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HIV is one of the major causes of deaths, especially in Sub-Saharan Africa. In this paper, an in vivo deterministic model of
differential equations is presented and analyzed for HIV dynamics. Optimal control theory is applied to investigate the key roles
played by the various HIV treatment strategies. In particular, we establish the optimal strategies for controlling the infection using
three treatment regimes as the system control variables. We have applied Pontryagin’s Maximum Principle in characterizing the
optimality control, which then has been solved numerically by applying the Runge-Kutta forth-order scheme.The numerical results
indicate that an optimal controlled treatment strategywould ensure significant reduction in viral load and also inHIV transmission.
It is also evident from the results that protease inhibitor plays a key role in virus suppression; this is not to underscore the benefits
accrued when all the three drug regimes are used in combination.

1. Introduction

There is an ever-changing need for new and useful treatment
regimes that will provide assistance and relief in all aspects
of the human condition. Subsequently, many researchers
have embarked on the journey of analyzing the dynamics of
various diseases affectingmankindwith the aim of improving
control and effect and finally eradicating the diseases from
the population. Modelling and numerical simulations of the
infectious diseases have been used as tools to optimize disease
control. This is due to the fact that medical community
has insufficient animal models for testing efficacy of drug
regimes used in controlling infections. Human immunod-
eficiency virus (HIV) is one of the major problems that
researchers have been working on for over three decades.
According to the Joint United Nations Programme on HIV
and AIDS (UNAIDS), there were 36.7 million people living
with HIV/AIDS in 2016, 1.6 million of which live in Kenya
[1]. Nonetheless, many treatment regimes for HIV have been
approved by the US Food and Drug Administration. Highly
Active Antiretroviral Therapy (HAART) is the latest combi-
nation in use for HIV treatment in most countries. HAART
has been proven to be highly effective in viral suppression,
prolongs life of the infected person, and also reduces the

rate of HIV transmission. However, even over three decades
since the first HIV cases were reported, the virus had no
cure and hence various control methods for HIV/AIDS have
been recommended. These controls range from preventive
measures to treatment regimes. Preventive measures aim at
reducing the number of newHIV infections, while treatment
regimes target the already infected persons to increase their
life expectancy and reduce the rate of HIV transmission.
Various treatment strategies are still the subject of many
ongoing clinical trials that are investigating their benefits
versus risks aimed at determining themost optimal treatment
for HIV. Unfortunately, various host-pathogen interaction
mechanisms during HIV infection and progression to AIDS
are still unknown. Consequently, many questions like which
is the best combination, when is the best time to start
treatment, and how the treatment should be administered are
yet to be answered fully.

Mathematical modelling is one of the many important
tools used in understanding the dynamics of disease trans-
mission. It is also used in developing guidelines important in
disease control. In HIV, mathematical models have provided
a framework for understanding the viral dynamics and have
been used in the optimal allocation of the various interven-
tions against the HIV virions [2–4]. A fundamental goal of
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developing and applying the aforementioned mathematical
models of HIV is to influence treatment decisions and
construct better treatment protocols for infected patients.
Most of the modern mathematical models that have been
developed apply the optimal control theory. Optimal control
theory is a branch of mathematics developed to find optimal
ways of controlling a dynamical system [5]. It has been
applied by mathematicians to assist in the analysis of how
to control the spread of infectious diseases. The results are
used in making key decisions that involve complex biological
mechanism. In particular, it is used to determine the best
dosage for various available vaccines or treatment in use
for controlling infection. For instance, Gaff and Schaefer
[6] applied optimal theory in evaluating mitigation strategy
that would be highly effective in minimizing the number of
people who get infected by an infection. The study applied
both vaccinations and treatment as control variables for
their various model. The results indicated that as much as
treatment is paramount in controlling any infection, the
most optimal method would be the combination of the
two interventions. Furthermore, Bakare et al. [7] applied
optimal control in an SIR model. The study illustrated the
use of optimal control theory in establishing the optimal
educational campaign and treatment strategies that would
minimize the population of the infected persons as well as
cutting the cost of controlling the various diseases.The results
indicated that, for controlling infection, it is important to
target the uninfected populations and apply measures that
will prevent them from getting the infection.

In the literature, optimal control theory has been applied
in the analysis of in-host HIV dynamics as well as in
population-based HIV models. For instance, Yusuf and
Benyah [14] applied optimal theory on HIV population
model. The study aimed at determining the best method
of controlling the spread of HIV/AIDS within a specified
time frame.The study considered three control variables, that
is, safe sex, education, and ARTs. The numerical results of
the objective function for the model indicated that safe sex
practice and early initiation of ARTs are the most optimal
ways of mitigating the spread of HIV/AIDS. The study
established that if the aforementioned strategies are well
implemented, this would lead to an HIV-free nation in 10
years. In addition, for in-host model, optimal control theory
has been applied in the search for optimal therapies for HIV
infection.

Drugs such as fusion inhibitors (FIs), reverse transcrip-
tase inhibitors (RTIs), and protease inhibitors (PIs) have been
developed and applied in the various optimal control prob-
lems. Srivastava et al. [15] analyzed an initial infection model
with reverse transcriptase inhibitors (RTIs).The study argued
that, through the use of RTIs, an infected cell reverts back to
susceptibility. However, this is unlikely since once a CD4+ T-
cell is infected, it cannot recover. The only possible way is for
it to remain latently infected but fail to produce infectious
virus, since RTIs inhibit the reverse transcription process.
Hattaf and Yousfi [16] analyzed two optimal treatments of
HIV infection model. The study aimed at measuring the
efficiency of RTIs and PIs. This was done by maximizing
objective function aimed at increasing the number of the

uninfected cells, decreasing the viral load, and minimizing
the treatment cost. The results indicated that use of therapy
is important in HIV control. It is also important to note that
the study included two types of viruses, that is, the infectious
virus and the noninfectious virus. Noninfectious virus is due
to the use of PIs as a treatment regime.

