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Abstract. Isocitrate dehydrogenase1 (IDH1) mutation is the 
most important genetic change in glioma. The most common 
IDH1 mutation results in the amino acid substitution of argi‑
nine 132 (Arg/R132), which is located at the active site of the 
enzyme. IDH1 Arg132His (R132H) mutation can reduce the 
proliferative rate of glioma cells. Numerous diseases follow 
circadian rhythms, and there is growing evidence that circa‑
dian disruption may be a risk factor for cancer in humans. 
Dysregulation of the circadian clock serves an important role 
in the development of malignant tumors, including glioma. 
Brain‑Muscle Arnt‑Like protein 1 (BMAL1) and Circadian 
Locomotor Output Cycles Kaput (CLOCK) are the main 
biological rhythm genes. The present study aimed to further 
study whether there is an association between IDH1 R132H 
mutation and biological rhythm in glioma, and whether this 
affects the occurrence of glioma. The Cancer Genome Atlas 
(TCGA) database was used to detect the expression levels of 
the biological rhythm genes BMAL1 and CLOCK in various 
types of tumor. Additionally, U87‑MG cells were infected 
with wild‑type and mutant IDH1 lentiviruses. Colony forma‑
tion experiments were used to detect cell proliferation in each 
group, cell cycle distribution was detected by flow cytometry 

and western blotting was used to detect the expression levels of 
wild‑type and mutant IDH1, cyclins, biological rhythm genes 
and Smad signaling pathway‑associated genes in U87‑MG cells. 
TCGA database results suggested that BMAL1 and CLOCK 
were abnormally expressed in glioma. Cells were success‑
fully infected with wild‑type and mutant IDH1 lentiviruses. 
Colony formation assay revealed decreased cell proliferation 
in the IDH1 R132H mutant group. The cell cycle distribution 
detected by flow cytometry indicated that IDH1 gene mutation 
increased the G1 phase ratio and decreased the S phase ratio 
in U87‑MG cells. The western blotting results demonstrated 
that IDH1 R132H mutation decreased the expression levels 
of the S phase‑associated proteins Cyclin A and CDK2, and 
increased the expression levels of the G1 phase‑associated 
proteins Cyclin D3 and CDK4, but did not significantly change 
the expression levels of the G2/M phase‑associated protein 
Cyclin B1. The expression levels of the positive and negative 
rhythm regulation genes BMAL1, CLOCK, period (PER s 
(PER1, 2 and 3) and cryptochrom (CRY)s (CRY1 and 2) 
were significantly decreased, those of the Smad signaling 
pathway‑associated genes Smad2, Smad3 and Smad2‑3 were 
decreased, and those of phosphorylated (p)‑Smad2, p‑Smad3 
and Smad4 were increased. Therefore, the present results 
suggested that the IDH1 R132H mutation may alter the cell 
cycle and biological rhythm genes in U87‑MG cells through 
the TGF‑β/Smad signaling pathway.

Introduction

Isocitrate dehydrogenase (IDH) genes are mutated in multiple 
types of tumor, including glioma, chondrogenic tumors, 
leukemia and other bone marrow proliferative tumors. In 
glioma and leukemia, IDH1 and IDH2 mutations occur in 
>70% of low‑grade tumors (level II and III) (1,2). IDH mutation 
is the most important genetic change in glioma. The muta‑
tion is located at the isocitric acid binding site (Arg/R132 of 
IDH1 and R172 of IDH2) of a single amino acid (3,4). IDH1/2 
mutations are common in World Health Organization (WHO) 
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grade II and III gliomas and secondary glioblastoma (GBM; 
70‑80%), while primary GBM (WHO grade IV) IDH1/2 muta‑
tions are rare (<5%) (5,6). IDH1 mutations account for >90% of 
glioma IDH1/2 mutations (7). IDH1 Arg132His (R132H) muta‑
tion can affect the proliferation of glioma cells, which is slower 
than the corresponding wild‑type IDH1 cells (8,9). Clinical 
studies (10,11) have shown that mutations in IDH1 were found 
to be associated with younger age, secondary GBMs (grade IV 
tumors that arise from biopsy‑proven lower‑grade predecessors), 
and increased overall survival (OS) (12). Further studies (13,14) 
have revealed that IDH1/2 mutations as good prognostic markers 
are universally present in grade II and III glioma and secondary 
glioblastoma, and serve an important role in the occurrence, 
development and evolution of glioma (15). Therefore, studying 
the role of the IDH1 R132H mutation in the occurrence of 
glioma may provide new ideas for clinical treatment.

