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Weight gain is a metabolic disorder that often culminates in the development of

obesity and other comorbidities such as diabetes. Obesity is characterized by the

development of a chronic, subclinical systemic inflammation, and is regarded as a

remarkably important factor that contributes to the development of such comorbidities.

Therefore, laboratory methods that allow the identification of subjects at higher risk

for severe weight-associated morbidity are of utter importance, considering the health,

and safety of populations. This contribution analyzed the plasma of 180 Brazilian

individuals, equally divided into a eutrophic control group and case group, to assess the

presence of biomarkers related to weight gain, aiming at characterizing the phenotype of

this population. Samples were analyzed by mass spectrometry and most discriminant

features were determined by a machine learning approach using Random Forest

algorithm. Five biomarkers related to the pathogenesis and chronicity of inflammation

in weight gain were identified. Two metabolites of arachidonic acid were upregulated in

the case group, indicating the presence of inflammation, as well as two other molecules

related to dysfunctions in the cycle of nitric oxide (NO) and increase in superoxide

production. Finally, a fifth case group marker observed in this study may indicate the

trigger for diabetes in overweight and obesity individuals. The use of mass spectrometry

combined with machine learning analyses to prospect and characterize biomarkers

associated with weight gain will pave the way for elucidating potential therapeutic and

prognostic targets.

Keywords: obesity, machine learning, random forest, metabolomics, biomarkers

INTRODUCTION

Weight gain has become a worldwide epidemic, leading to a population of obese individuals of
more than 13% of the world population in 2016. According to the World Health Organization,
obesity has almost tripled since 1975 and is now linked to a larger number of deaths than
underweight alone (World Health Organization, 2018). Obesity is characterized by weight gain,
excess body fat and complications in several tissues, and organs. The condition is associated with
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type 2 diabetes, hypertension, dyslipidemia and cardiovascular
events (Libert et al., 2018). The presence of three or more of these
disorders (including elevated fasting glucose and abdominal
obesity) define Metabolic Syndrome (MetS), a multifactorial
disease that increase substantially the mortality risk (Zhong et al.,
2017; Lent-Schochet et al., 2019). According to aMetS prevalence
study, 34% of Americans meet the diagnose standards, placing
MetS as an important public health issue (Aguilar et al., 2015).
Considering the wide variety of possible complications and the
different states of metabolic disorders in MetS, it is important
to have a better understanding of the metabolic environment
of these conditions. In addition, the different profiles found
in overweight individuals makes the search for biomarkers -
essential for future definitions of diagnosis, prognosis, and
treatment (Zhong et al., 2017; Libert et al., 2018).

Weight gain results from a chronic state of positive energy
balance due to increased caloric intake and reduced energy
expenditure, and may be influenced by a number of genetic
and environmental factors (Velloso et al., 2015). Adipose tissue
expansion and hypertrophied adipocytes tend to activate intra-
and extracellular stress responses, promoting the development of
a tissue-specific and systemic proinflammatory state (Sartipy and
Loskutoff, 2003; Cooke and Naaz, 2004; Guilherme et al., 2008).
This state of metabolic disturbance, activation of immune system
and increase in inflammation markers in overweight and obesity
is described as a low-grade chronic inflammation, and recent
studies have demonstrated some of the pathways associated
with this condition. Human and murine research has evinced
the relationship between increased nutrient intake, weight gain
and inflammatory responses (Gregor and Hotamisligil, 2011;
Andersen et al., 2016). Despite that, it is still necessary to
unravel the many metabolic and molecular pathways involved
in the development of obesity. In this sense, studies in the
field of “omics” have provided advance in the physiological and
pathological alterations in living organisms. Considering that
metabolomics is the study of all metabolites within an organism,
including precursors, intermediates and end products, and that
mass spectrometry produces a large amount of data for each
sample, machine learning techniques provide tools to recognize
patterns in this large data environment. In this way, the use of
mass spectrometry with machine learning builds an experimental
metabolomics platform to develop diagnostics and prevention
tools (Kononenko, 2001; Jordan and Mitchell, 2015).