Karrakchou et al. [17] applied optimal control theory on
HIV. Like Hattaf and Yousfi [16], the study applied the two
control strategies, that is, RTIs and the PIs. However, the
study failed to put into account both the latently infected
cells and the noninfectious virus that results due to the
use of RTIs and PIs, respectively. Failure to include such
important variables in themodel underscores the adequacy of
themodel in representing the actualHIV in-hostmechanism.
In addition, Arruda et al. [12] applied optimal control theory
in HIV immunology.The study used two control variables in
fightingHIVwith the inclusion of theCD8+ T-cells.However,
the study has some shortcomings; for instance, the study
suggested that activated CD8+ T-cells kill the HIV virions
and also the infected cells. This is not the scenario, since the
activated CD8+ T-cells are only able to kill infected CD4+ T-
cells which in turn reduce the population of the HIV virions.
Unfortunately, even with the aforementioned work done on
HIV, the implementation of some of the recommendations
has been proven to be inefficient and in most cases not
economically viable, especially to the developing countries.

As per the literature cited, it is clear that as much as
ARTs have been used for viral suppression, the optimal
treatment schedule necessary to maintain low viral load is
always an approximation. Until the time when HIV cure
is found, physicians will try as much as possible to apply
the control strategy that will inhibit viral progression while
simultaneously holding the side effects of treatment to a
minimum. Most of the treatment regimes have many side
effects that must be maintained at a low level. For example,
long-term use of protease inhibitors is associated with insulin
intolerance, cholesterol elevation, and the redistribution of
body fat. Therefore, there is a need to establish the optimal
treatment strategy, that is, the one which both maximizes the
patient’s uninfected CD4+ T-cells andminimizes the harmful
side effects due to the drugs.

This study has addressed some of the shortcomings noted
from the in-host HIV dynamics models by applying three
control variables representing the three drug regimes on the
market, that is, the fusion inhibitor, reverse transcriptase
inhibitors, and the protease inhibitors, in the in vivo HIV
model. In addition, the study has incorporated the CD8+
T-cells in the model. For the analysis, the study will apply
optimal control theory together with Pontryagin’s Maximum
Principle in solving the objective function with the aim of
establishing the optimal treatment strategy.

2. Model Formulation

2.1. Model Description. In order for us to carry out optimal
control processes, it is paramount to formulate a model that
describes the basic interaction between the HIV virions and
the body immune system.We develop a mathematical model
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Table 1: Variables for HIV in vivo model with therapy.

Variable Description
𝑇(𝑡) The concentration of the noninfected CD4+ T-cells per cubic millimetre at any time 𝑡
𝐼(𝑡) The concentration of the infected CD4+ T-cells per cubic millimetre at any time 𝑡
𝐼𝑙 The concentration of latently infected CD4+ T-cells per cubic millimetre at any time 𝑡
𝑉(𝑡) The concentration of HIV virions, copies/mL, at any time 𝑡
𝑉𝑛(𝑡) The concentration of the immature noninfectious virions, copies/mL, at any time 𝑡
𝑍(𝑡) The concentration of the CD8+ T-cells per cubic millimetre at any time 𝑡
𝑍𝑎(𝑡) The concentration of the activated CD8+ T-cells per cubic millimetre at any time 𝑡

Table 2: Parameters for HIV in vivo model with therapy.

Parameter Description
𝜆𝑇 The rate at which the noninfected CD4+ T-cells are produced per unit time.
𝜇𝑇 The rate at which the noninfected CD4+ T-cells decay.
𝜒 The rate at which the CD4+ T-cells are infected by the virus.
𝜇𝐼 The death rate of the infected CD4+ T-cells.
𝜇𝐼𝑙 The death rate of the latently infected CD4+ T-cells.
𝜀𝑉 The rate in which HIV virions are generated from the infected CD4+ T-cells.
𝜇𝑉 The death rate of the infectious virus.
𝜇𝑉𝑛 The death rate of the noninfectious virions.
𝛼 The rate at which the infected cells are eliminated by the activated CD8+ T-cells.
𝜆𝑍 The rate at which the CD8+ T-cells are produced per unit time.
𝜇𝑍 The death rate of the CD8+ T-cells.
𝛽 The rate at which the CD8+ T-cells are activated by the presence of the virus and the infected CD4+ T-cells.
𝜇𝑍𝑎 The rate at which the activated defense cells decay.

for HIV in-host infection with three combinations of drugs.
Wedefine seven variables for themodel as follows: susceptible
CD4+ T-cells (𝑇), latently infected CD4+ T-cells (𝐼𝑙), infected
CD4+ T-cells (𝐼), HIV infectious virions (𝑉), noninfectious
HIV virions (𝑉𝑛), CD8+ T-cells (𝑍), and the activated CD8+
T-cells (𝑍𝑎).

The parameters for the model are as follows. The sus-
ceptible CD4+ T-cells are produced from the thymus at a
constant rate 𝜆𝑇, die at a constant per capita rate 𝜇𝑇, and
become infected by theHIVvirions at the rate𝜒𝑇𝑉. However,
due to the use of fusion inhibitor (𝑢1) which prevents the
entry of the HIV virions into the CD4+ T-cells, a fraction𝑢1𝜒𝑉𝑇 reverts back to susceptible class. In addition, when
the infected CD4+ T-cells are exposed to the HIV virions
in presence of reverse transcriptase inhibitor (𝑢2), the HIV
virions RNA may not be reverse-transcribed. This results in
a proportion 𝑢2𝜒𝑉𝑇 of the infected cells becoming latently
infected. The infected cells are killed by the CD8+ T-cells at
the rate𝛼 and they die naturally at the rate𝜇𝐼, whereas latently
infected cells die at the rate 𝜇𝐼𝑙 . This study assumes that the
latently infected cells will die naturally and have no possibility
of producing infectious virions nor becoming activated to
become infectious. However, if the protease inhibitor (𝑢3)
is used as a treatment strategy, it inhibits the production of
protease enzyme,which is necessary for production ofmature
HIV virions. This therefore means that we have two kinds of
HIV virions produced from infected CD4+ T-cells, that is,
the infectious HIV virions and the immature noninfectious

virions. The infectious HIV virions are produced at the rate(1−𝑢3)𝜖𝑉 and die at the rate 𝜇𝑉, while the noninfectious HIV
virions are produced at the rate 𝑢3𝜖𝑉 and die at the rate 𝜇𝑉𝑛 .
Furthermore, the CD8+ T-cells are produced naturally from
the thymus at the rate 𝜆𝑍, they die naturally at the rate𝜇𝑍, and
they can also be activated to kill the infected cells at the rate𝛽. The activated CD8+ T-cells die naturally at the rate 𝜇𝑍𝑎 .
It is very important to point out that the CD8+ T-cells are
activated to kill the infected CD4+ T-cells and not the virus
as suggested by Arruda et al. [12].