There is growing evidence that dysregulation of the circa‑
dian clock serves an important role in the development of 
malignant tumors, including glioma (16,17). Circadian timing is 
a basic biological process that affects most aspects of eukaryotic 
and prokaryotic physiology. Circadian dysrhythmia may lead 
to an increased risk of cancer, as well as affect the response of 
patients with cancer to treatment (18). In a circadian rhythm, 
the oscillator is coordinated by a set of interlocked transcrip‑
tion‑translation feedback loops. Brain‑Muscle Arnt‑Like 
protein 1 (BMAL1) and Circadian Locomotor Output Cycles 
Kaput (CLOCK) are the main biological rhythm genes (19). 
CLOCK and BMAL1 heterogeneous dimers combined with 
Period (PER) and Cryptochrom (CRY) proteins in E‑box device 
drive rhythmic transcription (20‑22). The PER and CRY proteins 
inhibit CLOCK‑BMAL1 complexes, which inhibit PER and 
CRY protein degradation after release (23‑25). Upon epigenetic 
modification and increase post‑translational modifications, 
the core CLOCK proteins in the suprachiasmatic nucleus can 
maintain peripheral CLOCK oscillation and rhythmic expres‑
sion (26), and the downstream targets are similar to those in 
the suprachiasmatic nucleus; the molecular biological clock of 
the peripheral tissues and organs of the body is also composed 
of a transcription‑translation feedback loop regulated by clock 
genes (27‑32). Disruption of circadian rhythms may negatively 
affect normal cellular function and may lead to an increased inci‑
dence of multiple types of cancer, such as colorectal cancer (33), 
breast cancer (34), prostate cancer (35), pancreatic cancer (36), 
osteosarcoma (37) and others (38,39). Therefore, it is very 
important to study the role of the circadian clock in the develop‑
ment and progression of cancer. Mutations in circadian clock 
components can increase the proliferation rate of cells through 
the general dysregulation of the cell cycle, thereby causing the 
cell to become cancerous (40). Several studies have revealed 
an interaction between the biological clock and the cell cycle. 
For example, a previous study has indicated that light‑induced 
phase shifts in mouse behavior lead to corresponding changes 
in the time of intestinal cell proliferation (41). Another study 
has suggested that clock genes are involved in the regulation of 
important cell cycle checkpoints (42).

Understanding the mechanism of circadian clock changes 
in tumors is of great importance for the improvement of tumor 
therapy. However, to the best of our knowledge, the mechanism 
of biorhythm change in glioma with IDH1 R132H mutation 
has not been previously reported. In the present study, the 

IDH1 R132H mutant gene was introduced into human glioma 
U87‑MG cells to observe the effect of IDH1 on biological 
rhythm genes and to analyze its relevant mechanism, laying a 
theoretical foundation for the study of the effect of biological 
rhythm on the biological function of malignant tumors.

Materials and methods

Cell line and culture. The full name of the cell line used is 
U87‑MG human brain astroblastoma, which is a GBM of 
unknown origin. Cells were cultured in Minimum Essential 
Medium (MEM; Shanghai Zhongqiao Xinzhou Biotechnology 
Co., Ltd.) containing 10% fetal bovine serum (FBS; HyClone; 
Cytiva) at 37˚C with 5% CO2. The cell line was purchased 
from Shanghai Zhongqiao Xinzhou Biotechnology Co., Ltd.

