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Abstract

The serine/threonine endoplasmic reticulum (ER) kinase, protein kinase R (PKR)-like 

endoplasmic reticulum kinase (PERK), is a pro-adaptive protein kinase whose activity is regulated 

indirectly by protein misfolding within the ER. Since the oxidative folding environment in the ER 

is sensitive to a variety of cellular stresses, many of which occur during neoplastic transformation 

and in the tumor microenvironment, there has been considerable interest in defining whether 

PERK positively contributes to tumor progression and whether it represents a significant 

therapeutic target. Herein, we review the current knowledge of PERK-dependent signaling 

pathways, the contribution of downstream substrates including recently characterized new PERK 

substrates transcription factors FOXO (Forkhead box O protein) and diacyglycerol (DAG) a lipid 

signaling second messenger, and efforts to develop small molecule PERK inhibitors.
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Introduction

Proteins destined for secretion often require significant post-translational modifications 

necessary for proper folding and function. Secretory proteins are co-translationally imported 

into the endoplasmic reticulum (ER), where they undergo maturation and folding. The ER 

provides a chaperone rich, oxidizing environment where protein glycosylation and disulfide 

bond formation can be achieved in an orderly fashion prior to secretion. ER homeostasis 

depends upon balanced protein import and folding which is in turn dependent upon ER 

resident chaperones, ATP, and maintenance of the oxidative nature of the ER. Perturbation of 

this environment results in reduced protein folding and an accumulation of misfolded 
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proteins within the ER. This accumulation of mis- or unfolded proteins provides a 

significant barrier in the secretory apparatus and is detrimental to cell and organismal 

homeostasis. As such, an evolutionarily conserved cell checkpoint mechanism termed the 

Unfolded Protein Response (UPR) functions to sense and facilitate adaption or cell 

execution in response to unfolded proteins. The mammalian UPR is composed of three main 

effectors of protein misfolding: PERK, Ire1α/β, and ATF6α/β. These three signal transducers 

collectively determine cellular fate in response to the accumulation of unfolded proteins.
1–4

Ire1 (α, ubiquitously expressed; β tissue restricted) is composed of a luminal domain that 

senses stress, a single transmembrane domain, and a cytosolic tail that contains both a 

protein kinase domain and an RNase domain.
5,6 Ire1 regulates expression of numerous ER 

chaperones through activation of the X-box binding protein 1 (Xbp1) transcription factor.
7 

Activation of Xbp1 is mediated by the RNase function of Ire1, which triggers a splicing 

event that generates a shorter Xbp1 mRNA that is more efficiently translated.
8,9 Activated 

IRE1 excises a 26-nucleotide intron from XBP1u mRNA (ubiquitously expressed, unspliced 

form, which encodes 267 amino acids, 33 kDa) and induces a frame shift resulting in a new 

translation product, XBP1s (spliced form of XBP1 mRNA encoding 371 amino acids, 54 

kDa). XBP1s translocates to the nucleus and serves as a potent transcriptional activator. 

Xbp1s consist of the original amino-terminal DNA binding domain and a C-terminal 

transactivation domain. IRE1 through its RNA activity also regulates IRE1-dependent decay 

of mRNA (RIDD). This serves to reduce the load of proteins in the ER lumen, thus 

maintaining ER homeostasis. During chronic ER stress, RIDD triggers apoptosis by 

increasing caspase 2 translation following the cleavage of micro-RNAs such as miR-17, 34q, 

96 and 125b.
10

 Xbp1 is also a transcriptional target of ATF6, an ER bound transcription 

factor induced by ER stress.
9
 While normally tethered to the ER, upon stress, ATF6 migrates 

to the trans-Golgi, where it is processed by S1P and S2P proteases to release the N-terminal 

DNA-binding transcription factor domain.
11–13

PERK (protein kinase R (PKR)-like endoplasmic reticulum kinase) or EIF2AK3 (eukaryotic 

translation initiation factor 2-alpha kinase 3), analogous with Ire1, is a serine/threonine 

transmembrane endoplasmic reticulum (ER) kinase. Established PERK substrates include 

the translation initiation factor eIF2α
14,15

 and the transcription factor Nrf2.
16

 Recent studies 

have identified new PERK substrates that include protein substrates such as FOXO
17

 and a 

lipid signaling second messenger diacyglycerol (DAG).
18

 PERK, Ire1 and ATF6 serve as a 

UPR control system in the ER to monitor cell homeostasis. Following stress, the UPR 

restores homeostasis via mechanisms that reduce ER protein load (eg. via RIDD, or eIF2α-

mediated inhibition of translation), by increasing protein folding capacity (eg. transcriptional 

regulation of chaperones) and by activation of degradation pathways to remove unfolded 

proteins (ERAD, autophagy).