The summary for the model description is given as
follows. The variables, parameters, and the control variables
for the in-host model are described in Tables 1, 2, and 3,
respectively.

From Figure 1 and the description above, we derive
the following system of ordinary differential equations to
describe the in vivo dynamics of HIV:

𝑑𝑇
𝑑𝑡 = 𝜆𝑇 − 𝜇𝑇𝑇 − (1 − 𝑢1 (𝑡)) 𝜒𝑇𝑉,
𝑑𝐼
𝑑𝑡 = (1 − 𝑢2 (𝑡)) 𝜒𝑇𝑉 − 𝜇𝐼𝐼 − 𝛼𝐼𝑍𝑎,
𝑑𝐼𝑙𝑑𝑡 = 𝑢2 (𝑡) 𝜒𝑇𝑉 − 𝜇𝐼𝑙𝐼𝑙,
𝑑𝑉
𝑑𝑡 = (1 − 𝑢3 (𝑡)) 𝜖𝑉𝜇𝐼𝐼 − 𝜇𝑉𝑉,



4 Computational and Mathematical Methods in Medicine

T V

I

TT

TT

RTI(u2)

(u2
) T

V

Il
Il

(1
−
u
2
)

T
V

ZaI

II

VV

FI(u1)

(1
−
u 3
) u

I
 V
I

Vn

u3u1VI

PI(u3)

Za

V
Vn

Z
Za

ZI

ZZ

ZZ

Il

Z

Figure 1: A compartmental representation of the in vivo HIV dynamics with therapy.

Table 3: Control variables for HIV in vivo model.

Control variable Description Purpose

0 ≤ 𝑢1 ≤ 1 Fusion inhibitors Are a class of antiretroviral drugs that work on the outside of the host CD4+ T-cell
to prevent HIV from fusing with and infecting it.

0 ≤ 𝑢2 ≤ 1 Reverse transcriptase inhibitors Are a class of antiretroviral drugs used to treat HIV infection by inhibiting the
reverse transcription process.

0 ≤ 𝑢3 ≤ 1 Protease inhibitors
Are a class of antiviral drugs that are widely used to treat HIV/AIDS by inhibiting
the production of protease enzyme necessary for the production of infectious viral

particles.

𝑑𝑉𝑛𝑑𝑡 = 𝑢3 (𝑡) 𝜖𝑉𝜇𝐼𝐼 − 𝜇𝑉𝑛𝑉𝑛,
𝑑𝑍
𝑑𝑡 = 𝜆𝑍 − 𝜇𝑍𝑍 − 𝛽𝑍𝐼,

𝑑𝑍𝑎𝑑𝑡 = 𝛽𝑍𝐼 − 𝜇𝑍𝑎𝑍𝑎.
(1)

3. Optimization Process

Control efforts are carried out to limit the spread of the
disease and, in some cases, to prevent the emergence of drug
resistance. Optimal control theory is a method that has been
widely used to solve for an extremum value of an objective
functional involving dynamic variables. In this section, we
consider optimal control methods to derive optimal drug
treatments as functions of time.The control variables as used
in (1) are described as follows. The control 𝑢1 represents the
effect of fusion inhibitors, which are the drugs that protect
the uninfected CD4+ T-cells by preventing the entry of the
virus into the CD4+ T-cells membrane. The control variable𝑢2 simulates the effect of reverse transcriptase inhibitors.

These drugs hinder the reverse transcription process. The
third control variable 𝑢3 simulates the effect of protease
inhibitors, which prevent the already infected cells from
producing mature infectious virions. The aforementioned
controls represent effective chemotherapy dosage bounded
between 0 and 1. The situation 𝑢1(𝑡) = 𝑢2(𝑡) = 𝑢3(𝑡) =1 represents total efficacy of the fusion inhibitors, reverse
transcriptase inhibitors, and protease inhibitors, respectively,
and 𝑢1(𝑡) = 𝑢2(𝑡) = 𝑢3(𝑡) = 0 represents no treatment. It is
worth noting that the aforementioned control variables are
bounded Lebesgue-integrable functions. The study aims at
maximizing the levels of the healthy CD4+ T-cells, as well as
the levels of the CD8+ T-cells (𝑍), while minimizing the viral
load (𝑉) and at the same time keeping cost and side effects
of treatment at a minimum. With the above description, the
following objective function (2) needs to be maximized:

𝐽 (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡)) = 1
2 ∫𝑇𝑓
0

(𝑤1𝑇 (𝑡) + 𝑤2𝑍 (𝑡)
− 𝑤3𝑉 (𝑡) − 𝐴1𝑢21 − 𝐴2𝑢22 − 𝐴3𝑢23) 𝑑𝑡

(2)

subject to the ordinary differential equations given in model
(1).
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𝑇(𝑡), 𝑍(𝑡), and 𝑉(𝑡) are the solutions of the ODEs (1).
The quantities 𝑤1 and 𝑤2 represent the cost associated with
maximizing the number of CD4+ T-cells and the CD8+ T-
cells, respectively, while 𝑤3 represents the cost associated
with minimizing the viral load. In addition, 𝐴1, 𝐴2, and 𝐴3
are nonnegative constants representing the relative weights
attached to the current cost of each treatment regime and𝑇𝑓 is a fixed terminal time of the treatment program subject
to the ordinary differential equations described in model (1).
This study assumes that the cost of controls is of quadratic
form. Furthermore, it is also based on the fact that there is no
linear relationship between the effect of treatment on CD4+
T-cells and CD8+ T-cells and the HIV virions. Consequently,𝑢1, 𝑢2, and 𝑢3 are Lebesgue-integrable; that is, they are
piecewise continuous and integrable. The fundamental aim
of this therapeutic strategy is to maximize the objective
functional defined in (2) by increasing the number of the
uninfected CD4+ T-cells and the CD8+ T-cells, decreasing
the viral load (𝑉), and minimizing the harmful side effects
and cost of treatment over the given time interval [0, 𝑇𝑓].
Therefore, we aim at determining the optimal controls 𝑢∗1 , 𝑢∗2 ,
and 𝑢∗3 such that

𝐽 (𝑢∗1 (𝑡) , 𝑢∗2 (𝑡) , 𝑢∗3 (𝑡))
= max {𝐽 (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡)) : (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈} , (3)

where 𝑈 is a set of all measurable controls defined by

𝑈 = {𝑢 = (𝑢1, 𝑢2, 𝑢3) : 𝑢𝑖 measurable, 0 ≤ 𝑢𝑖 (𝑡) ≤ 1, 𝑡
∈ [0, 𝑇𝑓]} .

(4)

In the next section, we show the existence of an optimal
control for system (1) and later derive the optimality system.
This study will employ Pontryagin’s Maximum Principle.

4. Characterization of the Optimal Control

Thenecessary conditions that an optimal control must satisfy
come from Pontryagin’s Maximum Principle [5].

Theorem 1. Suppose that the objective function

𝐽 (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡)) = 1
2 ∫𝑇𝑓
0

(𝑤1𝑇 (𝑡) + 𝑤2𝑍 (𝑡)
− 𝑤3𝑉 (𝑡) − 𝐴1𝑢21 − 𝐴2𝑢22 − 𝐴3𝑢23) 𝑑𝑡

(5)

is maximized subject to the controls and state variables given
in model (1) with

𝑇 (0) = 𝑇0,
𝐼 (0) = 𝐼0,
𝐼𝑙 (0) = 𝐼𝑙0,
𝑉 (0) = 𝑉0,
𝑉𝑛 (0) = 𝑉𝑛0,
𝑍 (0) = 𝑍0,
𝑍𝑎 (0) = 𝑍𝑎0.

(6)

Then there exist optimal controls (𝑢∗1 , 𝑢∗2 , 𝑢∗3 ∈ 𝑈) such that
𝐽 (𝑢∗1 (𝑡) , 𝑢∗2 (𝑡) , 𝑢∗3 (𝑡))

= max {𝐽 (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡)) : (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈} . (7)

Proof. The existence of the solution can be shown using the
results obtained in Fleming and Rishel [18], since

(1) the class of all initial conditions with controls 𝑢1, 𝑢2,
and 𝑢3 in the control set𝑈 are nonnegative values and
are nonempty, where 𝑢𝑖, 𝑖 = 1, 2, 3, is a Lebesgue-
integrable function on [0, 𝑇𝑓],

(2) the right-hand side of system (1) is bounded by a
linear function of the state and control variables,
by definition, each right-hand side of system (1) is
continuous and can be written as a linear func-
tion of 𝑈 with coefficients depending on time and
state. Furthermore, all the state and control variables𝑇, 𝐼, 𝐼𝑙, 𝑉, 𝑉𝑛, 𝑍, 𝑍𝑎, 𝑢1, 𝑢2, and 𝑢3 are bounded
on [0, 𝑇𝑓],

(3) by definition, the control set𝑈 is convex and closed.A
set 𝐾 ∈ R⋉ is said to be a convex set if and only if

𝜆𝑥 + (1 − 𝜆) 𝑦 ∈ 𝐾 (8)

for all 𝑥, 𝑦 ∈ 𝐾 and all 𝜆 ∈ [0, 1],
this condition is satisfied by the control set 𝑈,

(4) the integrand which is (1/2)(𝐴1𝑢21 +𝐴2𝑢22 +𝐴3𝑢23) of
the objective functional is concave on 𝑈,

(5) there exist constants 𝑏1 > 0, 𝑏2 > 0, and 𝛽 > 1 such
that the integrand of the objective function 𝐽(𝑈, 𝑡) is
bounded by 𝐿(𝑡, 𝑇, 𝑉, 𝑉𝑛, 𝐼, 𝐼𝑙, 𝑍, 𝑍𝑎, 𝑢1, 𝑢2, 𝑢3) ≤ 𝑏2 −𝑏1(|𝑢1|2 + |𝑢2|2 + |𝑢3|2)𝛽/2,
this implies that

𝑤1𝑇 (𝑡) + 𝑤2𝑍 (𝑡) − 𝑤3𝑉 (𝑡) − 𝐴1𝑢21 − 𝐴2𝑢22 − 𝐴3𝑢23
≤ 𝑏2 − 𝑏1 (󵄨󵄨󵄨󵄨𝑢1󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑢2󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑢3󵄨󵄨󵄨󵄨2) ,

(9)

where 𝑏1 depends on the upper bound on 𝑇, 𝑍, 𝑉
while 𝑏1 > 0 since 𝐴1, 𝐴2, 𝐴3 > 0 according to the
definition.