Reagents and instruments. pLVX‑IDH1‑mCMV‑ZsGreen‑
PGK‑Puro and pLVX‑IDH1(MUT)‑mCMV‑ZsGreen‑PG
K‑Puro lentiviruses were purchased from Beijing Xibei 
Hongcheng Biotechnology Co., Ltd. (http://www.xbhcbio.
com/). Trypsin (0.25%)‑EDTA was purchased from 
Invitrogen (Thermo Fisher Scientific, Inc.) and 0.45‑µm 
PVDF membranes and a chemiluminescence kit (Immobilon 
Western Chemiluminescent HRP Substrate, eCl@ss 
cat. no. 42029053) were purchased from EMD Millipore. 
A total protein extraction kit (Whole protein extraction kit, 
cat. no. KGP250), a BCA assay protein content detection 
kit (BCA Protein Quantitation Assay, cat. no. KGPBCA), 
an SDS‑PAGE gel preparation kit (KGI SDS‑PAGE Gel 
Preparation kit, cat. no. KGP113) and a flow cytometry cell 
cycle analysis kit (Cell Cycle Detection kit, cat. no. KGA511) 
were purchased from Jiangsu Kaiji Biotechnology Co., Ltd. 
(http://keygentec.com.cn/index.php?cid=1). The BSA (BSA‑V, 
cat. no. A8020) used to dilute the antibody was purchased 
from Beijing Solarbio Science & Technology Co., Ltd. Mouse 
anti‑IDH1 (R132H; cat. no. SAB4200548) was purchased 
from Sigma‑Aldrich (Merck KGaA). Rabbit anti‑IDH1 
(cat. no. 8137S), rabbit anti‑BMAL1 (cat. no. 14020S), 
rabbit anti‑CLOCK (cat. no. 5157S), rabbit anti‑phosphor‑
ylated (p)‑Smad2 (cat. no. 18338S), rabbit anti‑p‑Smad3 
(cat. no. 9520S), rabbit anti‑Smad2 (cat. no. 5339S), 
rabbit anti‑Smad2‑3 (cat. no. 86855S), rabbit anti‑Smad3 
(cat. no. 9513S), rabbit anti‑Smad4 (cat. no. 46535S), mouse 
anti‑β‑actin (cat. no. 3700S) and mouse anti‑GAPDH 
(cat. no. 51332S) primary antibodies, as well as HRP‑labelled 
goat anti‑rabbit IgG (cat. no. 7074S) and goat anti‑mouse 
IgG (cat. no. 7076S) secondary antibodies, were purchased 
from Cell Signaling Technology, Inc. Rabbit anti‑Cyclin A 
(cat. no. AF0142), rabbit anti‑CyclinB1 (cat. no. DF6786), 
rabbit anti‑CyclinD3 (cat. no. DF6229), rabbit anti‑CDK2 
(cat. no. AF6237), rabbit anti‑CDK4 (cat. no. DF6102), rabbit 
anti‑P18 (cat. no. AF0620), rabbit anti‑P21 (cat. no. AF6290), 
rabbit anti‑P27 (cat. no. AF6324), rabbit anti‑PER1 
(cat. no. DF9080), rabbit anti‑PER2 (cat. no. DF12304), rabbit 
anti‑PER3 (cat. no. DF7349), rabbit anti‑Cry1 (cat. no. DF8932) 
and rabbit anti‑Cry2 (cat. no. DF12919) primary antibodies 
were purchased from Affinity Biosciences. An IX73 inverted 
fluorescence microscope was purchased from Olympus 
Corporation, and an Amersham Imager 600 gel imaging 
analysis system was purchased from General Electric.
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The cancer genome atlas (TCGA) database analysis. BMAL1 
and CLOCK expression data of all types of tumor analyzed 
in the present study were derived from TCGA database 
(https://portal.gdc.cancer.gov/) and the online analysis 
software GEPIA2 (http://gepia2.cancer‑pku.cn/#index).

U87‑MG human glioma cell culture and lentiviral infection. 
Construction of recombinant lentiviral vector: 1 µg Plasmid and 
pLVX/IDH1, 1 µl EcoRI, 1 µl BamHI, 2 µl pLVX, 6 µl target 
gene, 1 µl 10X DNA Ligase Buffer and 1 µl T4 DNA Ligase, were 
used to construct lentiviral vectors. The 239T cell line (Beijing 
Xibei Hongcheng Biotechnology Co., Ltd.) was used for virus 
purification. After culturing for 12 to 16 h, the medium was 
discarded (500 µl HET Buffer A + 10 µl recombinant lentiviral 
vector + 15 µl lentiviral packaging vector + HET Buffer B 50 µl + 
ddH2O 425 µl), and replaced with 10 ml fresh complete medium 
solution (DMEM + 10% FBS + P/S). The cells were placed in a 
37˚C, 5% CO2 incubator for 48 h, the supernatant was collected 
after centrifugation at 500 x g and room temperature for 5 min 
and the cell debris was discarded. The supernatant was filtered 
with a 45 µm PVDF filter into a 50 ml round bottom centrifuge 
tube. This was centrifugated at a high speed of 6,000 x g at 4˚C 
for 2 h, and purified recombinant lentivirus was obtained after 
centrifugation. Lentivirus can be introduced into U87‑MG cells 
after 48 h of infection with MOI value (20:1) (43). U87‑MG cells 
were inoculated in MEM containing 10% FBS at a density of 
2x105 cells/100‑mm culture dish, incubated at 37˚C and then 
subjected to lentivirus infection 6‑8 h after becoming adherent. 
The titre of the treatment and control lentiviruses was set to an 
MOI of 20:1, and MEM with 2% FBS was used to prepare viral 
titre gradient solutions for subsequent experiments. The experi‑
mental groups were the IDH1 wild‑type (WT) and the IDH1 
R132H mutant (MUT) groups, and the corresponding lentiviral 
vectors were pLVX‑IDH1‑mCMV‑ZsGreen‑PGK‑Puro and 
pLVX‑IDH1(MUT)‑mCMV‑ZsGreen‑PGK‑Puro, respectively. 
Subsequent experiments were performed 72 h after lentiviral 
infection.

