected across the study
groups (Figures 7A,B). Sequences with SHM showed significant
increases in use of multiple IGHD alleles compared with sequences
lacking SHM. Similarly, over 75% of 13 IGHJ alleles, predomi-
nantly in IGHJ3 and IGHJ4 families, were identified independent
of SHM (Figures 7C,D). A significant increase in three IGHJ alle-
les was detected in sequences with SHM (Figure 7D). While all
study groups had similar IGHD and IGHJ allele usage, the major
difference in allele usage was between sequences with or without
SHM.

BIODIVERSITY OF ALLELE COMBINATIONS
Biodiversity resulting from different combinations of alleles com-
prising the IGHM CDRH3 regions was assessed in health and

FIGURE 4 | Frequency distribution of IGHM CDRH3 amino acid lengths
differed between IgM B cells without or with SHM. (A) Lengths of
SHM− CDRH3 regions displayed a Gaussian distribution ranging from 4 to
31 amino acid residues; lengths of 15 amino acids occurred most
frequently. (B) Lengths of SHM+ CDRH3 regions showed Gaussian
distribution ranging from 5 to 34 amino acids with lengths of 14 amino
acids used most often. (C) Overall length distribution between SHM− and
SHM+ sequences differed [*p=0.004]. Among SHM+ sequences, shorter
lengths [4–9 amino acids] and longer lengths [18–25 amino acids] were
expressed significantly less [↓, p < 0.0001], while lengths of 10–17 amino
acids were used more frequently in comparison to SHM− sequences [↑,
p < 0.0001]. Bars: HC, black; SLE, blue; HIV-infected individuals: red,
untreated; green, treated. Circles: SHM−, open black; SHM+, open red.

disease groups. Every sequence was composed of V-D-J gene seg-
ments suggesting intact recombination machinery in all individ-
uals independent of health or disease. When comparing numbers
of different combinations along the depth of sequencing using
rarefaction curves, a left shift was observed in healthy individuals,
indicating greater diversification of combinations whether or not
sequences contained SHM (Figures 8A,B). The difference between
health and disease was more pronounced when maximum biodi-
versity was inferred by Chao1 algorithm based on both the richness
and evenness of different V-D-J combinations (Figures 8C,D).
ART failed to restore biodiversity in either group of IgM tran-
scripts. Overall, reduced diversity of V-D-J combinations was a
major contributor to the difference in biodiversity within IGHM
CDRH3 sequences between groups.

IgM SEQUENCES RESEMBLING bn-HIV-Abs
Combinations of alleles within IgM sequences that might be simi-
lar to IgG bn-HIV-Abs were evaluated, but undetected among any
individuals (Table 3) (23, 26, 27, 58–68). In contrast, combinations
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FIGURE 5 | Similar frequency of sequences with CDRH3 lengths longer
than 26 amino acids among study groups. (A) Among SHM− sequences,
frequency of sequences with greater than 26 amino acids CDR3 length
ranged from 0.03 [± 0.06%] to 0.13% [± 0.12%], which was similar among

the four study groups. (B). Among SHM+ sequences, frequency of
sequences with greater than 26 amino acids CDR3 length ranged from 0.13
[± 0.04%] to 0.16% [± 0.10%], which was similar among the four study
groups.

FIGURE 6 | Similar distribution of charge and hydropathy across IGHM CDRH3 length among study groups. Distribution of charge and hydropathy across
IGHM CDRH3 amino acid length range were similar among the four study groups in sequences without [charge, (A); hydropathy index, (C)] or with SHM
[charge, (B); hydropathy index, (D)].

of families found in many bn-HIV-Abs were identified among IgM
sequences across the four study groups (Table 4). While few, if any,
family combinations similar to M66.6/MPER or CD4 binding site
antibodies b12 and VRC-PG04 were detected, combinations simi-
lar to other bn-HIV-Abs were identified among IgM sequences in
a majority of subjects. In general, family combinations were more
frequently represented among IgM sequences with SHM, although
frequencies greater than 0.2% appeared in sequences with or with-
out SHM. Frequency of family combinations was not a function
of the targets in Envelope, as combinations directed toward CD4
binding site, N-linked glycans, V2/V3, or MPER were detected in
almost all individuals.

DISCUSSION
Little is known about how B cell abnormalities in HIV infection
or SLE impact IGH repertoire at the molecular level (1–5, 69–
72). Applying deep sequencing to IgM transcriptomes in total B
cell populations is a strategy to follow development of the IgM
repertoire as a novel molecular assessment at multiple points along
the B cell differentiation pathway, which is highly sensitive for
detecting perturbations within the repertoire in health and dis-
ease. Evaluation of CDRH3 regions in IgM focuses assessment on
transition of the repertoire from initial V-D-J recombination in the
bone marrow, through antigen-induced clonal expansion, SHM,
and establishment of IgM memory B cells (73, 74).
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FIGURE 7 | IGHM IGHD and IGHJ alleles were expressed similarly among
study groups but differently between SHM− and SHM+ IgM B cells.
Number and frequency of IGHD and IGHJ alleles were similar among the four
study groups in IGHM CDRH3 sequences without [IGHD, (A); IGHJ, (C)] or
with SHM [IGHD, (B); IGHJ, (D)]. A significant difference in usage of 11 IGHD
alleles, including IGHD1-1*01, IGHD2-8*01, IGHD2-21*01, IGHD2-21*02,

IGHD3-3*02, IGHD3-16*01, IGHD3-16*02, IGHD4-23*01,
IGHD4/OR15-4a*01, IGHD5-12*01, and IGHD5/OR15-5a*01 (red arrows), and
3 IGHJ alleles, including IGHJ3*01, IGHJ5*01, and IGHJ6*04 (squared by
red), was observed across the groups in SHM+ sequences in comparison to
SHM− sequences (p < 0.001 respectively). Bars (mean/SD): HC, black; SLE,
blue; HIV-infected individuals: untreated, red; treated, green.