Since all the above conditions are satisfied, we conclude that
there exist optimal controls 𝑢1∗, 𝑢2∗, and 𝑢3∗.
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5. Necessary Conditions of the Control

We now proceed by applying Pontryagin’s Maximum Prin-
ciple [5]. We begin by defining Lagrangian (Hamiltonian
augmented):

𝐿 (𝑇, 𝐼, 𝐼𝑙, 𝑉, 𝑉𝑛, 𝑍, 𝑍𝑎, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝑢1, 𝑢2, 𝑢3)
= 𝑤1𝑇 + 𝑤2𝑍 − 𝑤3𝑉 − 𝐴1𝑢21 − 𝐴2𝑢22 − 𝐴3𝑢23
+ 𝜆1 (𝜆𝑇 − 𝜇𝑇𝑇 − (1 − 𝑢1 (𝑡)) 𝜒𝑇𝑉)
+ 𝜆2 ((1 − 𝑢2 (𝑡)) 𝜒𝑇𝑉 − 𝜇𝐼𝐼 − 𝛼𝐼𝑍𝑎) + 𝜆3 (𝑢2 (𝑡)
⋅ 𝜒𝑇𝑉 − 𝜇𝐼𝑙𝐼𝑙) + 𝜆4 ((1 − 𝑢3 (𝑡)) 𝜖𝑉𝜇𝐼𝐼 − 𝜇𝑉𝑉)
+ 𝜆5 (𝑢3 (𝑡) 𝜖𝑉𝜇𝐼𝐼 − 𝜇𝑉𝑛𝑉𝑛) + 𝜆6 (𝜆𝑍 − 𝜇𝑍𝑍
− 𝛽𝑍𝐼) + 𝜆7 (𝛽𝑍𝐼 − 𝜇𝑍𝑎𝑍𝑎) + 𝑤11𝑢1 + 𝑤12 (1
− 𝑢1) + 𝑤21𝑢2 + 𝑤22 (1 − 𝑢2) + 𝑤31𝑢3 + 𝑤32 (1
− 𝑢3) ,

(10)

where 𝑤𝑖𝑗(𝑡) ≤ 0 are the penalty multipliers that ensure the
boundedness of the control variables 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡)
and satisfy the following conditions:

𝑤11𝑢1 = 𝑤12 (1 − 𝑢1) = 0 at 𝑢∗1
𝑤21𝑢2 = 𝑤22 (1 − 𝑢2) = 0 at 𝑢∗2
𝑤31𝑢3 = 𝑤32 (1 − 𝑢3) = 0 at 𝑢∗3 ,

(11)

where 𝑢∗1 , 𝑢∗2 , and 𝑢∗3 represent the optimal controls.
Therefore, Pontryagin’s Maximum Principle gives the

existence of adjoint variables that are obtained by differen-
tiating the Lagrangian given by (10) with respect to the state
variables 𝑇, 𝑉, 𝐼, 𝐼𝑙, 𝑍, and 𝑍𝑎.

The adjoint variables are given by

𝜆̇1 = − 𝜕𝐿
𝜕𝑇

= −𝑤1 + 𝜆1 (𝜇𝑇 + (1 − 𝑢1) 𝜒𝑉) − 𝜆2𝜒𝑉 (1 − 𝑢2)
− 𝜆3𝑢2𝜒𝑉,

𝜆̇2 = −𝜕𝐿
𝜕𝐼

= 𝜆2 (𝜇𝐼 + 𝛼𝑍𝑎) − 𝜆4𝜀𝑉𝜇𝐼 (1 − 𝑢3) − 𝜆5𝑢3𝜖𝑉𝜇𝐼
+ 𝜆6𝛽𝑍 − 𝜆7𝛽𝑍,

𝜆̇3 = −𝜕𝐿
𝜕𝐼𝑙 = 𝜆3𝜇𝐼𝑙 ,

𝜆̇4 = − 𝜕𝐿
𝜕𝑉

= 𝑤3 + 𝜆1𝜒𝑇 (1 − 𝑢1) − 𝜆2𝜒𝑇 (1 − 𝑢2) − 𝜆3𝜒𝑇𝑢2
+ 𝜆4𝜇𝑉,

𝜆̇5 = − 𝜕𝐿
𝜕𝑉𝑛 = 𝜆5𝜇𝑉𝑛 ,

𝜆̇6 = − 𝜕𝐿
𝜕𝑍 = −𝑤2 + 𝜆6 (𝜇𝑍 + 𝛽𝐼) − 𝜆7𝛽𝐼,

𝜆̇7 = − 𝜕𝐿
𝜕𝑍𝑎 = 𝜆2𝛼𝐼 + 𝜆7𝜇𝑍𝑎 ,

(12)

where

𝜆𝑖 (𝑇𝑓) = 0, 𝑖 = 1, . . . , 7, (13)

are the transversality conditions.
By maximization of the Lagrangian with respect to

the control variables 𝑢1, 𝑢2, 𝑢3 at the optimal controls(𝑢∗1 , 𝑢∗2 , and 𝑢∗3 ), we have
𝜕𝐿
𝜕𝑢1 = 0,
𝜕𝐿
𝜕𝑢2 = 0,
𝜕𝐿
𝜕𝑢3 = 0.

(14)

Therefore, differentiating the Lagrangian 𝐿 given in (10) with
respect to 𝑢1 on the set 𝑈 : 𝑡 | 0 ≤ 𝑢1(𝑡) ≤ 1, we get the
following optimality equation:

𝜕𝐿
𝜕𝑢1 = −2𝐴1𝑢𝐼 + 𝜒𝑇𝑉𝜆1 + 𝑤11 − 𝑤12 = 0. (15)

Let 𝑢1 = 𝑢∗1 in (15). Then, solving (15), we obtain the optimal
control 𝑢∗1 as

𝑢∗1 = 𝜒𝑇𝑉𝜆1 + 𝑤11 − 𝑤122𝐴1 . (16)

To determine an explicit expression for an optimal control 𝑢∗1
without 𝑤11 and 𝑤12, we consider the following three cases:

(1) On the set (𝑡 | 0 < 𝑢∗1 < 1), suppose we set 𝑤11 =𝑤12 = 0 in (16). Then the optimal 𝑢∗1 control is given
by

𝑢∗1 = 𝜒𝑇𝑉𝜆12𝐴1 . (17)
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(2) Similarly, on the set (𝑡 | 𝑢∗1 = 1), we have 𝑤11 = 0 and𝑤12 ≥ 0; then from (16), we have