Western blot analysis. Following lentiviral transfection, 
U87‑MG cells in each group were collected for extraction of 
total protein using the aforementioned whole protein extrac‑
tion kit. The BCA assay kit was used to quantify the protein, 
and equal amounts of protein (40 µg/10 µl) were separated via 
8% SDS‑PAGE. Subsequently, the proteins were transferred to 
PVDF membranes, which were blocked at room temperature in 
5% skimmed milk for 1 h and then incubated at 4˚C overnight 
with the following primary antibodies diluted with 3% BSA: 
Anti‑IDH1 (R132H; 1:1,000), anti‑IDH1 (1:1,000), anti‑GAPDH 
(1:2,000), anti‑β‑actin (1:2,000), anti‑BMAL1 (1:1,000), 
anti‑CLOCK (1:1,000), anti‑PER1/2/3 (1:1,000), anti‑CRY1/2 
(1:1,000), anti‑CyclinA (1:1,000), anti‑CyclinB1 (1:1,000), 
anti‑Cyclin D3 (1:1,000), anti‑CDK2 (1:1,000), anti‑CDK4 
(1:1,000), anti‑P18 (1:1,000), anti‑P21 (1:1,000), anti‑P27 (1:1,000), 
anti‑p‑Smad2 (1:1,000), anti‑p‑Smad3 (1:1,000), anti‑Smad2 
(1:1,000), anti‑Smad2‑3 (1:1,000), anti‑Smad3 (1:1,000) and 
anti‑Smad4 (1:1,000). The membranes were incubated with 
secondary antibodies (HRP‑conjugated goat anti‑rabbit IgG 
and goat anti‑rat IgG; both 1:2,000) at room temperature for 1 h. 
The chemiluminescence reagent was used for color develop‑
ment for 1 min, and the membranes were exposed for greyscale 

measurement. The protein expression level was semi‑quantified 
using Image Pro Plus 6.0 (Media Cybernetics, Inc.).

Colony formation experiments. After seeding 1,000 lenti‑
virus‑infected U87‑MG cells into 100‑mm culture dishes, the 
cells were divided into the WT and MUT groups. After 5 days 
of culture, the medium was changed once, and whether the 
cells formed clumps or sheets was observed under a 10x light 
microscope. The medium was then discarded. The cells were 
fixed in 4% paraformaldehyde at room temperature for 20 min. 
Methylene violet solution (4 ml) was added to each dish, and 
the cells were stained at room temperature for 30 min before 
rinsing with pure water. After drying at room temperature, 
images were captured, and the colonies, which are clumps or 
flakes formed by cells, were counted using Image‑Pro Plus 6.0 
(Media Cybernetics, Inc.) for statistical analysis.

Cell cycle distribution detection by flow cytometry. A cell cycle 
analysis kit (Cell Cycle Detection kit, cat. no. KGA511) was used 
for cell cycle detection. The cells in each group were digested 
with trypsin at 37˚C for 1 min, collected by centrifugation 
at 1,500 x g for 5 min at normal temperature and rinsed with 
PBS to form a cell suspension. The concentration was adjusted to 
1x106 cells/ml. After removing the supernatant by centrifugation 
at 1,500 x g for 5 min at normal temperature, 500 µl precooled 
75% ethanol was used to fix the cells overnight at 4˚C. The fixa‑
tion solution was removed by centrifugation at 1,500 x g for 5 min 
at 4˚C, 100 µl RNase A was added and the cells were incubated 
in a water bath at 37˚C for 30 min. A 400 µm mesh screen was 
used for filtration. Then, 400 µl PI dye was added and the solu‑
tion was gently mixed and incubated at 4˚C for 1 h in the dark. 
Analysis was performed using a flow cytometer (FACSCalibur, 
BD Biosciences; FlowJo, Version 10, FlowJo LLC).