Within this context, this study aims at elucidating molecules
that may be involved in the development of obesity in a
cohort of overweight and obese individuals and propose the
relationship of such species with chronical inflammation. Finally,
we understand this study as the basis for potential developments
and applications of targeted therapeutics and clinically-relevant
prognostic markers.

MATERIALS AND METHODS

Ethics Statement
This study was conducted according to the principles expressed
in the Declaration of Helsinki and approved by the Research
Ethics Committee of the State University of Londrina, Paraná,

Brazil (No. 2.426.419—No. CAAE: 79277817.8.0000.5231). A
written informed consent was obtained from all patients. Samples
were obtained from the Health Education Center of Filadelfia
University Center—UNIFIL, Londrina, Paraná, Brazil and State
University of Londrina, Paraná, Brazil.

Research Participants and Specimen
Collection
In total, 180 patients were included in this study, separated
into two groups: Case, formed by a combination of obese and
overweight individuals, and Control, composed of eutrophic
individuals. A questionnaire was used to collect data such
as age, gender, and personal and family history of chronic
non-communicable diseases. A nutritional assessment was
performed including weight and height. The collected specimens
from all participants of the present study consisted of blood
(plasma) samples.

Body Mass Index (BMI) was calculated as weight in kilograms
divided by height in meters squared. Overweight and Obese (case
group) classifications were defined based on the respective BMI
standard cut points that have been recommended by the World
Health Organization (WHO) (World Health Organization,
1995): BMIs of≥25 and<30 kg/m2 for Overweight; BMIs of≥30
and <34.9 kg/m2 for class I obesity (n = 29); BMIs of ≥35 and
<39.9 kg/m2 for class II obesity (n = 17); BMIs ≥ 40 kg/m2 for
class III obesity (n= 13).

For the control group, eutrophic individuals that presented
a BMI between ≥18 and <24.9 kg/m2 were recruited. In order
to exclude from the group any individuals with normal BMI,
but with fat percentage above normal, an estimation of body
fat composition was performed using a bivalent (foot to foot)
bioimpedance analysis (Electronic Scale BC533, Tanita, Tokyo,
Japan and Electronic Scale W905, Wiso, São José, Brazil). The
percentage of fat within the average for age and gender were
determined according to Jackson and Pollock (1978) and Jackson
et al. (1980) protocols.

MALDI-MS Analysis
For sample preparation, 5 µL of plasma and 5 µL of methanol
were mixed in a plastic tube. This solution was diluted in 90
µL of a MALDI matrix α-cyano-4hydroxycinnamic acid (Sigma-
Aldrich, St. Louis, MO) solution at 10 mg/mL, prepared in 1:1
acetonitrile/methanol. Then, 1 µL of the obtained solution was
spotted on aMALDI 96-well plate and air-dried. Each sample was
analyzed in quintuplicates. Spectra were acquired using aMALDI
LTQ-XL (Thermo Scientific, San Jose, CA) at the mass range of
250–2,000m/z, in the positive ion mode.

Machine Learning Method
Machine learning has been intensively used in MS imaging
(Hanselmann et al., 2009; Rappez et al., 2019), and is becoming
a key methodology in untargeted metabolomics (Li et al., 2019).
The strategy applied in this article is an extension of the ML-
based platform used by our group for screening ZIKV molecules
in blood serum (Melo et al., 2018). The method ranks variables
using the feature importance measure provided by Random
Forest trained trees (Breiman et al., 1984; Breiman, 2001; Gregor
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and Hotamisligil, 2011). It also evaluates the ranking results
when discarding least important variables iteratively. Using f1-
score (first harmonic average on recall and precision) as the
cost function (performance measure), it is possible to determine
which features on the mass spectra are most discriminant to
predict positive patients based on their observations (Melo et al.,
2018). A positive patient is defined as any given individual with
the condition of interest herein, i.e., weight gain. At the end of the
process, the method provides a Random Forest classifier, called
diagnosis classifier, that can predict weight gain markers based
on the blood serum mass spectrum, as well as which features are
the most important on that prediction, determining the starting
point for the metabolomics research.