While the UPR can be triggered experimentally by agents that reduce the folding capacity of 

the ER, (eg. tunicamycin which inhibits glycosylation of asparagine residues; thapsigargin, 

inhibits SERCA sarco-/endoplasmic reticulum Ca2+-ATPase, and thereby depletes ER 

calcium), the UPR is activated by physiologically relevant stresses such as glucose or 

oxygen restriction,
19–24

 viral infection,
25–27

 proteotoxicity
28,29

 and alterations in membrane 

lipid composition
30–34

 (Figure 1). Since such stresses are prevalent in human diseases such 
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as cancer, obesity and neurodegenerative disorders
35–39

 and UPR signal transducers regulate 

cell fate in response to such stress, significant efforts have been made to develop small 

molecule inhibitors that might be useful in a clinical setting. While PERK was initially 

considered to harbor the strongest pro-survival function, it is now clear that all three 

transducers contribute to cell fate following stress. Thus far, highly selective small molecule 

inhibitors have been identified for both PERK
40–43

 and Ire1.
44–47

 The focus of this review 

will be on PERK and our current understanding of its contribution to cell homeostasis.

UPR, PERK and checkpoint function

Activation of the UPR is characterized in part by increased transcription of genes encoding 

ER molecular chaperones including BiP/GRP78 and GRP94, protein disulfide isomerase 

(PDI), and CHOP (C/EBP homologous protein), a transcription factor also known as growth 

arrest and DNA damage gene-153 (GADD153).
48–52

 Induction of ER chaperones function 

to correct protein misfolding and restore assembly within the ER. This is in turn coordinated 

with a marked decrease in the rate of overall protein synthesis and arrest in the G1 phase of 

the cell cycle
53–55

 thereby limiting cell growth and expansion. Inhibition of protein synthesis 

lowers the overall rate of protein traffic into the ER. That this process is counterbalanced by 

increased synthesis of ER chaperones highlights the specificity of the UPR.
56

 ER stress-

induced growth arrest occurs as a result of reduced translation of the critical G1/S-specific 

cyclin-D1.
54

 This system provides a checkpoint that prevents cells from continuing cell 

division under conditions in which the proper folding and assembly of proteins is 

significantly compromised. The failure of the UPR to reestablish proper homeostatic balance 

results in cell death via apoptosis.
57,58

While all UPR components contribute to cell homeostasis, PERK directly contributes to 

checkpoint function and cell survival through its capacity to regulate cell division. In 

general, cell cycle progression requires the activity of regulatory cyclins and their catalytic 

partners, the cyclin-dependent kinases (CDKs). Progression through G1 phase specifically 

requires the activities of the D-type cyclins (D1, D2, D3) in association with either CDK4 or 

CDK6 followed by activation of the cyclin E- and A-dependent kinase CDK2, as cells are 

near the G1/S transition.
53,59

 Cell cycle arrest is achieved through degradation of unstable 

cyclin subunits, by specific post-translational modifications of the CDK subunits, or via 

association of active cyclin-bound CDKs with polypeptide CDK inhibitors (CKIs).
60,61

 The 

Cip/Kip family of CKIs (including p21Cip1, p27Kip1, and p57Kip2) act as potent inhibitors of 

cyclin E-CDK2 and cyclin A-CDK2, they are positive regulators of cyclin D-CDK assembly 

and remain stably bound to catalytically active cyclin D-CDK complexes.
53,62,63

 In 

proliferating fibroblasts, most of the p21Cip1 and p27Kip1 molecules are found as 

components of active cyclin D-dependent holoenzymes.
53,62,64

 For example, withdrawal of 

growth factors inhibits cyclin D synthesis/translation, accelerates cyclin D turnover, and 

leads to the rapid disassembly of cyclin D-dependent kinases, thereby mobilizing 

sequestered Cip/Kip proteins from the latent pool and allowing the formation of inhibitory 

complexes of Cip/Kip with cyclin E- and A-CDK2.
65

 Coordinated inhibition of these cyclin-

dependent kinases prevents entry into S phase, resulting in G1 phase arrest usually within a 

single cell cycle. PERK activation triggers an analogous response wherein activation of 