Statistical analysis. SPSS 21.0 (IBM Corp.) statistical soft‑
ware was used for statistical analysis. The data are expressed 
as the mean ± SD. Each independent experiment was repeated 
three times. Independent sample t‑test was used to analyze 
differences between two groups of continuous data. One‑way 
ANOVA was used for the comparison among multiple groups 
followed by Tukey's post hoc test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Biological rhythm genes are abnormally expressed in glioma. 
BMAL1 and CLOCK expression was analyzed in TCGA data‑
base. The expression levels of BMAL1 and CLOCK appeared 
to differ among the 33 types of tumor. BMAL1 expression in 
acute myeloid leukemia was higher than that in normal tissues 
(Fig. 1A). By contrast, BMAL1 expression was lower in diffuse 
large adrenocortical carcinoma (ACC), cervical squamous cell 
carcinoma, endocervical adenocarcinoma (CESC), colon adeno‑
carcinoma (COAD), lung adenocarcinoma, lung squamous cell 
carcinoma, ovarian serous cystadenocarcinoma, prostate adeno‑
carcinoma, rectum adenocarcinoma, skin cutaneous melanoma, 
testicular germ cell tumors (TGCT), uterine corpus endometrial 
carcinoma and uterine carcinosarcoma compared with that in 
normal tissues (Fig. 1A). Additionally, BMAL1 expression in 
brain lower grade glioma (LGG) tissues was lower than that in 
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Figure 1. Expression of BMAL1 and CLOCK in different tumors in TCGA database. (A) BMAL1 and (B) CLOCK expression in 33 types of tumor from The 
Cancer Genome Atlas database. Red represents tumor samples, while green represents normal tissue samples. (C) BMAL1 and (D) CLOCK expression in GBM 
and LGG tumor and normal tissues. The red box represents tumor samples, while the grey box represents normal tissue samples. T, tumor; N, normal; TPM, 
transcripts per million; BMAL1, Brain‑Muscle Arnt‑Like protein 1; CLOCK, Circadian Locomotor Output Cycles Kaput; ACC, Adrenocortical carcinoma; 
BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, 
Cholangiocarcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B‑cell Lymphoma; ESCA, Esophageal carcinoma; GBM, 
Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; 
KIRP, Kidney renal papillary cell carcinoma; LAML, Acute Myeloid Leukemia; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; 
LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic 
adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; 
SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; 
UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma.
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normal tissues (Fig. 1C). The expression of BMAL1 in GBM 
tissue was not significantly different from that in normal tissue 
(Fig. 1C). CLOCK expression in TGCT tissues was lower than 
that in normal tissues (Fig. 1B). By contrast, CLOCK expres‑
sion was higher in diffuse large pancreatic adenocarcinoma 
(PAAD), stomach adenocarcinoma (STAD) and thymoma 
(THYM) tissues compared with that in normal tissues (Fig. 1B). 
Additionally, CLOCK expression in brain LGG was higher than 
that in normal tissues (Fig. 1D). The expression of CLOCK in 
GBM tissues was slightly higher compared with that in normal 
tissues (Fig. 1D). However, how the rhythm genes are expressed 
in IDH1 R132H mutated glioma is unclear. Therefore, further 
experiments were performed to investigate this.

Introduction and expression analysis of WT and MUT IDH1 
genes in U87‑MG cells. U87‑MG cells were transfected with 
lentivirus. Western blot analysis (Fig. 2A) indicated that after 
72 h of lentiviral infection, IDH1 WT protein levels in WT 
U87‑MG cells were slightly higher than those in the MUT 
U87‑MG cells (Fig. 2B). The IDH1 MUT protein was highly 
expressed in the MUT group (Fig. 2C). The effect of IDH1 
gene mutation on U87‑MG cell proliferation was detected 
through colony formation experiments, and the results indi‑
cated that significantly fewer new colonies were formed in the 
MUT group than in the WT group (Fig. 2D and E). The current 
results indicated that a cell model of IDH1 lentivirus trans‑
fection was successfully established and that IDH1 R132H 
mutation influenced the colony formation of glioma cells.

Effects of IDH1 gene mutation on the cell cycle of U87‑MG 
cells. Cell cycle distribution was detected by flow cytom‑
etry. In the WT group, 34.41% of cells were in S phase, 
while in the MUT group, 19.39% of cells were in S phase 
(Fig. 3A‑C and G). The proportion of cells in S phase in the 
MUT group was markedly lower than those in the WT and 
Vector groups (Fig. 3A‑C and G). The proportion of cells in 

G1 phase in the MUT group was 72.83%, which was higher 
than that in the WT group (57.83%); additionally, there was 
no marked difference in the proportion of cells in G2 phase 
among the groups (Fig. 3A‑C and G), suggesting that the IDH1 
R132H mutation may inhibit cells from entering S phase. To 
further describe the changes in the cell cycle, the expression 
levels of S phase‑associated proteins (Cyclin A and CDK2), 
G2/M phase‑associated protein (Cyclin B1), G1 phase‑asso‑
ciated proteins (Cyclin D3 and CDK4), inhibition of early 
G1 phase P18 protein via inhibiting Cyclin D‑CDK4/6 (44,45) 
and inhibition of late G1 phase P27 and P21 proteins via 
Cyclin E‑CDK2 (46) were analyzed by western blot analysis 
(Fig. 3D). The results revealed that the protein expression 
levels of CyclinA and CDK2 were significantly lower in the 
MUT group than in the WT and vector groups (Fig. 3E and F). 
There were no significant differences in CyclinB1 expres‑
sion among the groups (Fig. 3H). The expression levels of 
Cyclin D3 and CDK4 were significantly higher in the MUT 
group (Fig. 3I and J). The protein expression levels of P18 
protein in the MUT group were significantly lower than in the 
WT group, and the expression levels of P27 and P21 protein in 
the MUT group were significantly higher than those in the WT 
and vector groups (Fig. 3K‑M). Therefore, the flow cytometry 
results were verified by detecting the protein expression levels 
of relevant cyclins, indicating that the IDH1 R132H mutation 
may affect the regulation of the cell cycle.