Starting with data preparation, all vectors were normalized
dividing intensity values by the maximum one in each vector.
Then, we randomly split the patient samples into two partitions
randomly selected, the Ptest partition, corresponding to 20% of
the all patients, i.e., data from 18 controls and 18 patients with
weight gain. This partition was kept untouched until the end
of the process, when it was used to measure the classification
accuracy and precision of the classifier, as well as the potential
biomarkers identified by the process. The remaining partition
Pfit consisted of 80% of patients’ data points (82 controls and
82 patients with weight gain) and were used to determine
the hyperparameters of the machine-learning algorithm, aiming
at ultimately training the classifier. For hyperparameters and
determination of themost discriminant features, thePfit partition
was randomly shuffled into 10 experiments datasets with 80%
for training (65 cases and 65 controls) and 20% validation (17
controls and 17 patients with weight gain) in each experiment. It
is important to state that vectors (mass spectra measurements) of
the same patient were always in the same partition, so as not to
contaminate the training and tests results.

A group of linearly dependent features did not carry
more information than a single representative of the group;
therefore, in order to enable the following process and improve
resource consumption and time in the next steps, linearly
dependent features were eliminated using the Gauss-Jordan

elimination algorithm, keeping only features with maximum
median across all vectors to represent each group. Thus, the
following machine learning steps on most discriminant and
putative biomarker features determination rely only on linearly
independent features. In the search for molecules based on
the determined m/z, dependent features are also used to help
on the match of ions for the molecule represented by linearly
independent representatives. After the elimination, 713 ions
remained represented in the feature vectors from the original
1,752m/z values.

The purpose of the machine-learning process here devised
is 2-fold: first, to generate a diagnosis classifier, which will be
used for screening patients to the studied condition (Figure 1);
second, to determine potential biomarkers, which will follow
to the metabolomics analysis stage, reducing the number of
molecules to be analyzed (Figure 2). In the proposed machine
learning approach, Random Forest algorithm plays an important
role. In addition to be a good choice for a classifier, as shown by
Fernández-Delgado et al. (2014), it also provides the variables’
importance, which allows them to be ranked based on their
influence on the classification results.

Statistical metrics defined in Table 1 are used to evaluate
the classifiers’ performance on the experiments and final tests.
Tp denotes true-positive examples, which are cases that actual
positives are classified correctly as positives. Tn stands for true-
negative cases, which are examples that actual negatives are
classified correctly as negatives. Conversely, Fp denotes false
positive cases (those that are actual negatives and were wrongly
classified as positives). Finally, Fn represents the false negative
examples (those examples that are actual positives, but were
incorrectly classified as negatives).

Before starting to determine the most discriminant features,
we selected the appropriate hyperparameter number of trees in
the Random Forest method through a grid-search procedure,
seeking to maximize the accuracy and f1-score as function of
vector length and number of trees. The feature ranking step
measures classification results averaging statistical metrics of
the trained classifiers’ validation (through the 10 repetitions

FIGURE 1 | Diagnosis classifier training and testing procedure. Upon receiving data from different patients, we train the proposed method and rank the most

important features through an analysis of feature distribution. Thereafter a classifier is trained with the selected featured of interest yielding the diagnosis classifier

ready to evaluate different patients data.
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FIGURE 2 | Identification of potential biomarkers through the proposed machine-learning process using the most discriminant features as a proxy.

TABLE 1 | Statistical metrics definition to evaluate classification results.

Metric Sensitivity

(Stv) or Tpr

Specificity

(Spc)

Precision

(Prc)

F1-score

(F1s)

Accuracy

(Acc)

Formula Tp/Tp+Fn Tn/Tn+Fp Tp/Tp+Fp) 2· Prc· Stv /Prc+ Stv (Rcl+Spc)/2

previously described). In each interaction, the metrics on Table 1

were determined, and features were ranked according to their
feature importance. Vector length was reduced by a factor of 0.9
in each interaction, discarding the less significant features until it
achieved length 1.

Marker features represents the ions that are potential
biomarkers to be further analyzed in metabolomics research.
From the 18 most discriminant features, eight were identified
as markers by the definition (see equation below) that a marker
feature has the difference between the cumulative distribution
function (CDF) of the feature values for the negative class and
the CDF of positive class vectors, at the median value of positive
class, exceeding the threshold β , that was defined as 0.4 (40%) for
the analysis herein.