PERK results in the specific loss of cyclin D1 through inhibition of cyclin D1 protein 
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synthesis rather than any acceleration in protein degradation.
53

 This loss of cyclin D1 

triggers cell cycle arrest in normal cells; importantly in tumor cells deficient for 

retinoblastoma protein (Rb), cyclin D1 is no longer required for proliferation and these cells 

are refractory to cell cycle regulation by the UPR that no longer require cyclin D1 for 

proliferation due to loss of its key downstream substrate. 
53,54,65

 As discussed subsequently, 

PERK-dependent regulation of protein translation by direct phosphorylation of protein 

translation machinery is essential for this cellular response.

PERK substrates

eIF2α and regulation of translation initiation

Under homeostatic conditions, PERK exists as an inactive monomer associated with BiP 

(binding immunoglobulin protein) also known as GRP-78 (glucose-regulated protein). 

Following exposure of cells to ER stress, BiP is released from PERK, thereby permitting 

PERK oligomerization and activation.

The best characterized PERK substrate is eIF2α
14,15

 (Figure 2). EIF2, or translation 

initiation factor 2, is a heterotrimer composed of alpha, beta, and gamma (GTP-binding) 

subunits that regulate and coordinate the recruitment of the initial methionyl tRNA in a 

GTP-dependent manner. EIF2α, or the alpha subunit of the eIF2 complex, mediates the 

binding of the methionyl tRNA to the ribosome. PERK-dependent phosphorylation of eIF2α 

on serine 51 increases the affinity of eIF2α for the eIF2B guanine nucleotide exchange 

factor, thereby inhibiting exchange of GDP for GTP and ultimately reducing translation 

initiation. PERK is one of at least 4 distinct eIF2α protein kinases which include the heme-

regulated kinase (HRI) also known as EIF2AK1 kinase, the interferon-inducible, RNA-

dependent protein kinase (PKR) known as EIF2AK2 kinase and GCN2 known as 

EIF2AK4.
14

EIF2α phosphorylation inhibits translation of many cellular mRNAs (global translation 

inhibition); those with short half-lives, such cyclin D1, are rapidly depleted from the cell. 

Strikingly, eIF2α can also increase translational efficiency of select transcripts. Such 

examples include Activating Transcription Factor 4 (ATF4) and cellular inhibitor of 

apoptosis 1 and 2 (CIAP1/2).
66

 The noted increase in translation efficiency reflects the 

presence of a short uORF (upstream open reading frame) located in 5′ untranslated region 

(UTR).
67–69

 ATF4 translation is increased in response to variety of stresses including 

hypoxia, nutritional deprivation (amino acid limitation and glucose deprivation) and viral 

infection.
19,27,50,70

 ATF4 belongs to the cAMP-responsive element-binding protein (CREB) 

family of basic zipper-containing proteins. ATF4 regulates downstream expression of the 

proapoptotic protein, CHOP, during chronic stress to trigger apoptosis and cell death. Also, 

ATF4 and/or CHOP can regulate autophagy, a major cytoprotective mechanism, by 

transcriptional activation of the autophagy gens (p62, Nbr1, Atg3, Atg5, Atg7, Atg10, 
Atg12, Atg16l1, Becn1, Map1lc3b, Gabarap, Gabarapl2. These genes are involved in the 

formation, elongation and function of the autophagosome.
71

 Induction of autophagy 

resembles another potent pro-survival pathway from which tumor cells can benefit (e.g. 

Myc-dependent activation of PERK/eIF2α/ATF4 pathways promotes transformation and 
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tumor growth and inhibition of PERK reduces Myc-induced autophagy and tumor 

formation).
72

Nrf2 and redox homeostasis

UPR induction is associated with the generation of reactive oxygen species (ROS). The 

accumulation of ROS to high levels can trigger severe cell/tissue damage. Reactive oxygen 

can oxidize DNA, lipids, and proteins.
73–75

 To alleviate ROS induced stress, cells rely on 

signaling pathways that rapidly quench ROS and thereby limit damage. One such pathway is 

mediated by the Nrf2 (Nuclear factor erythroid-derived 2) transcription factor. Nrf2, a 

master regulator of redox homeostasis, is constitutively expressed, but its activity is 

regulated via association with a scaffolding protein, Keap1, that retains Nrf2 in the 

cytoplasm. Keap1 (Kelch-like ECH-associated protein 1) functions as an E3 ligase adaptor 

molecule that sequesters Nrf2 in the cytoplasm and targets it for ubiquitin-dependent 

degradation.
76–79

 Knockdown or knockout of Keap1 is associated with constitutively active 

Nrf2. While increased Nrf2 function indeed reduces ROS levels and has been considered as 

a chemoprevention strategy,
80–82

 constitutive Nrf2 activity is also associated with fibrosis 

and Nrf2 activating mutations have been identified in a variety of human cancers.
77,83,84