A memory of antigen is imprinted irreversibly by SHM in
Ig variable region genes, which renders SHM the most accurate
marker to distinguished memory from naïve B cells than B cell
phenotype defined by surface expression of IgM, IgD, and CD27.
While memory CD27+ IgM B cells undergo robust SHM in germi-
nal centers, CD27 is not an immutable indicator of B cell memory
(74–77). We observed IGHM sequences with SHM in CDRH3, in
accordance with observations suggesting an IgM-expressing mem-
ory B cell compartment in the marginal zone (52, 54, 78, 79). The
high percentage of IGHM sequences with SHM may be due to a
larger IgM memory B cell compartment than previously thought,

as well as to increased mRNA levels in IgM B cells with SHM (54),
It is unlikely that plasma cell sequences contributed to the results as
plasma cell frequency in peripheral blood is minimal (80, 81) and
our study design included subjects with no recent immunizations
and/or acute infections to minimize the proportion of plasmacy-
toid B cells undergoing clonal expansion that may skew the IgM
sequence repertoire (82).

A small but significant difference was detected between the
frequency of SHM+ IgM B cells among subjects with SLE, but
not HIV-1 infection, compared to healthy individuals (5, 83, 84).
These cells resemble recirculating marginal zone memory B cells
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FIGURE 8 | Significant decrease in biodiversity resulting from V-D-J allele
recombination in young adults with SLE and HIV-1 infection in
comparison to healthy controls. As assessed by rarefaction, biodiversity of
V-D-J allele recombination along sequence depths decreased in young adults
with SLE (blue lines) and untreated HIV-infected individuals (red lines) in
comparison to their healthy counterparts (black lines) in IgM B cells without

(A) or with SHM (B). Control of viral replication by ART failed to restore
biodiversity in either cell type [green lines in (A,B)]. The maximum biodiversity
of V-D-J allele recombination estimated by Chao1 was significantly greater in
HC subjects than in individuals with SLE and HIV infection in input IgM B cells
without (C) or with SHM (D) (SLE, p=0.016 or 0.041; HIV, p=0.004 for
SHM+ or SHM+; HIVTx, p=0.006 or 0.01, respectively).

that contain somatic mutations and can create considerable IGH
diversity during early childhood in the absence of specific antigenic
stimulation (74, 85).

Rarefaction/Chao1 analysis provides the capacity to com-
pare IGHM biodiversity between sequences expressed by
naïve/transitional B cells and IgM memory B cells defined by
SHM in peripheral blood B cell populations. Within individu-
als, CDRH3 sequence biodiversity resulting from V-D-J recom-
bination generated in the bone marrow was significantly limited
relative to sequence biodiversity following antigen activation and
development of SHM, consistent with estimates of the frequency
of SHM within the B cell repertoire (54). A critical finding is that
biodiversity of the IgM repertoire in the absence or presence of
SHM distinguishes between health and disease. Study groups were
similar ages, an important aspect of the design, as age profoundly
impacts IGH diversity, particularly with respect to the extent of
SHM (86). Overall, IGH affinity maturation is more accurately
assessed by direct molecular analysis through pyrosequencing

of the IgM transcriptome than by phenotypic analysis of B cell
subsets.

While effective treatment restores many HIV-induced B cell
defects, overall B cell function remains impaired (8, 72, 87–89).
Control of HIV replication by cART failed to restore IgM sequence
diversity, although longitudinal studies are needed to evaluate
directly the effects of cART on the B cell repertoire. Abnormal-
ities of IgM B cell populations in HIV-1 infection may persist
as the result of chronic inflammation that continues to impair
B cell populations even when viral replication is optimally con-
trolled (90). Furthermore, persistent low-level viral replication
in the secondary lymphoid tissues where B cells and CD4 T-
cells co-localize may induce lymphoid apoptosis and/or clonal
expansion, contracting the IgM repertoire within memory B cells
(4, 91).

We observed an overall shift of distribution of CDRH3 lengths
toward shorter lengths in sequences with SHM, but no shifts in
hydropathy or charge distribution across the CDRH3 lengths,
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Table 3 | Characteristics of IGHG in bn-HIV-Abs.

Binding

target

bn-HIV-Ab IGHG

IGHV IGHD IGHJ SHM (%) CDRH3 length (aa)

V2, V3 PG16 3-33*05 3-03*01 6*03 20.5 28

PG9 3-33*05 3-03*01 6*03 16.7 28

CH01-CH04 3-20*01 3-10*01 2*01 ∼14.3 24

V3 loop 447-52D 3-15*07 3-10*01 6*03 NA 20

Glycans 2G12 3-21* 5-12* 3* 31.7 16

CD4 bs VRC01 1-02*02 3-16*01 1*01 32.0 14

VRC02 1-02*02 3-16*01 1*01 32.0 14

VRC03 1-02*02 3-* 1*01 30.0 16

VRC-PG04, 04b 1-02*02 5-12*01 2*01 30.0 16

VRC-CH30-34 1-02*02 3-16*01 4*02 ∼25.0 15

b12 1-03*01 3-10*02 6*03 13.0 20

gp41 MPER 2F5 2-05* 3-03* 6* 15.2 22

4E10 1-69* 3-16*/6-19* 1*01 15.6 18

M66.6 5-51*01 3-10*01 6*02 9.3 21

NA, not available.

Table 4 | IGHV, IGHD, and IGHJ combinations similar to known bn-HIV-Ab in IgM repertoire in peripheral blood.

bn-HIV-Ab Target IGHG Frequency of sequences (%)

IGHV IGHD IGHJ Without SHM With SHM

HC SLE HIV HIVTx HC SLE HIV HIVTx

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

VRC-CH30-34 CD4 bs 1* 3* 4*

2G12 Glycans 3* 5* 3*

CH01-CH04 V2, V3 3* 3* 2*

4E10 MPER 1* 3*/6*a 1*

VRC01, 02, 03 CD4 bs 1* 3* 1*

2F5 MPER 2* 3* 6*

PG16,

9/447-52D

V2, V3/V3

loop

3* 3* 6*

VRC-PG04,

04b

CD4 bs 1* 5* 2*

b12 CD4 bs 1* 3* 6*

M66.6 MPER 5* 3* 6*

aSequences in 4E10 align to IGHD3 or IGHD6 with a similar number of nucleotides.

White or gray=<0.01% of sequences; yellow=0.01–0.1% of sequences; orange=>0.1–0.5% of sequences; rust=>0.5% of sequences.

as found in assessments using sorted IgM memory B cells (51,
92). Differences may reflect a distinct developmental program
for CD27+ IgM marginal zone B cells that develop outside typ-
ical T-dependent or T-independent pathways (85). Overall, nei-
ther HIV-1 infection nor SLE produces profound alterations in
allele usage, CDRH3 length, hydropathy, or charge distribution
within the IgM repertoire, indicating that intrinsic mechanisms
for generating junctional diversity and SHM are functional.