Fj is a marker feature, if :

1j =
(

1− P
(

mj

))

−
(

1− Q
(

mj

))

= Q
(

mj

)

−P
(

mj

)

>β

and

Q
(

Fj
)

≥P
(

Fj
)

| ∀ Fj>mj

where
yj is a Fj value for a positive patient;
mj is the median of yj, i.e., median of Fj values of

positive patients;
yj is a Fj value for a negative patient;

p
(

yj
)

is the probability distribution function of positive

patients, and q
(

yj

)

the probability distribution function of

negative patients;

P
(

yj
)

is the cumulative distribution function (CDF) of y

values, and Q
(

yj

)

is the CDF of yj ;

0 < β < 0.5 CDF is the threshold of the difference over
median of the feature j for the positive patients (e.g., β = 40%).

To evaluate how the most discriminant features (18 variables)
perform in different classifiers, we submitted the same partitions
used to train and validate the Random Forest classifier to a SVM
classifier with two different optimization algorithms: (SMO)
Sequential Minimal Optimization (Fan et al., 2005), and (ISDA)
Iterative Single Data Algorithm (Kecman et al., 2005), and to a
single decision tree classifier using (GDI) Gini Diversity Index
(Breiman et al., 1984) as the split criterion (same criterium used
by the Random Forest).

The software platform used for machine learning processing
was the MATLAB 2018b version 9.5.0.1067069 (R2018b)
February 28, 2019 Update 4, especially the bagged ensemble
decision tree algorithm and related functions available in
the package Statistics and Machine Learning Toolbox. All
experiments ran on a Samsung Notebook NP500R5H with
Intel R© CoreTM i7-5500U CPU @ 2.40 GHz, RAM 8 GB on
Windows 10 v1903.

The datasets and codes used to perform these experiments are
available in public repository through the link http://dx.doi.org/
10.21227/k446-fp12 (Dias-Audibert et al., 2019).

HRMS Analyses
In order to determine the exact masses of the markers
discriminated by machine learning, case group samples were
analyzed in an ESI-LTQ-XL Orbitrap Discovery (Thermo
Scientific, Bremen, Germany). For sample preparation, following
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an adapted protocol by Melo et al. (2017), 20 µL of plasma were
diluted in 200 µL of tetrahydrofuran and homogenized under
vortex for 30 s; the volume was completed to 1mLwithmethanol,
with further homogenization, and then centrifuged for 5 min
under 3,600 rpm. Hundred microliter of the supernatant was
diluted in 400 µL of methanol. Formic acid was added to 0.1% in
the final solution. Samples were directly infused into an ESI-LTQ-
XL Orbitrap Discovery (Thermo Scientific, Bremen, Germany),
and data were acquired according to the following parameters:
flow rate at 10 µL.min−1, capillary temperature at 280◦C, spray
current at 5 kV, and sheath gas at five arbitrary units, in the mass
range of 200–2,000m/z.

Structure Elucidation
Human Metabolome database version 3.6 (www.hmdb.ca),
LipidMaps (www.lipidmaps.org), and METLIN (Scripps Center
for Metabolomics, La Jolla, CA) were consulted to elect the
most suitable marker obtained from HRMS and mass accuracy;

TABLE 2 | Anthropometric data of subjects.

Metric Group All Men Women

Mean RSD Mean RSD Mean RSD

No. patients Control 90 31 59

Case 90 18 72

Age (y) Control 35.1 12.5 34.5 13.2 35.4 12.2

Case 39.0 15.1 44.3 17.2 37.7 14.4

Weigh (kg) Control 64.0 11.1 75.3 8.2 57.8 6.7

Case 88.6 18.9 103.5 22.5 84.8 16.0

BMI (kg/m2 ) Control 22.3 2.8 24.7 2.3 21.0 2.0

Case 33.3 6.5 34.4 9.3 33.0 5.7

Body fat

percentage (%)

Case 40.2 7.6 33.7 5.9% 41.7 7.2

only molecules with a mass shift lower than 2 ppm were
considered. Aiming to confirm the proposed molecules, Tandem
mass spectrometry (MS/MS) data were acquired and structure
proposals were carried out with the assistance of METLIN
MS/MS databases and fragmentation calculations/ modeling
predicted by Mass Frontier software (v. 6.0, Thermo Scientific,
San Jose, CA).