Effect of IDH1 gene mutation on biological rhythm genes in 
U87‑MG cells. Abnormal clock gene expression and circadian 
rhythm disorders are closely associated with the occurrence 
and development of tumors (47). Western blot analysis 
revealed that the expression levels of the biological rhythm 
genes BMAL1 and CLOCK in the IDH1 MUT group were 
significantly lower than those in the WT group (Fig. 4A‑C). 
Transcriptionally, the clock is driven by positive regulators of 
the loop. Basic helix‑loop‑helix heterodimeric transcription 

Figure 2. Establishment of a cell model transfected with IDH1 lentivirus, and detection of the IDH1 R132H mutation affects the proliferation of glioma cells. 
(A) Detection of lentiviral transfection in U87‑MG cells. The protein expression levels of IDH1 WT and MUT in each group of U87‑MG cells was detected 
by western blot analysis. (B) Relative IDH1 WT protein expression. (C) Relative IDH1 MUT protein expression. (D and E) Colony formation experiment was 
used to detect the number of colonies in the two groups. *P<0.05 vs. WT. MUT, mutant; WT, wild‑type; IDH1, isocitrate dehydrogenase 1.
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factors (CLOCK/BMAL1 or BMAL1/NPAS2) regulate the 
expression levels of key circadian genes, including CRY genes 
(Cry1 and Cry2) and PER genes (PER1, PER2, and PER3), 
which are negative regulators of the circadian loop (48,49). CRY 
and PER form a transcriptional repressor complex that enters 
the nucleus to repress CLOCK/BMAL1 activity, thus creating 
a negative feedback loop to control the clock (50). Therefore, 
the expression levels of negative regulators of clock genes were 
also examined. The negative regulatory factors of biological 
rhythm PER1, PER2, PER3, Cry1 and Cry2 were significantly 
downregulated compared with the WT group (Fig. 4D‑I). 
These results indicated that the IDH1 R132H mutation may 
change the expression levels of biological rhythm genes and 
may participate in the regulation of the cell biological rhythm.

Effects of IDH1 gene mutation on Smad signaling molecules. 
IDH1 regulates the TGF‑β signaling feedback loop through 
α‑ketoglutarate (α‑KG) and TGF‑βR)‑IDH1‑Canine adeno‑
virus 1 (Cav1) to enhance TGF‑β signaling in a regulatory 
network between cellular signaling and cell metabolism (51). 
Additionally, TGF‑β is an important regulator of the physi‑
ological clock (52,53). Therefore, the present study further 
investigated any changes in the TGF‑β/Smad signaling 
pathway in IDH1 R132H mutated glioma cells. Western blot 
assays were used to detect the effects of MUT and WT IDH1 
on the levels of p‑Smad2, p‑Smad3, Smad2, Smad2‑3, Smad3 
and Smad4 in U87‑MG cells (Fig. 5A). Compared with the 
WT group, the MUT group exhibited significantly decreased 
protein expression levels of Smad2, Smad3 and Smad2‑3 

Figure 3. Effect of IDH1 gene mutation on cell cycle. Changes in (A) vector, (B) WT and (C) MUT U87‑MG cells after transfection with lentivirus. The cell 
cycle changes in each group were detected by flow cytometry. (D) Protein expression levels of CyclinA, CyclinB1, CyclinD3, CDK2, CDK4, P18, P21 and 
P27 in each group of U87‑MG cells were detected by western blot analysis. Quantification of relative protein expression levels of (E) CyclinA and (F) CDK2. 
(G) Proportion of cells in each cell cycle phase in each group. Semi‑quantification of relative protein expression levels of (H) CyclinB1, (I) CyclinD3, (J) CDK4, 
(K) P18, (L) P21 and (M) P27. *P<0.05 vs. WT. MUT, mutant; WT, wild‑type; IDH1, isocitrate dehydrogenase 1.
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(Fig. 5B‑D) and significantly increased levels of p‑Smad2 and 
p‑Smad3 (Fig. 5E and F). Furthermore, Smad4 expression was 
significantly upregulated in the MUT group compared with in 

the WT group (Fig. 5G). TGF‑β initiates signaling pathways 
by phosphorylating Smad2 and Smad3, and phosphorylated 
Smad2 and Smad3 bind to Smad4 to form complexes that 

Figure 4. Effects of IDH1 gene mutation on biological rhythm genes. (A) Protein expression levels of BMAL1 and CLOCK in the WT, MUT and vector groups. 
Quantification of relative protein expression levels of (B) BMAL1 and (C) CLOCK. (D) Protein expression levels of PER1, PER2, PER3, CRY1 and CRY2 in 
the WT, MUT and vector groups. Quantification of relative protein expression levels of (E) PER1, (F) PER2, (G) PER3, (H) Cry1 and (I) Cry2. *P<0.05 vs. WT. 
MUT, mutant; WT, wild‑type; IDH1, isocitrate dehydrogenase 1; BMAL1, Brain‑Muscle Arnt‑Like protein 1; CLOCK, Circadian Locomotor Output Cycles 
Kaput; PER, Period; Cry, Cryptochrom.