Decreased biodiversity in IGHM CDRH3 sequences without
SHM supports the observation that HIV-1 reduces the breadth

of the IgM repertoire early in B cell development (93, 94). In
contrast, reduced biodiversity within the SHM+ IGHM reper-
toire of HIV-infected or SLE subjects might reflect polyclonal
expansion, reduced B cell precursors, and/or B cell exhaustion.
While pyrosequencing provides an unprecedented view of the
human IgM B cell repertoire, depth of sampling of periph-
eral blood B cell populations was insufficient to detect directly
expanded B cell clones, which may be expected from polyclonal
expansion. In a study of healthy individuals the estimated IGH
pool was greater than 1,000,000 different rearrangements so that
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even with deep sequencing no single sequence would be repre-
sented multiple times (39). Polyclonal expansion of limited num-
ber of clones would decrease overall diversity without impacting
junctional modification, SHM generation, CDRH3 length distri-
bution, or biochemical characteristics of amino acid residues.
The healthy subjects enrolled in our study had no recent ill-
nesses or immunizations that might skew their repertoire (86).
In contrast, both the SLE and untreated HIV-infected subjects
had active disease, yet CDRH3 length diversity and gene usage
was not impacted. Decreased B cell numbers in the peripheral
blood are restored by control of viral replication but therapy
failed to restore sequence biodiversity in either SHM+ or SHM−

populations (88, 89). This assessment of the IGHM sequence
repertoire provides a basis for examining late stage B cell devel-
opment through pyrosequencing of IGH in IgG and IgA reper-
toires within the same mRNA used for the IgM transcriptome,
which will expand molecular understanding of the biodiver-
sity of the peripheral blood B cell repertoire in health and
disease.

Autoantibodies can result from defective early B cell tolerance
in the bone marrow or arise as naïve B cells encounter antigen,
undergo SHM and affinity maturation (6). Our study identified
no skewing with the IGHM repertoire based on assessment of
CDRH3 length,charge,and hydropathy within sequences that con-
tained or lacked SHM, which is not surprising as assessment of the
B cell repertoire using clonal sequencing of V-D-J recombination
in SLE subjects also failed to reveal major abnormalities (6, 95).
Overall, results provide a framework for in-depth studies of the
molecular mechanisms that lead to lower biodiversity in SLE and
HIV-infected individuals.

An intense area of study in the development of an effective
HIV-1 vaccine is the capacity of the repertoire to generate bn-
HIV-Abs. Most characterized bn-HIV-Abs are IgG isotype with
extensive affinity maturation and SHM (58, 61, 62, 66, 67, 95). IgA
autoantibodies, including anti-CCR5 or anti-gp41, produced by
a subset of the HIV-1-exposed seronegative individuals or long-
term non-progressors, contribute to effective prevention of viral
entry at major mucosal portals (29, 32, 96–98). Both IgG and
IgA are derived from IgM. Our assessment of the IgM repertoire
revealed in all subjects low frequency B cells with the same combi-
nations of IGHV, IGHD, and IGHJ gene families found in known
IgG bn-HIV-Abs, particularly those which bind to CD4 binding
site, gp41 MPER, V2/V3, glycans in C2, C3, V4 and C4, and V3
loop (23, 26, 27, 58, 60–67, 99, 100). Clearly the IgM repertoire
across individuals normally includes B cells with the potential
to express IgG bn-HIV-Abs, holding promise that these antibod-
ies can be induced as part of an overall HIV vaccine strategy.
Biochemical characteristics of IgM antibody sequences provide
an assessment of functional potential of IgM antibodies. In our
study, significant differences in frequency distribution of CDRH3
lengths, or distribution of charge or hydropathy along CDRH3
lengths in IgM repertoire of SLE or HIV-infected individuals were
found in comparisons with HC. Results suggest that IgM antibod-
ies with characteristics of IgG bn-HIV-Ab were not produced at
levels sufficient to perturb IgM repertoire in SLE or HIV-infected
individuals.

ACKNOWLEDGMENTS
Authors are grateful to the individuals who volunteered for
the study and to Gary Litman, Ph.D. and Donna Eason, Ph.D.
for review and discussions of the research and the manuscript.
This work was funded by NIH grants, including R21 AI078450,
R01 AI100147, and T32 AR007603 Postdoctoral Training Award
for Immunologic/Genetic Mechanisms in Rheumatic Diseases,
awards from University of Florida, including Incentive Award,
Thomas H. Maren Junior Investigator Postdoctoral Award, Laura
McClamma Fellowship for Research in Pediatric Immune Defi-
ciency, Robert A. Good Endowed Chair in Immunology, and
Stephany W. Holloway University Chair for AIDS Research.

REFERENCES
1. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell

hyperactivity. Nat Immunol (2001) 2:764–6. doi:10.1038/ni0901-764
2. Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol (2009)

9:235–45. doi:10.1038/nri2524
3. Ho J, Moir S, Malaspina A, Howell ML, Wang W, DiPoto AC, et al. Two over-

represented B cell populations in HIV-infected individuals undergo apopto-
sis by different mechanisms. Proc Natl Acad Sci U S A (2006) 103:19436–41.
doi:10.1073/pnas.0609515103

4. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, et al. Evidence for
HIV-associated B cell exhaustion in a dysfunctional memory B cell compart-
ment in HIV-infected viremic individuals. J Exp Med (2008) 205:1797–805.
doi:10.1084/jem.20072683

5. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva
JA. Decreased frequency and activated phenotype of blood CD27 IgD IgM
B lymphocytes is a permanent abnormality in systemic lupus erythematosus
patients. Arthritis Res Ther (2010) 12:R108. doi:10.1186/ar3042

6. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, et al.
Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp
Med (2005) 201:703–11. doi:10.1084/jem.20042251

7. Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal cata-
strophe? Nat Immunol (2006) 7:235–9. doi:10.1038/ni1316

8. Jacobson MA, Khayam-Bashi H, Martin JN, Black D, Ng V. Effect of long-
term highly active antiretroviral therapy in restoring HIV-induced abnor-
mal B-lymphocyte function. J Acquir Immune Defic Syndr (2002) 31:472–7.
doi:10.1097/00126334-200212150-00003