RESULTS

Anthropometric data of the study groups are shown as means
in Table 2. Regarding non-communicable diseases, the control
group had no comorbidities, whereas in the 90 patients from
case group, 37.5% had hypertension and 17.5% had diabetes.
Mass spectral data obtained from 180 patient samples inMALDI-
MS measurements fed the machine learning process with 893
(about 5 per patient) feature vectors of length 1,752 (m/z values
as features).

Ranked Results of Ml Analyses
The appropriate hyperparameter number of trees in the Random
Forest are shown in Figure 3, that depicts the plot of results
of the grid search step, showing the curve (red line) that was
selected to compute the number of trees in the further steps of
the process. By looking at the chart on Figure 4, we found 18
features responsible for the maximum f1-score that represent
good candidates for the metabolomics analysis.

Table 3 shows the ranked results for the 10 validation
experiments using the optimal feature vectors and the Diagnosis
Classifier final test results trained with Pfit and tested with Ptest
partitions respectively.

From the 18 most discriminant features, eight were identified
as markers, as shown in Table 4. The first-ranked feature

FIGURE 3 | Number of trees given by the grid-search procedure as a function of vector length. Cross marks inside the chart denote values evaluated during the grid

search. The red line corresponds to the function used later in the method to compute the number of trees during the training stage for the determination of most

discriminant features.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 January 2020 | Volume 8 | Article 6

www.hmdb.ca
www.lipidmaps.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Dias-Audibert et al. An ML Method for Weight Gain Biomarkers

FIGURE 4 | Search for most important discriminant features (ions), reducing the spectra data vector length while analyzing how f1-score is affected. The best

classifier was found with 18 ranked features, including the 5 markers (discriminant features corresponding to ions that are more prevalent in positive samples)

described in Table 4.

TABLE 3 | Classification results of the validation tests and the final test of the

Diagnosis Classifier using the 18 most discriminant features.

Metric Validation Final test

Mean RSD

Vector length 18 18

Number of trees 58 58

Accuracy (%) 96.2 3.0 86.1

Sensitivity (%) 96.6 5.2 94.4

Specificity (%) 95.8 3.5 77.8

Precision (%) 95.9 3.3 81.0

F1-score (%) 96.2 3.2 87.2

analysis is displayed on Figure 5. Distribution Analysis Chart
for 18 Most Discriminant Features are displayed in Figure S1.
Table 5 presents the ranked results when using only the
markers features on the validation experiments, showing their
capability to identify positive samples. Results of 18 most
discriminant features are show in Table 6. All results are
statistically comparable.

Biomarkers Characterization
Thereafter, the eight markers identified underwent metabolomics
techniques to identify which ones are weight gain biomarkers,
as described next herein. After checking the exact masses
in the metabolomics databases and literature, five biomarkers
were characterized: Dihydrobiopterin, Argininosuccinate, 3-
carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a
prostaglandin (PGB2) and a metabolite of leukotriene (Carboxy-
LTB4). The description of identified markers is listed in Table 7.
The Heatmap analysis distribution of 5 biomarkers identified is
displayed in Figure S2.

TABLE 4 | The 18 most discriminant features found by the Random Forest

analysis, highlighting the eight markers found herein.

Rank Marker m/z Rank Marker m/z

1 Yes 299 10 Yes 283

2 No 673 11 Yes 389

3 Yes 278 12 No 252

4 No 672 13 No 656

5 Yes 263 14 No 395

6 No 379 15 Yes 270

7 Yes 304 16 No 315

8 No 657 17 No 462

9 No 250 18 Yes 308

With the support of previous studies, it was possible
to demonstrate a link between weight gain and systemic
inflammation, and describe the roles of biomarkers in the
pathways associated to an imbalance in the Nitric Oxide (NO)
cycle and the overweight status-related metabolic stress.