Given the ROS burst associated with ER stress, UPR signaling must have a mechanism to 

alleviate ROS and prevent significant damage. Indeed, PERK can regulate cellular redox 

homeostasis through activation of Nrf2.
16

 PERK phosphorylates Nrf2 on threonine 80 

located within the Neh2 domain of Nrf2.
85

 Dissociation from Keap1 results in decreased 

Nrf2 degradation and subsequent increased Nrf2 nuclear import. Nuclear Nrf2 mediates 

expression of anti-oxidant enzymes through the ARE or anti-oxidant response element.
86–89 

Nrf2 target genes include NAD(P)H:quinone oxidoreductase 1 (NQO1), heme-oxygenase 1 

(HO-1), glutathione S-transferase (GST) and glutamylcysteine synthetase ligase 

(GCLC),
86,88,90–92

 rendering Nrf2−/− mice susceptible to oxidative stress.
87,93–95 

Heterodimeric Nrf2 partners include small Maf proteins
88,90,96–98

 and ATF4, whose 

accumulation is under PERK-dependent translational control.
67,99

 Recent studies show that 

Nrf2 can be pre-activated in malignant carcinomas (which are typically de-differentiated 

cells and multidrug resistant (MDR)), via noncanonical PERK-dependent pathway (not 

activated by oxidation). Constitutive PERK-Nrf2 signaling, reduces ROS levels, increases 

drug efflux and protects de-differentiated cells from chemotherapy. Treatment with PERK 

inhibitors, sensitizes MDR cells to chemotherapy.
100

Forkhead/FOXO transcription factors

The Forkhead or FOXO transcription factor family regulates a diverse set of genes that 

contribute to organismal homeostasis.
101,102

 Invertebrates such as Drosophila express a 

single member, FOXO; in contrast, mammalian cells encode four family members; FOXO1, 

FOXO3, FOXO4 and FOXO6. Among the noted functions of FOXO family proteins is their 

regulation by Akt and their contribution to metabolic homeostasis. The FOXO transcription 

factor is typically regulated by Akt-dependent phosphorylation; phosphorylation generates 

14-3-3 docking sites within FOXO. Engagement by 14-3-3 sequesters FOXO in the 

cytoplasm under conditions of high Akt activity.
17

 PERK was identified in an RNAi screen 

for modifiers of reduced FOXO activity in Drosphila.
17

 Additional work demonstrated that 
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PERK phosphorylates FOXO3 at serines 261, 298, 301, 303 and 311 and increase FOXO 

activity.
17

 In addition to the identification of unique eIF2α-independent PERK effectors, this 

finding has direct implications for the role of PERK and the UPR in the regulation of insulin 

tolerance. Previous work demonstrated that PERK promotes Akt activation,
18,66,103

 which in 

turn reduces FOXO function. The ability of PERK to directly regulate FOXO and potentially 

override negative regulation by Akt supports a model wherein the UPR and ER stress have 

the capacity to finely tune signal output downstream of Akt. If the model is correct, it has 

broad implications for the contribution of PERK to metabolic homeostasis and tumor 

progression, two systems wherein Akt has vast contributions. FOXO function can be 

regulated by multiple signaling such as Akt and SGK (many of these pathways are 

dysgerulated in variety of cancers) therefore FOXO may play role in controlling 

proliferation and apoptosis of tumor cells.
104–107

Phosphatidic Acid and lipid biogenesis

Given the focus on the protein kinase activity of PERK and signals resulting from eIF2α 

phosphorylation, recent reports describing the ability of PERK to utilize certain lipids as a 

substrate provide a unique twist on PERK function. Investigation of the mechanism whereby 