9. Jacobi AM, Diamond B. Balancing diversity and tolerance: lessons from
patients with systemic lupus erythematosus. J Exp Med (2005) 202:341–4.
doi:10.1084/jem.20050221

10. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al.
Genome sequencing in microfabricated high-density picolitre reactors. Nature
(2005) 437:376–80. doi:10.1038/nature03959

11. Bomsel M, Heyman M, Hocini H, Lagaye S, Belec L, Dupont C, et al.
Intracellular neutralization of HIV transcytosis across tight epithelial barri-
ers by anti-HIV envelope protein dIgA or IgM. Immunity (1998) 9:277–87.
doi:10.1016/S1074-7613(00)80610-X

12. Sheppard NC, Bates AC, Sattentau QJ. A functional human IgM response to
HIV-1 Env after immunization with NYVAC HIV C. AIDS (2007) 21:524–7.
doi:10.1097/QAD.0b013e32803277f9

13. Toran JL, Kremer L, Sanchez-Pulido L, de Alboran IM, del RG, Llorente M,
et al. Molecular analysis of HIV-1 gp120 antibody response using isotype
IgM and IgG phage display libraries from a long-term non-progressor HIV-
1-infected individual. Eur J Immunol (1999) 29:2666–75. doi:10.1002/(SICI)
1521-4141(199909)29:09<2666::AID-IMMU2666>3.0.CO;2-Q

14. Chen W, Zhu Z, Liao H, Quinnan GV Jr, Broder CC, Haynes BF, et al. Cross-
reactive human IgM-derived monoclonal antibodies that bind to HIV-1 enve-
lope glycoproteins. Viruses (2010) 2:547–65. doi:10.3390/v2020547

15. Wolbank S, Kunert R, Stiegler G, Katinger H. Characterization of human class-
switched polymeric (immunoglobulin M [IgM] and IgA) anti-human immun-
odeficiency virus type 1 antibodies 2F5 and 2G12. J Virol (2003) 77:4095–103.
doi:10.1128/JVI.77.7.4095-4103.2003

www.frontiersin.org November 2013 | Volume 4 | Article 373 | 11

http://dx.doi.org/10.1038/ni0901-764
http://dx.doi.org/10.1038/nri2524
http://dx.doi.org/10.1073/pnas.0609515103
http://dx.doi.org/10.1084/jem.20072683
http://dx.doi.org/10.1186/ar3042
http://dx.doi.org/10.1084/jem.20042251
http://dx.doi.org/10.1038/ni1316
http://dx.doi.org/10.1097/00126334-200212150-00003
http://dx.doi.org/10.1084/jem.20050221
http://dx.doi.org/10.1038/nature03959
http://dx.doi.org/10.1016/S1074-7613(00)80610-X
http://dx.doi.org/10.1097/QAD.0b013e32803277f9
http://dx.doi.org/10.1002/(SICI)1521-4141(199909)29:09<2666::AID-IMMU2666>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1521-4141(199909)29:09<2666::AID-IMMU2666>3.0.CO;2-Q
http://dx.doi.org/10.3390/v2020547
http://dx.doi.org/10.1128/JVI.77.7.4095-4103.2003
http://www.frontiersin.org
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yin et al. IgM biodiversity in human health and disease

16. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, et al.
Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conforma-
tion of a highly conserved fusion-associated motif in gp41. Immunity (2005)
22:163–73. doi:10.1016/j.immuni.2004.12.011

17. Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, Kunert R, et al. Cardi-
olipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies.
Science (2005) 308:1906–8. doi:10.1126/science.1111781

18. Kopelman RG, Zolla-Pazner S. Association of human immunodeficiency
virus infection and autoimmune phenomena. Am J Med (1988) 84:82–8.
doi:10.1016/0002-9343(88)90012-5

19. Massabki PS, Accetturi C, Nishie IA, da Silva NP, Sato EI, Andrade LE. Clini-
cal implications of autoantibodies in HIV infection. AIDS (1997) 11:1845–50.
doi:10.1097/00002030-199715000-00009

20. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, et al. Structure
and mechanistic analysis of the anti-human immunodeficiency virus type 1
antibody 2F5 in complex with its gp41 epitope. J Virol (2004) 78:10724–37.
doi:10.1128/JVI.78.19.10724-10737.2004

21. Petrovas C, Vlachoyiannopoulos PG, Kordossis T, Moutsopoulos HM. Anti-
phospholipid antibodies in HIV infection and SLE with or without anti-
phospholipid syndrome: comparisons of phospholipid specificity, avidity and
reactivity with beta2-GPI. J Autoimmun (1999) 13:347–55. doi:10.1006/jaut.
1999.0324

22. Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, et al.
Crystal structure of a neutralizing human IGG against HIV-1: a template for
vaccine design. Science (2001) 293:1155–9. doi:10.1126/science.1061692

23. Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structural
rationale for the broad neutralization of HIV-1 by human monoclonal anti-
body 447-52D. Structure (2004) 12:193–204. doi:10.1016/j.str.2004.01.003

24. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC.
Predominant autoantibody production by early human B cell precursors. Sci-
ence (2003) 301:1374–7. doi:10.1126/science.1086907

25. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al.
Broadly neutralizing antibodies targeted to the membrane-proximal external
region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol
(2001) 75:10892–905. doi:10.1128/JVI.75.24.12198-12208.2001

26. Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A, Purtscher
M, et al. Generation of human monoclonal antibodies against HIV-1 pro-
teins; electrofusion and Epstein-Barr virus transformation for peripheral blood
lymphocyte immortalization. AIDS Res Hum Retroviruses (1994) 10:359–69.
doi:10.1089/aid.1994.10.359

27. Gorny MK, Conley AJ, Karwowska S, Buchbinder A, Xu JY, Emini EA, et al.
Neutralization of diverse human immunodeficiency virus type 1 variants by
an anti-V3 human monoclonal antibody. J Virol (1992) 66:7538–42.

28. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J, et al.
Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-
infected individuals. Nature (2009) 458:636–40. doi:10.1038/nature07930

29. Bomsel M, Pastori C, Tudor D, Alberti C, Garcia S, Ferrari D, et al. Natural
mucosal antibodies reactive with first extracellular loop of CCR5 inhibit HIV-
1 transport across human epithelial cells. AIDS (2007) 21:13–22. doi:10.1097/
QAD.0b013e328011049b

30. Devito C, Broliden K, Kaul R, Svensson L, Johansen K, Kiama P, et al. Mucosal
and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1
transcytosis across human epithelial cells. J Immunol (2000) 165:5170–6.

31. Devito C, Hinkula J, Kaul R, Lopalco L, Bwayo JJ, Plummer F, et al. Mucosal and
plasma IgA from HIV-exposed seronegative individuals neutralize a primary
HIV-1 isolate. AIDS (2000) 14:1917–20. doi:10.1097/00002030-200009080-
00006

32. Nguyen M, Pean P, Lopalco L, Nouhin J, Phoung V, Ly N, et al. HIV-specific
antibodies but not T-cell responses are associated with protection in seroneg-
ative partners of HIV-1-infected individuals in Cambodia. J Acquir Immune
Defic Syndr (2006) 42:412–9. doi:10.1097/01.qai.0000222289.97825.35

33. Koshino K, Tokano Y, Hishikawa T, Sekigawa I, Takasaki Y, Hashimoto H.
Detection of antibodies to HIV-1 gp41- and HLA class II antigen-derived
peptides in SLE patients. Scand J Rheumatol (1995) 24:288–92. doi:10.3109/
03009749509095165

34. Hamatake M, Komano J, Urano E, Maeda F, Nagatsuka Y, Takekoshi M. Inhi-
bition of HIV replication by a CD4-reactive Fab of an IgM clone isolated
from a healthy HIV-seronegative individual. Eur J Immunol (2010) 40:1504–9.
doi:10.1002/eji.200939479

35. Lobo PI, Schlegel KH, Yuan W, Townsend GC, White JA. Inhibition of HIV-1
infectivity through an innate mechanism involving naturally occurring IgM
anti-leukocyte autoantibodies. J Immunol (2008) 180:1769–79.

36. Campbell A. Save those molecules: molecular biodiversity and life. J Appl Ecol
(2003) 40:193–203. doi:10.1046/j.1365-2664.2003.00803.x

37. Newton AC. Forest Ecology and Preservation: A Handbook of Techniques. New
York: Oxford University Press (1999).

38. Bimber BN, Burwitz BJ, O’Connor S, Detmer A, Gostick E, Lank SM, et al.
Ultradeep pyrosequencing detects complex patterns of CD8+ T-lymphocyte
escape in simian immunodeficiency virus-infected macaques. J Virol (2009)
83:8247–53. doi:10.1128/JVI.00897-09

39. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, et al.
Measurement and clinical monitoring of human lymphocyte clonality by
massively parallel VDJ pyrosequencing. Sci Transl Med (2009) 1:12ra23.
doi:10.1126/scitranslmed.3000540

40. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, et al. Precise
determination of the diversity of a combinatorial antibody library gives insight
into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A (2009)
106:20216–21. doi:10.1073/pnas.0909775106

41. Weinstein JA, Jiang N, White RA III, Fisher DS, Quake SR. High-throughput
sequencing of the zebrafish antibody repertoire. Science (2009) 324:807–10.
doi:10.1126/science.1170020

42. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Deriva-
tion and validation of the Systemic Lupus International Collaborating Clinics
classification criteria for systemic lupus erythematosus. Arthritis Rheum (2012)
64:2677–86. doi:10.1002/art.34473

43. Bossuyt X, Marti GE, Fleisher TA. Comparative analysis of whole blood lysis
methods for flow cytometry. Cytometry (1997) 30:124–33. doi:10.1002/(SICI)
1097-0320(19970615)30:3<124::AID-CYTO3>3.0.CO;2-L

44. Gokmen E, Raaphorst FM, Boldt DH, Teale JM. Ig heavy chain third comple-
mentarity determining regions (H CDR3s) after stem cell transplantation do
not resemble the developing human fetal H CDR3s in size distribution and Ig
gene utilization. Blood (1998) 92:2802–14.

45. IMGT website. (2012). Available from: http://www.imgt.org
46. Lefranc MP, Duprat E, Kaas Q, Tranne M, Thiriot A, Lefranc G. IMGT unique

numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF)
G-LIKE-DOMAIN. Dev Comp Immunol (2005) 29:917–38. doi:10.1016/j.dci.
2005.03.003

47. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo
generator. Genome Res (2004) 14:1188–90. doi:10.1101/gr.849004

48. Kyte J, Doolittle RF. A simple method for displaying the hydropathic
character of a protein. J Mol Biol (1982) 157:105–32. doi:10.1016/0022-
2836(82)90515-0

49. Yousfi MM, Giudicelli V, Chaume D, Lefranc MP. IMGT/JunctionAnalysis: the
first tool for the analysis of the immunoglobulin and T cell receptor com-
plex V-J and V-D-J JUNCTIONs. Bioinformatics (2004) 20(Suppl 1):i379–85.
doi:10.1093/bioinformatics/bth945

50. Link JM, Schroeder HW Jr. Clues to the etiology of autoimmune diseases
through analysis of immunoglobulin genes. Arthritis Res (2002) 4:80–3.
doi:10.1186/ar393

51. Wu YC, Kipling D, Leong HS, Martin V, Ademokun AA, Dunn-Walters DK.
High-throughput immunoglobulin repertoire analysis distinguishes between
human IgM memory and switched memory B-cell populations. Blood (2010)
116:1070–8. doi:10.1182/blood-2010-03-275859

52. Dunn-Walters DK, Isaacson PG, Spencer J. Analysis of mutations in
immunoglobulin heavy chain variable region genes of microdissected
marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a
reservoir of memory B cells. J Exp Med (1995) 182:559–66. doi:10.1084/jem.
182.2.559

53. Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, Martin JF. Accuracy and
quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics
(2011) 12:245. doi:10.1186/1471-2164-12-245

54. Klein U, Kuppers R, Rajewsky K. Evidence for a large compartment of IgM-
expressing memory B cells in humans. Blood (1997) 89:1288–98.