𝑢∗1 = 1 = 𝜒𝑇𝑉𝜆1 − 𝑤122𝐴1 . (18)

Equation (18) can be reduced to

𝜒𝑇𝑉𝜆12𝐴1 ≥ 1 = 𝑢∗1 . (19)

Therefore, for this set, we have

𝑢∗1 = min(1, 𝜒𝑇𝑉𝜆12𝐴1 ) . (20)

(3) Finally, on the set (𝑡 | 𝑢∗1 = 0), we have 𝑤12 = 0 and𝑤11 ≥ 0; then from (16), we have

𝑢∗1 = 0 = 𝜒𝑇𝑉𝜆1 + 𝑤112𝐴1 , (21)

which implies that

𝜒𝑇𝑉𝜆12𝐴1 ≤ 0. (22)

Consequently, combining all the three cases given by (17),
(20), and (22), we obtain the optimal control, 𝑢∗1 , as follows:

𝑢∗1 (𝑡) =
{{{{{{{{{{{{{{{

𝜒𝑇𝑉𝜆12𝐴1 if 0 < 𝜒𝑇𝑉𝜆12𝐴1 < 1
0 if

𝜒𝑇𝑉𝜆12𝐴1 ≤ 0
1 if

𝜒𝑇𝑉𝜆12𝐴1 ≥ 1.
(23)

This implies that the control 𝑢∗1 (𝑡) is formulated as follows:

𝑢∗1 = max(0,min(1, 𝜒𝑇𝑉𝜆12𝐴1 )) . (24)

We use the same argument to obtain an explicit expression for
an optimal control 𝑢∗2 without 𝑤21 and 𝑤22. We differentiate
the Lagrangian 𝐿 given in (10) with respect to 𝑢2 on the set𝑈 : 𝑡 | 0 ≤ 𝑢2(𝑡) ≤ 1. We therefore obtain the optimality
equation as

𝜕𝐿
𝜕𝑢2 = −2𝐴2𝑢2 + 𝜒𝑇𝑉 (𝜆3 − 𝜆2) + 𝑤21 − 𝑤22 = 0

at 𝑢2 = 𝑢∗2 .
(25)

Therefore, solving (25), we obtain the optimal control 𝑢∗2 as
follows:

𝑢∗2 = 𝜒𝑇𝑉 (𝜆3 − 𝜆2) + 𝑤21 − 𝑤222𝐴2 . (26)

According to the conditions given by (11), we derive the
following distinct three cases:

(1) On the set (𝑡 | 0 < 𝑢∗2 < 1), we have 𝑤21 = 𝑤22 = 0 in
(26). Then the optimal 𝑢∗2 control is given by

𝑢∗2 = 𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 . (27)

(2) On the set (𝑡 | 𝑢∗2 = 1), we have 𝑤21 = 0 and 𝑤22 ≥ 0;
then from (26), we have

𝑢∗2 = 1 = 𝜒𝑇𝑉 (𝜆3 − 𝜆2) + 𝑤222𝐴2 . (28)

Rearranging (28) we have

𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 ≥ 1 = 𝑢∗2 . (29)

Thus, for the this set, we have

𝑢∗2 = min(1, 𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 ) . (30)

(3) Finally, on the set (𝑡 | 𝑢∗2 = 0), we have 𝑤22 = 0 and𝑤21 ≥ 0; then from (26), we have

𝑢∗2 = 0 = 𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 , (31)

which implies that

𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 ≤ 0. (32)

Consequently, combining all the three cases given by (27),
(30), and (32), we obtain the optimal control 𝑢∗2 as follows:

𝑢∗2 (𝑡)

=
{{{{{{{{{{{{{{{{{

𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 if 0 < 𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 < 1
0 if

𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 ≤ 0
1 if

𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 ≥ 1.

(33)

Hence, the optimal control 𝑢∗2 (𝑡) is formulated as follows:

𝑢∗2 = max(0,min(1, 𝜒𝑇𝑉 (𝜆3 − 𝜆2)2𝐴2 )) . (34)

To obtain the expression for optimal control 𝑢∗3 , we differen-
tiate (10) with respect to 𝑢3 on the set 𝑈 : 𝑡 | 0 ≤ 𝑢3(𝑡) ≤ 1 to
get the following optimality equation:

𝜕𝐿
𝜕𝑢3 = −2𝐴3𝑢3 − 𝜀𝑉𝜇𝐼𝐼𝜆4 + 𝑤31 − 𝑤32 = 0. (35)

Let 𝑢3 = 𝑢∗3 in (35); then we obtain the optimal control 𝑢∗3 :
𝑢∗3 = −𝜀𝑉𝜇𝐼𝐼𝜆4 + 𝑤31 − 𝑤322𝐴3 . (36)
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Figure 2: Simulated control strategies.

(1) On the set (𝑡 | 0 < 𝑢∗3 < 1), we have 𝑤31 = 𝑤32 = 0 in
(36). Then the optimal control 𝑢∗3 is given by

𝑢∗3 = −𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 . (37)

(2) On the set (𝑡 | 𝑢∗3 = 1), we have 𝑤31 = 0 and 𝑤32 ≥ 0;
then from (36), we have

𝑢∗3 = 1 = −𝜀𝑉𝜇𝐼𝐼𝜆4 + 𝑤322𝐴3 . (38)

Equation (38) can be reduced to

−𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 ≥ 1 = 𝑢∗3 . (39)

Hence, for this set, we have

𝑢∗3 = min(1, −𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 ) . (40)
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Figure 3: The population of the CD4+ T-cells in various control strategies.