PERK can regulate Akt
66,103

 activity resulted in the identification of diacyglycerol (DAG) as 

a direct PERK substrate. DAG is an important signaling second messenger in cells, 

contributing to the activity of PKC isoforms among other functions.
108–111

 In addition to its 

function as a second messenger, DAG is a precursor for phosphatidic acid (PA), which 

exhibits mitogenic properties contributing to the activation of Ras downstream of receptor 

tyrosine kinase engagement
112,113

 and thereby contributing to MAPK signaling.
18,114

 PA 

also triggers mTOR activation through direct binding and activation of Akt
18,115–117

 (Figure 

3). PERK directly phosphorylates multiple DAG species
18

 and its kinase activity is induced 

by direct binding to p85; the regulatory subunit of a better known lipid kinase, 

phosphatidylinositol-3 kinase (PI3K). In cells, ER stress-dependent generation of PA is 

PERK-dependent and PA was found to be essential for Akt activation and maintenance of 

MAPK activity following exposure of cells to ER stress (Figure 2). It is interesting to 

consider why PERK signaling would coordinate cell cycle arrest while maintaining 

mitogenic signaling. At first glance, this might seem paradoxical. However, by maintaining 

MAPK and Akt signaling, PERK can both potentiate cell survival during moderate stress 

and provide a mechanism for recovery if cells do not commit to an apoptotic fate. 

Alternatively, the ability of PERK to regulate Akt and or MAPK signaling may contribute to 

cellular processes that do not reflect the acute stress associated with exposure to agents such 

as tunicamycin. Consistent with this notion, the DAG kinase activity of PERK plays an 

important role in adipocyte differentiation.

While PERK-dependent PA generation plays an important role in signal transduction, PERK 

has a broader impact on lipid biosynthesis and membrane remodeling. PERK signaling 

through eIF2α also contributes to lipogenic enzyme expression regulation. PERK activation 

in the developing mouse mammary gland contributes to expression of lipid biosynthetic 

enzymes such as: fatty acid synthase (FAS), ATP citrate lyase (ACL), and stearyl-CoA 

desaturase-1 (SCD1). The ability of PERK to induce expression of these genes reflects the 

translational regulation of Insig1, an inhibitor of sterol regulatory element binding protein 
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(SREBP) activity;
118

 master regulators of fatty acid and cholesterol biosynthesis.
119,120

 ER 

stress is associated with the generation of sphingolipids and ceramides
121

 through unknown 

mechanisms. Finally, PERK activity is also sensitive to membrane fluidity, which is a feature 

of membrane lipid composition.
4,122

 Ultimately, PERK-dependent regulation of lipid 

biosynthesis not only provides second messengers important for cell fate, but also provides 

metabolic intermediates necessary for processes such as cell division, autophagy, and 

secretion, all of which depend upon lipid biosynthesis. Recent studies indicate that NEU3 

(plasma membrane-associated sialidase) can interact with PA and play important role in 

regulation of transmembrane signaling, and promote malignancy in various cancers.
123

PERK signaling and micro-RNAs

The contribution of small noncoding RNAs (microRNAs or miRNAs) to gene expression 

and protein synthesis has gained considerable traction. Given the decrease in protein 

synthesis and wide ranging alterations in gene expression patterns observed following 

engagement of the UPR, the absence of research addressing contributions of miRNAs to cell 

homeostasis is surprising. During the past several years, several groups have addressed this 

understudied topic and not surprisingly have found that miRNAs are differentially regulated 

by the UPR. More specifically, two distinct miRNA families have been noted to respond to 

PERK. The first, the miR-106b-25 cluster is repressed upon PERK signaling.
124 

MiR-106b-25 is dependent upon PERK- activation of Nrf2 and Atf4. Repression of 

miR-106b-25 permits accumulation of Bim and apoptosis in chronically stressed cells.

The second miRNAs to respond to PERK are miR-211 and miR-204.
125

 MiR-211 is 

embedded within an intron of trpm1 while miR-204 is located within intronic sequences of 

trpm3.
125

 Expression of both is coordinated with host gene expression and dependent upon 

PERK signaling through eIF2α and ATF4. The critical miR-211 target with respect to ER 

stress is chop/gadd153 a key pro-apoptotic transcription factor. An important aspect of 

miR-211/204 expression following PERK activation is the transient nature of miRNA 

accumulation, with maximal accumulation occurring at 5h post stress and a return to basal 

levels by 8h. This suggests an important role for temporal miR-211/204 function. The 

identification of chop/gadd153 as the relevant miR-211/204 target emphasizes the 

importance of temporal regulation of miR-211/204, as their rapid induction antagonizes 

premature chop/gadd153 expression. In turn, their loss under conditions of chronic stress 

permits chop/gadd153 accumulation and commitment to cell death in severely damaged 

cells.