55. Sun Y, Cai Y, Liu L, Yu F, Farrell ML, McKendree W, et al. ESPRIT: estimating
species richness using large collections of 16S rRNA pyrosequences. Nucleic
Acids Res (2009) 37:e76. doi:10.1093/nar/gkp285

56. Yin L, Liu L, Sun Y, Hou W, Lowe AC, Gardner BP, et al. High-resolution
deep sequencing reveals biodiversity, population structure, and persistence

Frontiers in Immunology | HIV and AIDS November 2013 | Volume 4 | Article 373 | 12

http://dx.doi.org/10.1016/j.immuni.2004.12.011
http://dx.doi.org/10.1126/science.1111781
http://dx.doi.org/10.1016/0002-9343(88)90012-5
http://dx.doi.org/10.1097/00002030-199715000-00009
http://dx.doi.org/10.1128/JVI.78.19.10724-10737.2004
http://dx.doi.org/10.1006/jaut.1999.0324
http://dx.doi.org/10.1006/jaut.1999.0324
http://dx.doi.org/10.1126/science.1061692
http://dx.doi.org/10.1016/j.str.2004.01.003
http://dx.doi.org/10.1126/science.1086907
http://dx.doi.org/10.1128/JVI.75.24.12198-12208.2001
http://dx.doi.org/10.1089/aid.1994.10.359
http://dx.doi.org/10.1038/nature07930
http://dx.doi.org/10.1097/QAD.0b013e328011049b
http://dx.doi.org/10.1097/QAD.0b013e328011049b
http://dx.doi.org/10.1097/00002030-200009080-00006
http://dx.doi.org/10.1097/00002030-200009080-00006
http://dx.doi.org/10.1097/01.qai.0000222289.97825.35
http://dx.doi.org/10.3109/03009749509095165
http://dx.doi.org/10.3109/03009749509095165
http://dx.doi.org/10.1002/eji.200939479
http://dx.doi.org/10.1046/j.1365-2664.2003.00803.x
http://dx.doi.org/10.1128/JVI.00897-09
http://dx.doi.org/10.1126/scitranslmed.3000540
http://dx.doi.org/10.1073/pnas.0909775106
http://dx.doi.org/10.1126/science.1170020
http://dx.doi.org/10.1002/art.34473
http://dx.doi.org/10.1002/(SICI)1097-0320(19970615)30:3<124::AID-CYTO3>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1097-0320(19970615)30:3<124::AID-CYTO3>3.0.CO;2-L
http://www.imgt.org
http://dx.doi.org/10.1016/j.dci.2005.03.003
http://dx.doi.org/10.1016/j.dci.2005.03.003
http://dx.doi.org/10.1101/gr.849004
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1093/bioinformatics/bth945
http://dx.doi.org/10.1186/ar393
http://dx.doi.org/10.1182/blood-2010-03-275859
http://dx.doi.org/10.1084/jem.182.2.559
http://dx.doi.org/10.1084/jem.182.2.559
http://dx.doi.org/10.1186/1471-2164-12-245
http://dx.doi.org/10.1093/nar/gkp285
http://www.frontiersin.org/HIV_and_AIDS
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yin et al. IgM biodiversity in human health and disease

of HIV-1 quasispecies within host ecosystems. Retrovirology (2012) 9:108.
doi:10.1186/1742-4690-9-108

57. Kou ZC, Puhr JS, Wu SS, Goodenow MM, Sleasman JW. Combination
antiretroviral therapy results in a rapid increase in T cell receptor vari-
able region beta repertoire diversity within CD45RA CD8 T cells in human
immunodeficiency virus-infected children. J Infect Dis (2003) 187:385–97.
doi:10.1086/367674

58. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis
of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific
broadly neutralizing antibodies and their inferred unmutated common ances-
tors. J Virol (2011) 85:9998–10009. doi:10.1128/JVI.05045-11

59. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez
BM, et al. Analysis of memory B cell responses and isolation of novel mono-
clonal antibodies with neutralizing breadth from HIV-1-infected individuals.
PLoS One (2010) 5:e8805. doi:10.1371/journal.pone.0008805

60. Kunert R, Ruker F, Katinger H. Molecular characterization of five neutralizing
anti-HIV type 1 antibodies: identification of nonconventional D segments in
the human monoclonal antibodies 2G12 and 2F5. AIDS Res Hum Retroviruses
(1998) 14:1115–28. doi:10.1089/aid.1998.14.1115

61. Li Y, O’Dell S, Walker LM, Wu X, Guenaga J, Feng Y, et al. Mechanism of neu-
tralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01.
J Virol (2011) 85:8954–67. doi:10.1128/JVI.00754-11

62. Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, et al. Human
immunodeficiency virus type 1 elite neutralizers: individuals with broad and
potent neutralizing activity identified by using a high-throughput neutral-
ization assay together with an analytical selection algorithm. J Virol (2009)
83:7337–48. doi:10.1128/JVI.00110-09

63. Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F, et al. A
potent cross-clade neutralizing human monoclonal antibody against a novel
epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum
Retroviruses (2001) 17:1757–65. doi:10.1089/08892220152741450

64. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, et al.
Human monoclonal antibody 2G12 defines a distinctive neutralization epitope
on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol
(1996) 70:1100–8.

65. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad
and potent neutralizing antibodies from an African donor reveal a new HIV-1
vaccine target. Science (2009) 326:285–9. doi:10.1126/science.1178746

66. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rational
design of envelope identifies broadly neutralizing human monoclonal antibod-
ies to HIV-1. Science (2010) 329:856–61. doi:10.1126/science.1187659

67. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution
of HIV-1 neutralizing antibodies revealed by structures and deep sequencing.
Science (2011) 333:1593–602. doi:10.1126/science.1207532

68. Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, Schutte R, et al. Cross-reactive HIV-
1-neutralizing human monoclonal antibodies identified from a patient with
2F5-like antibodies. J Virol (2011) 85:11401–8. doi:10.1128/JVI.05312-11

69. Hart M, Steel A, Clark SA, Moyle G, Nelson M, Henderson DC, et al. Loss
of discrete memory B cell subsets is associated with impaired immunization
responses in HIV-1 infection and may be a risk factor for invasive pneumococ-
cal disease. J Immunol (2007) 178:8212–20.