DISCUSSION

Upon elucidation of weight gain-associated biomarkers, it was
possible to demonstrate the presence of Argininosuccinate [m/z
308.1565], a basic amino acid and immediate precursor of
arginine in the urea cycle. Numerous studies have shown
a relationship between arginine, obesity and other metabolic
disturbance (Pallares-Méndez et al., 2016; Zhang et al., 2017),
but its exact role and related metabolic pathways still require
a more robust amount of studies (Lent-Schochet et al.,
2019). Argininosuccinate is synthesized from the condensation
of citrulline and aspartate by the enzyme argininosuccinate
synthase; then, it is cleaved into fumarate and arginine by
the enzyme argininosuccinate lyase (Haines et al., 2011).
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FIGURE 5 | Distribution analysis of feature X299 (m/z = 299).

TABLE 5 | Results of the 10 experiments validation with Random Forest classifiers

trained with the eight markers.

Metric Mean RSD

Vector length 8

Number of trees 58

Accuracy (%) 90.9 4.0

Sensitivity (%) 93.5 3.9

Specificity (%) 88.4 7.3

Precision (%) 89.5 6.2

F1-score (%) 91.3 3.6

TABLE 6 | Comparison of validation results of 18 most discriminant features using

different classifiers.

Metric SVM (SMO) SVM (ISDA) Random Forest

(GDI)

Tree (GDI)

Mean RSD Mean RSD Mean RSD Mean RSD

Accuracy (%) 96.6 2.3 97.2 2.3 96.5 3.3 96.2 3.5

Sensitivity (%) 97.4 4.5 98.6 3.0 97.1 5.0 95.9 5.7

Specificity (%) 95.8 5.0 95.8 5.0 95.8 4.8 96.5 3.7

Precision (%) 96.2 4.3 96.2 4.3 96.0 4.7 96.6 3.7

F1-score (%) 96.6 2.2 97.3 2.1 96.5 3.5 96.1 3.7

SVM with two different optimization algorithms: SMO, Sequential Minimal Optimization

(Fan et al., 2005); ISDA, Iterative Single Data Algorithm (Kecman et al., 2005), and single

decision tree classifier using (GDI) Gini Diversity Index (Breiman et al., 1984) as the split

criterion. Green font means best classifier and red font worst classifier for each metric

(table line).

Interestingly, according to studies carried out with rodents,
argininosuccinate may actively participate in the shift of M2
macrophages to M1 in adipose tissue, indicating that this
molecule is a potential marker of activation of proinflammatory
macrophages in human obesity as well (Fraternale et al., 2015; Jha
et al., 2015; Kuda et al., 2016).

Dihydrobiopterin (BH2) [m/z 278.0650] is a product of the
oxidation of Tetrahydrobiopterin (BH4), an important cofactor

for NO synthase (NOS). Whenever there is a balance between
cofactors and substrates in relation to Nicotinamide adenine
dinucleotide phosphate (NADPH), NOS catalyzes the reduction
of O2 and incorporates it into the guanidine group of L-arginine,
generating NO. Nonetheless, in specific situations, such as the
oxidation of BH4 into BH2, a molecule that cannot work as a
cofactor for NOS, a phenomenon called “uncoupling” occurs.
Uncoupled NOS generates superoxide instead of nitric oxide,
leading to an oxidative stress state. Further, produced reaction
oxygen species (ROS) may oxidize BH4 into BH2, exacerbating
this state (Incalza et al., 2018). It is known that reactive oxygen
species may induce and increase the inflammatory process
by upregulating different genes involved in the inflammatory
response, such as those that induce the production of cytokines
and adhesion molecules (Galvão et al., 2018). One of the effects
of ROS on cells is the modification of fatty acids from the
phospholipid membrane, a process that alters membrane fluidity
and cell signaling. In oxidative stress, the enzyme phospholipase
A presents increased activity, producing active mediators such as
arachidonic acid (AA) metabolites (Balboa and Balsinde, 2006).