MiR-30c-2-3p is yet another miR that is regulated by PERK signaling. PERK-dependent 

regulation of miR-30c-2-3p is downstream of NF-κB signaling. NF-κB activation reflects 

loss of IκB, an inhibitor of NF-κB, and IκB loss is a direct consequence of PERK-dependent 

inhibition of IκB translation.
126,127

 The relevant miR-30c-2-3p target is XbpI.
128

 Thus, 

PERK-dependent induction of this micro-RNA serves to limit the transcriptional activity of 

Xbp1 and thus serves as one point of cross-talk between PERK and Ire1 signaling pathways.

Ire1 signaling has also been linked with micro-RNA accumulation. Unlike PERK where 

regulation depends upon induction of downstream transcriptional effectors, Ire1 engages 
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micro-RNAs through its inherent RNase function.
10,129

 Among the key targets of miR-17, 

miR-34a, miR-96, and miR-125b is caspase 2.
10,130

 UPR engagement triggers Ire1-

dependent cleavage of precursors of miR-17, miR-34a, miR-96 and miR-125b thereby 

reducing cellular levels of these pro-survival micro-RNAs.
10

 Ire1-dependent cleavage occurs 

at sites distinct from dicer within the precursor molecules and is speculated to reduce the 

ability of dicer to process a mature micro-RNA.
10,131

 The ability of Ire1 to reduce pro-

survival micro-RNAs during ER stress will ultimately help establish the point of no return 

for cell death.

Given the capacity of both PERK and Ire1 to engage micro-RNA-dependent pathways as a 

means to establish cell fate following exposure of cells to ER stress, one wonders whether 

the UPR might also regulate the proteome through long noncoding RNAs (lncRNA). As yet, 

there is no evidence for differential regulation of lncRNAs during the UPR. However, given 

our increasing appreciation for the contribution of lncRNAs to gene expression, it seems 

likely that they will also contribute to cell fate in cells experiencing ER stress.

Cancer biology and PERK signaling

PERK function has been linked with cell survival since its identification.
14,99 

Pathophysiologically, tumor progression is closely associated with intrinsic cell and 

microenvironmental stresses that trigger UPR activation. These include limitation of glucose 

and oxygen that occur as a result of dysregulated angiogenesis, increased lipid metabolism 

and improper folding of proteins.
21,23,132,133

 Tumor development is also associated with 

increased levels of reactive oxygen species (ROS) that contribute to cellular DNA damage. 

From these considerations blossomed the notion that UPR inhibition and more specifically 

PERK inhibition might elicit anti-tumorigenic effects.

Initial efforts to address the contribution of PERK to tumorigenesis focused on genetic 

ablation of PERK or expression of dominant negative PERK alleles. In early transformation 

assays, PERK null fibroblasts were shown to be sensitive to transformation by oncogenes 

such as K-Ras.
134

 However, upon transplantation of transformed PERK−/− fibroblasts into 

immune compromised mice, a significant inhibition of tumor growth was noted.
19,134

 The 

reduced growth was attributed to compromised angiogenesis and the sensitivity of PERK 

deficient cells to the ensuing hypoxic environment. Analogous findings were noted in 

genetically engineered mice. Intercrossing MMTV-Neu mice with PERK−/− mice revealed 

no delay in tumor development, but a significant defect in tumor progression and a dramatic 

reduction in metastatic spread.
85

 In contrast to previous work, no alterations were noted in 

tumor vascularity when comparing PERK+/+ and −/− mice. The reduction in tumor 

progression was attributed to extensive DNA damage, triggered by increased ROS 

accumulation. In addition, the pro-survival PERK regulated micro-RNA, miR-211/204, was 

also reduced in PERK deficient tumors supporting the pro-survival function of this 

microRNA.
125,129

 While further work is necessary to ascertain the precise contribution of 

reduced miR-211/204 expression which altered tumor progression, miR-211 expression 

correlated with gadd153/chop expression in both murine tumors and human lymphomas 

suggesting it functions to potentiate cell survival both in vitro and in vivo.
125
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The initial focus on the pro-tumorigenic properties of PERK suggested a large therapeutic 

window, with regard normal tissue toxicity. In contrast, conventional PERK knockout mice 

exhibit significant developmental defects, generally associated with disruption of secretory 

tissues as might be expected.
135–137

 Perinatal death associated with embryonic PERK 

deletion reflected pancreatic failure and a significant disruption of glucose homeostasis. 