70. Kardava L, Moir S, Wang W, Ho J, Buckner CM, Posada JG, et al. Attenua-
tion of HIV-associated human B cell exhaustion by siRNA downregulation of
inhibitory receptors. J Clin Invest (2011) 121:2614–24. doi:10.1172/JCI45685

71. Longwe H, Gordon S, Malamba R, French N. Characterising B cell numbers
and memory B cells in HIV infected and uninfected Malawian adults. BMC
Infect Dis (2010) 10:280. doi:10.1186/1471-2334-10-280

72. Titanji K, De MA, Cagigi A, Thorstensson R, Grutzmeier S, Atlas A, et al. Loss
of memory B cells impairs maintenance of long-term serologic memory dur-
ing HIV-1 infection. Blood (2006) 108:1580–7. doi:10.1182/blood-2005-11-
013383

73. Seifert M, Kuppers R. Molecular footprints of a germinal center derivation
of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell
generation. J Exp Med (2009) 206:2659–69. doi:10.1084/jem.20091087

74. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME, et al. Human
blood IgM “memory” B cells are circulating splenic marginal zone B cells har-
boring a prediversified immunoglobulin repertoire. Blood (2004) 104:3647–54.
doi:10.1182/blood-2004-01-0346

75. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and
adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+
CD70−. J Exp Med (2011) 208:67–80. doi:10.1084/jem.20101499

76. Tangye SG, Good KL. Human IgM+CD27+ B cells: memory B cells or “mem-
ory” B cells? J Immunol (2007) 179:13–9.

77. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, et al. A new
population of cells lacking expression of CD27 represents a notable compo-
nent of the B cell memory compartment in systemic lupus erythematosus.
J Immunol (2007) 178:6624–33.

78. Klein U, Rajewsky K, Kuppers R. Human immunoglobulin (Ig)M+IgD+
peripheral blood B cells expressing the CD27 cell surface antigen carry
somatically mutated variable region genes: CD27 as a general marker for
somatically mutated (memory) B cells. J Exp Med (1998) 188:1679–89.
doi:10.1084/jem.188.9.1679

79. Weston-Bell N, Townsend M, Di GG, Forconi F, Sahota SS. Defining ori-
gins of malignant B cells: a new circulating normal human IgM(+)D(+)
B-cell subset lacking CD27 expression and displaying somatically mutated
IGHV genes as a relevant memory population. Leukemia (2009) 23:2075–80.
doi:10.1038/leu.2009.178

80. Medina F, Segundo C, Campos-Caro A, Gonzalez-Garcia I, Brieva JA.
The heterogeneity shown by human plasma cells from tonsil, blood, and bone
marrow reveals graded stages of increasing maturity, but local profiles of adhe-
sion molecule expression. Blood (2002) 99:2154–61. doi:10.1182/blood.V99.6.
2154

81. Minges Wols HA. Plasma cells. In: Encyclopedia Life Science. John Wiley & Sons,
Ltd. (2006). p. 1–8. doi:10.1038/npg.els.0004030

82. Blanchard-Rohner G, Pulickal AS, Jol-van der Zijde CM, Snape MD, Pollard AJ.
Appearance of peripheral blood plasma cells and memory B cells in a primary
and secondary immune response in humans. Blood (2009) 114:4998–5002.
doi:10.1182/blood-2009-03-211052

83. De Milito A, Morch C, Sonnerborg A, Chiodi F. Loss of memory (CD27) B lym-
phocytes in HIV-1 infection. AIDS (2001) 15:957–64. doi:10.1097/00002030-
200105250-00003

84. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, et al. Acti-
vated memory B cell subsets correlate with disease activity in systemic lupus
erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis
Rheum (2008) 58:1762–73. doi:10.1002/art.23498

85. Weller S, Mamani-Matsuda M, Picard C, Cordier C, Lecoeuche D, Gauthier
F, et al. Somatic diversification in the absence of antigen-driven responses is
the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J Exp Med
(2008) 205:1331–42. doi:10.1084/jem.20071555

86. Wu YC, Kipling D, Dunn-Walters DK. Age-related changes in human periph-
eral blood IGH repertoire following vaccination. Front Immunol (2012) 3:193.
doi:10.3389/fimmu.2012.00193

87. Chong Y, Ikematsu H, Yamamoto M, Murata M, Yamaji K, Nishimura M, et al.
Increased frequency of CD27- (naive) B cells and their phenotypic alteration
in HIV type 1-infected patients. AIDS Res Hum Retroviruses (2004) 20:621–9.
doi:10.1089/0889222041217455

88. Moir S, Malaspina A, Ho J, Wang W, DiPoto AC, O’Shea MA, et al. Normaliza-
tion of B cell counts and subpopulations after antiretroviral therapy in chronic
HIV disease. J Infect Dis (2008) 197:572–9. doi:10.1086/526789

89. Sleasman JW, Nelson RP, Goodenow MM, Wilfret D, Hutson A, Baseler M, et al.
Immunoreconstitution after ritonavir therapy in children with human immun-
odeficiency virus infection involves multiple lymphocyte lineages. J Pediatr
(1999) 134:597–606. doi:10.1016/S0022-3476(99)70247-7

90. Wallet MA, Rodriguez CA, Yin L, Saporta S, Chinratanapisit S, Hou W, et al.
Microbial translocation induces persistent macrophage activation unrelated to
HIV-1 levels or T-cell activation following therapy. AIDS (2010) 24:1281–90.
doi:10.1097/QAD.0b013e328339e228

91. Cohen OJ, Pantaleo G, Lam GK, Fauci AS. Studies on lymphoid tissue
from HIV-infected individuals: implications for the design of therapeu-
tic strategies. Springer Semin Immunopathol (1997) 18:305–22. doi:10.1007/
BF00813500

92. Wu YC, Kipling D, Dunn-Walters DK. The relationship between CD27 nega-
tive and positive B cell populations in human peripheral blood. Front Immunol
(2011) 2:81. doi:10.3389/fimmu.2011.00081