AA metabolites, namely Eicosanoids, are a family of lipid
mediators generated from phospholipid precursors, involved in
distinct cellular processes. In an inflammatory environment,
the enzyme Phospholipase A2 catalyzes the esterified AA
present in the phospholipid membrane into free AA, which
may be then oxidized in four different pathways: lipoxygenase
(LOX), cyclooxygenase (COX), epoxygenase (CYTP450) and
isoprostane. Prostaglandins are produced through the COX
pathway, and leukotrienes through the LOX pathway. Two
markers found in the plasma of the case group are AA
metabolites: Prostaglandin B2 [m/z 299.2017] and Carboxy-
Leukotriene B4 [m/z 389.1935], indicating that at least two AA
oxidation pathways are putatively more active in the case group.

The most studied Prostaglandin, with the highest pro-
inflammatory effects described in prior art, is PGE2. The
biomarker found herein is obtained from the dehydration of
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TABLE 7 | Markers elected by Random Forest from plasma analysis of case group.

Nominal mass Exact mass Mass fragments Adduct Theoretical mass Error (ppm) Metlin ID Molecule

278 278.0655 232–260–236–246 [M+K]+ 278.0650 1.79 65,872 Dihydrobiopterin

299 299.2022 263–271–213–281 [M+H-2H2O]
+ 299.2017 1.67 3,466 PGB2

308 308.1571 290–248–209 [M+NH4]
+ 308.1565 1.94 389 Argininosuccinate

389 389.1942 353–319–371–285 [M+Na]+ 389.1935 1.79 36,247 Carboxy-LTB4

263 263.0885 245 [227*]−165 [M+Na]+ 263.0890 −1.90 45,041 CMPF

*MS3.

FIGURE 6 | The unbalance of cofactors and substrates in the NO cycle, along with the oxidation of tetrahydropterin to dihydrobiopterin, leads to the uncoupled effect

and increased superoxide production. This state of oxidative stress leads to the induction and increase of inflammatory mediators, such as arachidonic acid

metabolites. These, in turn, are able to induce ROS and oxidation of TH4, exacerbating the inflammatory state and generating its chronicity in obesity. FFA, Free Fat

Acids; TCA, Tricarboxylic Acid; NADPH, Nicotinamide adenine dinucleotide phosphate; NOS, Nitric Oxide Synthase; AA, Arachidonic acid; PGB2, Prostaglandin B2;

Carboxy-LTB4, Carboxy-Leukotriene B4.

PGE2 and has a number of studies describing its effects.
In a study with cell cultures, Cattan et al. evaluated the
regulation of different prostaglandins in an inflammation site.
The main finding was that PGB2 induced Interleukin 2 (IL-
2), activation of tyrosine kinase activities, and Nuclear factor
kappa B (NF-κB). According to the authors, PGB2 behaves as
a potent lipid mediator and mimics almost all effects of PGE2
(Cattan et al., 2000).

LTB4, the precursor of the other biomarker involved
with AA pathways in this study, is a potent lipid mediator
capable of promoting chemotaxis, neutrophil degranulation, and
release of enzymes and ROS. LTB4 has a receptor with high
specificity, B leukotriene receptor 1 (BLT1), expressed exclusively
in inflammatory cells such as neutrophils, macrophages and
eosinophils. In vivo, LTB4 is rapidly metabolized by different
pathways in an attempt to decrease the inflammatory effects
caused by this mediator. From neutrophil action, and with
the participation of ω-hydroxylase, LTB4 is oxidized to 20-
carboxy LTB4. The oxidized products of LTB4 were believed
to be inactive species, but binding studies demonstrated that
20-carboxy LTB4 has the ability to bind to LTB1 and had the same

chemotactic effects, suggesting a similar action of this molecule
on inflammation (Wang et al., 2000; Toda et al., 2002).

Given the fact that these AA-derived metabolites are closely
associated with inflammation, and since this study was not
tissue-specific, their presence reinforce the concept that the
inflammatory activity associated with obesity occurs systemically.
This result agrees with several previous studies that have
demonstrated the relation of obesity to other complications
and diseases in several organs, such as insulin resistance, type
2 diabetes, dyslipidemia, and disorders in immune function
(Doupa et al., 2014; Finn, 2015; Kohlgruber and Lynch, 2015;
Velloso et al., 2015).