(3) Finally, on the set (𝑡 | 𝑢∗3 = 0), we have 𝑤32 = 0 and𝑤31 ≥ 0; then from (36), we have

𝑢∗3 = 0 = −𝜀𝑉𝜇𝐼𝐼𝜆4 + 𝑤312𝐴3 , (41)

which implies that

−𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 ≤ 0. (42)

Consequently, combining all the three cases given by (37),
(40), and (42), the optimal control, 𝑢∗3 , is characterized as

𝑢∗3 (𝑡) =
{{{{{{{{{{{{{{{

−𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 if 0 < −𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 < 1
0 if

−𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 ≤ 0
1 if

−𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 ≥ 1.
(43)



10 Computational and Mathematical Methods in Medicine

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

0

20

40

60

80

100

120

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

0

50

100

150

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

0

0.5

1

1.5

2

2.5

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

La
te

nt
ly

 in
fe

ct
ed

 C
D

4+
 T

-c
el

ls

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

Without optimal control
With optimal control

Time (months)
0 1 2 3 4 5 6 7 8 9 10

With control u1 With control u2

With control u3 With controls u1 and u2

With controls u1 and u3 With controls u2 and u3 With all the three controls

Figure 4: The population of the latently infected CD4+ T-cells in various control strategies.

Therefore, the optimal control, 𝑢∗3 (𝑡), is formulated as

𝑢∗3 = max(0,min(1, −𝜀𝑉𝜇𝐼𝐼𝜆42𝐴3 )) . (44)

It is worth noting that the optimal controls depend on
the adjoint variables 𝜆1, 𝜆2, 𝜆3, and 𝜆4, since the adjoint
variables correspond to the state variables, 𝑇, 𝐼, 𝐼𝑙, 𝑉, and
the first four equations in (1) contain the control terms.

6. Numerical Simulation

In this section, we investigate the effect of optimal strategy
on HIV by applying Runge-Kutta forth-order scheme on
the optimality system. The optimality system is obtained by
taking the state system together with the adjoint system,
the optimal control, and the transversality conditions. The
dynamical behaviour of the models in relation to various
control is also studied. The optimal strategy is achieved by
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Figure 5: The population of the infected CD4+ T-cells in various control strategies.

obtaining a solution for the state system (1) and costate
system (12). An iterative scheme is explored and used
to determine the solution for the optimality system. The
numerical method utilized is the forward-backward sweep
method that incorporates iterative Runge-Kutta fourth-order
progressive-regressive schemes. The progressive scheme is
used in obtaining the solutions of the state ODEs given in
(1) with the initial conditions, while the regressive scheme
is applied in obtaining the solutions of the adjoint system
given by (12) with transversality conditions given in (13). The

controls are updated at the end of each iteration using the
formula for optimal controls. We continue with the iterations
until convergence is achieved. This is a two-point boundary-
value problem, with separated boundary conditions at times𝑡0 = 0 and 𝑡 = 𝑇𝑓. This explains our choice in using
the fourth-order Runge-Kutta scheme. For the numerical
simulation, we take 𝑇 = 310 days or 10 months. This
value represents the time in which treatment is stopped.
Furthermore, the values of the weight function are taken as𝐴1 = 𝐴2 = 𝐴3 = 0.01. Table 4 consists of the parameter



12 Computational and Mathematical Methods in Medicine

(2) CD4 binding (3) Coreceptor
binding

(4) Membrane
fusion

Six-helix bundle formationCoreceptorFusion peptideCD4

membrane
Cell

loop 3
Variable

gp120

gp41
membrane

Viral

(1) Env

Figure 6: HIV entry mechanism [13].

Table 4: Parameters and controls for HIV in vivo model with therapy.

Parameters Value Source
𝜆𝑇 10 cell/mm3/day Nowak et al. [8]
𝜇𝑇 0.01 day−1 Srivastava and Chandra [9]
𝜒 0.000024mm3 vir−1 day−1 Alizon and Magnus [10]
𝜇𝐼 0.5 day−1 Wodarz and Nowak [11]
𝜇𝐼𝑙 0.5 day−1 Wodarz and Nowak [11].
𝜀𝑉 100 vir. cell−1 day−1 Estimate
𝜇𝑉 3 day−1 Mbogo et al. [2].
𝜇𝑉𝑛 0.06 day−1 Estimate
𝛼 0.02 day−1 Arruda et al. [12]
𝜆𝑍 20 cell/mm3/day Arruda et al. [12]
𝜇𝑍 0.06 day−1 Arruda et al. [12]
𝛽 0.004 day−1 Arruda et al. [12]
𝜇𝑍𝑎 0.004 day−1 Arruda et al. [12]
𝑢1 0-1 variable Estimate
𝑢2 0-1 variable Estimate
𝑢3 0-1 variable Estimate

values that are used in the numerical simulations of the in
vivo model, while Table 5 consists of the proposed initial
values of the state variables.

The initial values given in Table 5 are chosen in such a
way that they reflect a patient during acute infection. This is
in line with the WHO recommendations that stipulate that
all people living with the HIV be put on ARTs irrespective of
their CD4+ counts unlike in the past where the CD4+ count
had to be less than 500 cells/mm3 [19].

6.1. Results and Discussion. Figure 2 represents the various
control strategies. It is evident that the control 𝑢1 remains
at the maximum for the first two months and drops to zero
onward, while control 𝑢2 remains at maximum for the first
four and a half months and then drops to 30% the sixth
and the ninth months and drops to the minimum after the
10th month. In addition, the control strategy 𝑢3 remains at
a maximum for the first ninth months, only dropping to a
minimum at the tenth month. From these results, we can
see that protease inhibitor can be administered for a longer
period of time.

Table 5: The initial values for the variables for HIV in vivo model.

Variable Values
𝑇(𝑡) 𝑇(0) = 500 cell/mm3

𝐼(𝑡) 𝐼(0) = 100 cell/mm3

𝐼𝑙 𝐼𝑙(0) = 0 cell/mm3

𝑉(𝑡) 𝑉(0) = 100 virion/mm3

𝑉𝑛(𝑡) 𝑉𝑛(0) = 0 virion/mm3

𝑍(𝑡) 𝑍(0) = 100 cell/mm3

𝑍𝑎(𝑡) 𝑍𝑎(0) = 10 cell/mm3

Figure 3 shows the population of the CD4+ T-cells in
different treatment strategy. In all the cases, it is evident that
the introduction of the ARTs plays a significant role as far
as controlling HIV is concerned. Nonetheless, it is clear that
when fusion inhibitor (𝑢1) is used without other controls, the
number of CD4+ T-cells reduces significantly and a longer
time is taken before the number increases. In particular, the
drug effectiveness seems to be felt after the first two months.
We interpret the results to mean that it is difficult to control
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Figure 7: The population of the HIV virions in various control strategies.

the HIV virions by targeting their cell-entry mechanism.The
use of protease inhibitor, however, leads to an increase in the
number of the CD4+ T-cells. In addition, it is evident that a
combination of the three drugs evokes a more pronounced
CD4+ T-cells increase than in monotherapy or combination
of two drugs.