Figure 5. Changes in TGF‑β/Smad signaling pathway‑associated proteins in the IDH1 WT and MUT groups. (A) Expression levels of proteins associated with 
the Smad signaling pathway were detected by western blot analysis. Quantification of relative protein expression levels of (B) Smad2, (C) Smad3, (D) Smad2‑3, 
(E) p‑Smad2/total protein, (F) p‑Smad3/total protein and (G) Smad4. *P<0.05 vs. WT. MUT, mutant; WT, wild‑type; IDH1, isocitrate dehydrogenase 1; 
p, phosphorylated.
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are transferred to the nucleus to interact with multiple tran‑
scription factors in order to induce cellular responses (54,55). 
Thus, it was hypothesized that the IDH1 R132H mutation may 
affect biological rhythm genes of glioma cells through the 
TGF‑β/Smad signaling pathway.

Discussion

Glioma arises from glial cells and most often occurs in the 
brain (56). Glioma accounts for ~30% of central nervous system 
tumors and 80% of malignant brain tumors (57). It is charac‑
terized with highly infiltrative growth and a poor prognosis. 
The most common genetic changes in glioma include IDH1/2 
mutations, TP53 mutations and 1p/19q heterozygous deletion, 
which are present in most cases (>90%) of glioma (58,59). 
The most common and early genetic change in glioma is the 
IDH1/2 mutation. The most common IDH1 mutation results 
in the amino acid substitution of R132, which is located at the 
active site of the enzyme (60). IDH1 mutated glioma cells have 
a reduced proliferative rate (61). Numerous diseases follow 
circadian rhythms, and there is growing evidence that circa‑
dian disruption may be a risk factor for cancer in humans (62). 
A previous study has reported that the BMAL1 gene serves a 
role as a potential tumor suppressor gene in pancreatic cancer 
by activating the P53 tumor suppressor signaling pathway (63). 
Circadian rhythm genes activate certain pathways in tumors or 
are activated by certain pathways to affect the development of 
tumors. β‑catenin showed an increased expression in NIH‑3T3 
cells after BMAL1 overexpression, indicating that activation of 
the canonical Wnt pathway may be the mechanism underlying 
the effect of the circadian clock gene BMAL on promoting cell 
proliferation (64). BMAL1 suppresses cancer cell invasion by 
blocking the PI3K‑Akt‑MMP‑2 signaling pathway (65).

However, to the best of our knowledge, there are no 
studies on the mechanism between IDH1 R132H mutation and 
biological rhythm genes. Therefore, the present study aimed 
to describe the role of biological rhythm genes in glioma cells 
with IDH1 R132H mutation to determine how the IDH1 R132H 
mutation affects biological rhythm genes and the proliferation 
of glioma cells.

The current study revealed that the IDH1 R132H mutation 
in U87‑MG cells decreased the number of new colonies formed 
by tumor cells. The effect of the IDH1 R132H mutation on 
the cell cycle was further investigated, leading to increased 
cells in G1 phase and decreased cells in S phase. The effect 
of the mutation on cyclins was also examined. The expres‑
sion levels of various cyclically related proteins was altered, 
including the S phase‑associated proteins Cyclin A and 
CDK2. No change in Cyclin B1 expression in G2/M phase was 
observed. The expression levels of the G1 phase‑associated 
proteins Cyclin D3 and CDK4 were increased in the MUT 
group compared with in the WT group. The protein expres‑
sion levels of P18 were decreased, while those of P21 and P27 
were increased in the MUT group compared with in the WT 
group. Subsequently, the effect of the IDH1 R132H mutation 
was examined on biological rhythm genes. To the best of our 
knowledge, the current study was the first to analyze the effect 
of the IDH1 R132H mutation on biological rhythm. The IDH1 
R132H mutation significantly decreased the protein expression 
levels of both BMAL1 and CLOCK compared with in the WT 

group, as well as the expression levels of the negative regulation 
factors PER1, PER2, PER3, Cry1 and Cry2. A previous study 
has demonstrated that the disturbance of the circadian clock 
has a strong influence on tumor transformation and growth 
by affecting various cancer regulatory signaling pathways, 
including cell cycle, apoptosis and metabolism (40). The detec‑
tion of biological rhythm genes in the present study revealed 
that IDH1 R132H mutation inhibited the protein expression 
levels of CLOCK and BMAL1, and further inhibited PER and 
CRY proteins. Therefore, it was shown that the IDH1 R132H 
mutation has an effect on the expression of biological rhythm 
genes and has been confirmed in in vitro experiments.