A number of studies published previously have shown
alterations in mitochondrial activity, NO cycle, and increase
of reactive oxygen species at the onset of obesity, including
childhood and juvenile obesity (Williams et al., 2002; Gruber
et al., 2008). According to Muñoz and Costa, the increase
in glucose and free fatty acids from energy imbalance causes
an increase in the production of Acetyl-Coenzyme A (Acetyl-
CoA) in the Tricarboxylic Acid (TCA) cycle, which stimulates
the excessive production of superoxide and, consequently, the
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activation of inflammatory stimuli (Muñoz and Costa, 2013). In
a study that evaluated gene expression and cytokine dosage in
plasma and tissue before and after induction of obesity in animals
fed a high-fat diet, Matsuzawa-Nagata et al. demonstrated that
up-regulation of ROS gene expression preceded the onset of
obesity, and also the production of Tumor Necrosis Factor alpha
(TNF-α), suggesting that the onset of obesity is related to an
imbalance in ROS production (Matsuzawa-Nagata et al., 2008).

Considering that obesity is related to the increase of
Acetyl-CoA combined with disturbances in the NO cycle and
consequent activation of inflammatory mediators from the
release of ROS, the biomarkers found are actively involved in
the process of onset of obesity and development of chronicity of
low-grade inflammation in a pathway described in Figure 6.

Finally, another marker found was 3-carboxy-4-methyl-5-
propyl-2-furanpropanoic acid (CMPF) [m/z 263.0890], a dibasic
urofuran acid catabolized from furan fatty acids incorporated
into phospholipids and cholesterol esters, already described in
the literature as related to uremia. Recent studies have found a
relationship of this metabolite with a beta cell dysfunction and
the development of diabetes (Prentice et al., 2014; Liu et al., 2016).
Considering that there were diabetic patients within our case
group, further studies are needed to attest whether this molecule
may also be related to obesity.

Several studies have sought to elucidate biomarkers
through metabolomic techniques in the contexts of obesity,
diabetes, cardiovascular diseases, and MetS. The main purposes
supporting these contributions are to broaden the understanding
on the metabolic environment of individuals in these different
conditions, as well as potential molecular targets that link
them all (Newgard, 2017). Studies have already shown
the relationship between cardiometabolic diseases, obesity
and diabetes with disturbances in the amino acid pathways
such as aromatics and branched-chain amino acids (BCAA)
(Newgard, 2017; Rauschert et al., 2017; Zhong et al., 2017; Libert
et al., 2018; Del Coco et al., 2019).

In an extensive review of the literature, Zhang et al.
have collected several studies that associate obesity with
markers present in different metabolic pathways, such as lipids,
lysophosphatidylcholines, monosaccharides, acylcarnitines, and
metabolites related with TCA cycle, tryptophan, phenylalanine,
and tyrosine pathways (Zhang et al., 2017). In a study conducted
in Australia, Huynh et al. used robust lipidomics techniques
to determine markers related to cardiometabolic risk factors
and anthropometric measures in human plasma. According
to the study, there are 338 plasma lipid species related with
BMI, being positively associated species such as sphingomyelin,
phosphatidylcholine, ceramides, and phosphatidylethanolamine
(Huynh et al., 2019).

Our results also demonstrate that the field of metabolomics
can contribute comprehensively to the study of the onset of
obesity and its development. From the plasma of case patients,
with the metabolomics strategies combined with advances in
data processing using machine learning, it was viable to elect
biomarkers of obesity and describe a possible pathway of
inflammation in this and other associated comorbidities. This
study contributes with knowledge on aspects of the relationship
between obesity, systemic inflammation and chronicity. Our

approach—contribute for elucidation of potential therapeutic
targets in obesity and other disorders and pathologies. Despite
that metabolomics is a sophisticated method, that requires
expensive equipment and trained personnel, the simplicity in
sample preparation, short time to analyze metabolites, and the
use of modern data processing techniques for the determination
of obesity biomarkers are the new insights proposed in this study.
Finally, it also collaborates with upcoming studies in the fields of
prevention and diagnosis of obesity.
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