It is important to point out that CD4+ T-cell responses in
number of cells gained were similar for patients treated with
combination of two drugs therapies and patients treated with
combination of three drugs therapies.

Figure 4 presents the dynamics of the latently infected
cells after the introduction of the various control strategies.
It is evident that the latently infected cells are produced
after the introduction of reverse transcriptase inhibitor to
an HIV infected cell. Since the latently infected cells do not
produce infectious virions, it is important to administer RTIs
to an infected person. This will reduce the number of virions
producing cells.

Figure 5 shows the change in the population of the
infectedCD4+ T-cells with time in different control strategies.
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Figure 8: The population of the noninfectious HIV virions in various control strategies.

From the simulated results, we see that use of ARTs plays a
fundamental role, especially in controlling the rate of infec-
tion. Nonetheless, when the fusion inhibitors are introduced
in the body, the number of the infected cells still increases for
the first few months.This clearly shows that it is very difficult
to control theHIV virions at the entry level.The reasonwould
probably be based on the fact that HIV uses a complex series
of steps to deliver its genome into the host cell cytoplasm
while simultaneously evading the host immune response as
shown in Figure 6.

Figure 7 shows the change in the population of the
HIV virions in different drug combination(s). It is evident
that controls 𝑢1 and 𝑢2 are not as very effective as PIs
in controlling viral progression. In particular, there is no
significant difference when the control 𝑢1 is used and when
no control is used at all. Researches such as [20] suggest
that viruses blocked by entry inhibitors such as the fusion
inhibitors are likely redistributed to plasma, where they
artificially increase the number of HIV virions. This may
probably be the reason why there is an indication of having
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Figure 9: The population of the CD8+ T-cells in various control strategies.

high number of viral loads even when control 𝑢1 is applied.
In addition, the fusion inhibitor prevents the entry of the
virions unlike the other two drugs that allow the entry of
the HIV virions into the cells, confirming the absorption
effect. Simulated results shows that protease inhibitor plays
a significant role in reducing viral progression and it is
the best single drug in use for viral suppression. This is in
agreement with some of the works done in the field of in vivo
HIV dynamics which have concluded that protease inhibitors

are more effective than reverse transcriptase inhibitors and
fusion inhibitors in terms of viral load reduction in HIV
infected patient [21–23].The simulated results also emphasize
the importance of using a combination of the various ARTs
when treating HIV.

From Figure 8, it is evident that noninfectious viruses are
produced after the introduction of the protease inhibitor in
the body. Introduction of PIs to HIV infected cells generates
a pool of immature HIV virions; this leads to the transfer
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Figure 10: The population of the activated CD8+ T-cells in various control strategies.

of noninfectious virus across the virological synapse. This
therefore implies that the virus produced will not infect more
susceptible CD4+ T-cells.

Figure 9 shows the population of the CD8+ T-cells in
different treatment strategy. Both the RTIs and PIs cause a
substantial increase in the population of the CD8+ T-cells in
HIV infected patients. However, it is evident that as much
as these two drugs plays a major role, the combination of
all the three controls produces a higher immune system
reconstitutionwith sustained increases in circulating number
of CD8+ T-cells.

Figure 10 shows the population of the activated CD8+ T-
cells. The activation process plays a major role in controlling
the HIV virus particles.This is because the cells fight, destroy,
and kill the infected CD4+ T-cells. This in turn reduces the
number ofHIV virions produced. From the simulated results,
it is evident that, after the introduction of the ARTs, the
number of activated CD8+ T-cells reduced significantly. The
reduction may be attributed to the reconstituted immune
system or due to the reduction of the retroviral activity on the
cells [24]. However, the question we need to ask ourselves is
whether this reduction has any clinical benefit. In the future,
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it is important to analyze the clinical benefit accrued from the
reduction of the CD8+ T-cells activation process.

7. Conclusion

In this paper, we have analyzed a seven-dimension in vivo
HIV model with inclusion of three drug combinations, that
is, FIs, RTIs, and PIs. Optimal control theory is applied to
determine the optimal treatment regime. The study applied
Pontryagin’s Maximum Principle in deriving the conditions
for optimal control, which maximizes the objective function.
The systems of ODEs, the state system, and the adjoint system
were solved numerically by both forward and backward
Runge-Kutta forth-order scheme. Results from the numerical
simulations show that FIs and RTIs should be used within
the four months and later the doctors should change the
drugs and introduce another type, whereas the PIs can be
used for a longer period of time without necessarily leading
to major side effect. However, the inferiority of monotherapy
compared with combination of therapies has been observed
in the simulated result, especially in suppression of viral
replication, CD4+ and CD8+ T-cells reconstitution, and
controlling disease progression.

ARTs have been seen to play a significant role as far
as viral suppression is concerned. Therefore, they should
be recommended for all patients immediately after one is
diagnosed asHIV-positive regardless of the CD4+ count.This
supports the guidelines by WHO. However, the simulated
results suggest that PI is possibly the best single drug and
fusion inhibitor is the worst drug in terms of viral load and
infected cells reduction. From the results, we recommend
that RTIs be used as initial therapy for HIV. FI should be
introduced to the patient after the RTIs but should never be
used alone.

In the future, it is important to develop the model in such
a way that it brings out the relationship between the number
of the CD8+ T-cells and the CD4+ T-cells produced in the
thymus.
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