Furthermore, how the IDH1 R132H mutation may affect 
biological rhythm genes was further investigated. Previous 
studies have shown that the TGF‑β signaling pathway is 
closely associated with the occurrence of glioma (66,67). 
TGF‑β is a factor that strongly inhibits the proliferation of 
epithelial, astrocyte and immune cells, and is considered 
a tumor suppressor (68). Some tumors acquire mutations in 
components of the TGF‑β signaling pathway to evade the 
TGF‑β cellular inhibitory response (69). On the other hand, 
in some malignant tumors, including glioma, the ability of 
TGF‑β to inhibit cell proliferation and maintain the integ‑
rity of the TGF‑β signaling pathway is selectively lost (70). 
TGF‑β signaling decreases differences in IDH1 expression 
by normalizing the Smad signaling pathway, and inhibition 
of Cav1 expression by IDH1 is regulated by α‑KG epigenetic 
regulation. Finally, downregulation of Cav1 expression inter‑
rupts the degradation of TGFBR and enhances the Smad 
signal. IDH1 regulates the TGF‑β signaling feedback loop 
through α‑KG and TGFBR‑IDH1‑Cav1 to enhance TGF‑β 
signaling in a regulatory network between cellular signaling 
and cell metabolism (51). In the present study, it was observed 
that the IDH1 R132H mutation significantly decreased the 
protein expression levels of Smad2, Smad3 and Smad2‑3, and 
significantly upregulated the levels of p‑Smad2, p‑Smad3 and 
Smad4. A previous study has suggested that TGF‑β is a multi‑
potent cytokine that controls tissue homeostasis and embryonic 
development. TGF‑β binds and activates a membrane receptor 
serine threonine kinase complex to phosphorylate Smad2 and 
Smad3; after phosphorylation, Smad proteins accumulate in 
the nucleus and form complexes with transcription factors, 
such as Smad4, to regulate transcription (54). The present 
study revealed that the IDH1 R132H mutation affected the 
TGF‑β/Smad signaling pathway. Additionally, TGF‑β is an 
important regulator of the physiological clock. A previous 
study has demonstrated that TGF‑β, by regulating the expres‑
sion of positive and negative regulators of circadian rhythm 
oscillation, serves a vital role in regulating circadian rhythm. 
Adenovirus‑mediated TGF‑β expression can significantly 
induce BMAL1 and NPAS2 expression (71). It has been 
demonstrated that the expression levels of the TGF‑β‑activated 
transcription factor Smad3 display similar expression patterns 
with BMAL1, and that Smad3 functions as an upstream 
molecule of BMAL1, explaining how TGF‑β induces BMAL1 
expression (53). However, TGF‑β strongly inhibits the 
expression levels of PER1, PER2, PER3, Rev‑erbα, retinoic 
acid receptor‑related orphan receptor α and D‑site albumin 
promoter‑binding protein (71). Therefore, increased expres‑
sion levels of TGF‑β and negative regulators of the circadian 



MOLECULAR MEDICINE REPORTS  23:  354,  2021 9

clock prolong the arousal cycle (52). The impact of CLOCK 
and BMAL1 on cancer pathogenesis is highly context‑ and 
disease‑dependent (50). For instance, CLOCK or BMAL1 
provide tumor suppressor‑like functions in prostate, breast, 
ovarian and pancreatic cancer, but exhibit tumor‑promoting 
roles in colorectal cancer and acute myeloid leukemia (50,72). 
In glioma, CLOCK or BMAL1 are tumor‑promoting factors 
that regulate glioma cell proliferation and migration via 
regulating the NF‑κB signaling pathway (73), and can support 
glioma stem cell function via regulation of anabolic metabo‑
lism (74). Therefore, the current study hypothesized that the 
IDH1 R132H mutation may affect biological rhythm genes 
through the TGF‑β/Smad signaling pathway, thus affecting the 
proliferation of glioma cells.

In summary, the IDH1 gene serves crucial roles in the 
occurrence and development of numerous types of tumor (75), 
and imbalance in the circadian clock plays an important role in 
the development of malignant tumors, including glioma (76). 
The present study revealed that the IDH1 R132H mutation 
affected the expression levels of cyclin and biological rhythm 
genes, and thus may affect the occurrence of glioma. Based 
on the current results, it was hypothesized that IDH1 muta‑
tion may affect the expression levels of biological rhythm 
genes of cells through the TGF‑β/Smad signaling pathway. 
To the best of our knowledge, the present results are the first 
to report the association between IDH1 R132H mutation 
and biological rhythm genes, as well as the effect on glioma 
cell proliferation and the possible underlying mechanisms. 
However, further studies are required to confirm the current 
results.
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