93. Carter CC, McNamara LA, Onafuwa-Nuga A, Shackleton M, Riddell J, Bixby
D, et al. HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent

www.frontiersin.org November 2013 | Volume 4 | Article 373 | 13

http://dx.doi.org/10.1186/1742-4690-9-108
http://dx.doi.org/10.1086/367674
http://dx.doi.org/10.1128/JVI.05045-11
http://dx.doi.org/10.1371/journal.pone.0008805
http://dx.doi.org/10.1089/aid.1998.14.1115
http://dx.doi.org/10.1128/JVI.00754-11
http://dx.doi.org/10.1128/JVI.00110-09
http://dx.doi.org/10.1089/08892220152741450
http://dx.doi.org/10.1126/science.1178746
http://dx.doi.org/10.1126/science.1187659
http://dx.doi.org/10.1126/science.1207532
http://dx.doi.org/10.1128/JVI.05312-11
http://dx.doi.org/10.1172/JCI45685
http://dx.doi.org/10.1186/1471-2334-10-280
http://dx.doi.org/10.1182/blood-2005-11-013383
http://dx.doi.org/10.1182/blood-2005-11-013383
http://dx.doi.org/10.1084/jem.20091087
http://dx.doi.org/10.1182/blood-2004-01-0346
http://dx.doi.org/10.1084/jem.20101499
http://dx.doi.org/10.1084/jem.188.9.1679
http://dx.doi.org/10.1038/leu.2009.178
http://dx.doi.org/10.1182/blood.V99.6.2154
http://dx.doi.org/10.1182/blood.V99.6.2154
http://dx.doi.org/10.1038/npg.els.0004030
http://dx.doi.org/10.1182/blood-2009-03-211052
http://dx.doi.org/10.1097/00002030-200105250-00003
http://dx.doi.org/10.1097/00002030-200105250-00003
http://dx.doi.org/10.1002/art.23498
http://dx.doi.org/10.1084/jem.20071555
http://dx.doi.org/10.3389/fimmu.2012.00193
http://dx.doi.org/10.1089/0889222041217455
http://dx.doi.org/10.1086/526789
http://dx.doi.org/10.1016/S0022-3476(99)70247-7
http://dx.doi.org/10.1097/QAD.0b013e328339e228
http://dx.doi.org/10.1007/BF00813500
http://dx.doi.org/10.1007/BF00813500
http://dx.doi.org/10.3389/fimmu.2011.00081
http://www.frontiersin.org
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yin et al. IgM biodiversity in human health and disease

hematopoietic stem and progenitor cells. Cell Host Microbe (2011) 9:223–34.
doi:10.1016/j.chom.2011.02.005

94. Koka PS, Reddy ST. Cytopenias in HIV infection: mechanisms and allevia-
tion of hematopoietic inhibition. Curr HIV Res (2004) 2:275–82. doi:10.2174/
1570162043351282

95. Barbas CF III, Collet TA,Amberg W, Roben P, Binley JM, Hoekstra D, et al. Mol-
ecular profile of an antibody response to HIV-1 as probed by combinatorial
libraries. J Mol Biol (1993) 230:812–23. doi:10.1006/jmbi.1993.1203

96. Barassi C, Lazzarin A, Lopalco L. CCR5-specific mucosal IgA in saliva and
genital fluids of HIV-exposed seronegative subjects. Blood (2004) 104:2205–6.
doi:10.1182/blood-2004-06-2134

97. Lopalco L. Natural anti-CCR5 antibodies in HIV-infection and -exposure.
J Transl Med (2010) 9(Suppl 1):S4. doi:10.1186/1479-5876-9-S1-S4

98. Lopalco L, Barassi C, Paolucci C, Breda D, Brunelli D, Nguyen M, et al. Predic-
tive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral
responses in HIV-1-exposed seronegative cohorts of European and Asian ori-
gin. J Gen Virol (2005) 86:339–48. doi:10.1099/vir.0.80585-0

99. Kunert R, Wolbank S, Stiegler G, Weik R, Katinger H. Characterization of mole-
cular features, antigen-binding, and in vitro properties of IgG and IgM variants
of 4E10, an anti-HIV type 1 neutralizing monoclonal antibody. AIDS Res Hum
Retroviruses (2004) 20:755–62. doi:10.1089/0889222041524571

100. Morris L, Chen X, Alam M, Tomaras G, Zhang R, Marshall DJ, et al. Iso-
lation of a human anti-HIV gp41 membrane proximal region neutralizing

antibody by antigen-specific single B cell sorting. PLoS One (2011) 6:e23532.
doi:10.1371/journal.pone.0023532

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 14 June 2013; accepted: 30 October 2013; published online: 15 November
2013.
Citation: Yin L, Hou W, Liu L, Cai Y, Wallet MA, Gardner BP, Chang K, Lowe
AC, Rodriguez CA, Sriaroon P, Farmerie WG, Sleasman JW and Goodenow MM
(2013) IgM repertoire biodiversity is reduced in HIV-1 infection and systemic lupus
erythematosus. Front. Immunol. 4:373. doi: 10.3389/fimmu.2013.00373
This article was submitted to HIV and AIDS, a section of the journal Frontiers in
Immunology.
Copyright © 2013 Yin, Hou, Liu, Cai, Wallet , Gardner, Chang , Lowe, Rodriguez, Sri-
aroon, Farmerie, Sleasman and Goodenow. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Immunology | HIV and AIDS November 2013 | Volume 4 | Article 373 | 14

http://dx.doi.org/10.1016/j.chom.2011.02.005
http://dx.doi.org/10.2174/1570162043351282
http://dx.doi.org/10.2174/1570162043351282
http://dx.doi.org/10.1006/jmbi.1993.1203
http://dx.doi.org/10.1182/blood-2004-06-2134
http://dx.doi.org/10.1186/1479-5876-9-S1-S4
http://dx.doi.org/10.1099/vir.0.80585-0
http://dx.doi.org/10.1089/0889222041524571
http://dx.doi.org/10.1371/journal.pone.0023532
http://dx.doi.org/10.3389/fimmu.2013.00373
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/HIV_and_AIDS
http://www.frontiersin.org/HIV_and_AIDS/archive

	IgM repertoire biodiversity is reduced in HIV-1 infection and systemic lupus erythematosus
	Introduction
	Materials and methods
	Study cohort
	B cell profiles by multiparameter flow cytometry
	Generation of IGHM CDRH3 amplicon libraries
	Bioinformatics pipeline
	Statistical analysis

	Results
	Somatic hypermutations
	Biodiversity of IGHM CDRH3 transcriptome repertoire in health and disease
	CDRH3 length variation
	Allelic frequency of IGHD and IGHJ genes
	Biodiversity of allele combinations
	IgM sequences resembling bn-HIV-Abs

	Discussion
	Acknowledgments
	References