These observations were initially thought to reflect a restricted PERK contribution to 

developing tissue, as mice where in PERK excision was delayed until late embryogenesis 

were essentially normal.
135–137

 Based upon this later work, it was assumed that PERK 

function was non-essential in the adult organism. More recently, however, generation of 

mice wherein PERK can be conditionally deleted with a tamoxifen inducible CRE enzyme 

definitively demonstrated that PERK excision resulted in destruction of pancreatic tissue, 

both exocrine and endocrine, independent of age.
138

 The importance of PERK function for 

pancreatic homeostasis represents a significant barrier for the implementation of anti-PERK 

therapeutic strategies.

Recent work has implicated PERK activity in chronic myeloid leukemia (CML). Imatinib 

mesylate (STI571), a specific inhibitor of the BCR/ABL, is remarkably effective during 

initial phases of the disease, but following blast crisis, leukemia cells acquire marked 

resistance.
139

 Increased PERK activation and upregulation of eIF2α pathway have been 

observed in BCR/ABL positive leukemia cell lines that are resistant to Imatinib, and it has 

been suggested that PERK inhibition might sensitize CML cells to treatment.

Although much of the published work has focused on tumor intrinsic functions of PERK, 

there is also evidence for microenvironmental impacts of PERK signaling with regard to 

tumor progression. For example, UPR and PERK activation is associated with the 

production of pro-inflammatory cytokines.
140–145

 Conditioned media from tumor cells can 

induce a UPR like signature in stromal fibroblasts, including TLR4-dependent increased 

expression of grp78, grp94, gadd153/chop and spliced xbp1.
146–149

 In addition, ER stress 

and PERK have been implicated in dampening the effects of type 1 interferon.
150

 IFN has 

robust anti-tumor activity in vitro, but limited impact clinically.
150–153

 While as yet untested, 

it is tempting to speculate that PERK activation may limit IFN activity through direct 

regulation of the interferon receptor and thus regulates IFN signaling.
150,154,155

PERK and Neurodegenerative disorders

While the potential contribution of PERK to tumorigenesis has garnered considerable 

attention, PERK is also strongly implicated in the development and progression of 

neurodegenerative diseases. PERK activation and phosphorylation is observed in 

Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 

and prion disease (PD).
38,156–162

 Beta-amyloid plaques (AB) and neurofibrillary tangles 

(NFT) are prevalent and defining features of Alzheimer disease. The AB plaques are one of 

several aggregates of misfolded proteins that are observed in affected regions of AD brain. 

The aggregation of these proteins has been considered a potential protective mechanism that 

prevents toxicity induced by smaller molecular weight monomers or multimers. Consistent 

with UPR engagement, increased phosphorylation of eIF2α is observed in the hippocampus 

of AD patients.
39

 In a guinea pig model of AD, UPR activation can induce amyloid 
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precursor protein (APP, the peptide from which AB fragments are derived) expression in the 

central nervous system (CNS).
163

 Proteolytic processing of APP, including the cleavages 

that produce AB, largely occurs in the ER and localization is coincident with PERK activity. 

Based on these findings, we hypothesize that chronic PERK activation in AD neurons leads 

to excessive accumulation of APP and subsequently AB, thereby contributing to disease 

progression. Clearly, treatment of this multifaceted disease will require more than a single 

therapy as well as early diagnosis; however, inhibiting PERK activity is a strong candidate 

for an intervention that will synergize with other approaches to protect against neuronal and 

synaptic loss by reducing AB load.

First generation small molecule PERK inhibitors and Concluding Remarks

The recent generation of PERK-specific small molecule inhibitors provides an opportunity 

to determine how well genetic models that attempt to identify “drugable” targets, such as 

PERK, predict the clinical behavior of small molecules.
40–43,164

 The compound 

GSK2606414 was the first reported small molecular inhibitor of PERK. GSK2606414 is an 

ATP competitive inhibitor highly specific to PERK (more than 300-fold selectivity for 

PERK versus other kinases was reported) and has shown very low nanomolar range activity 

in cell cultures (IC50 around 30nM can prevent PERK phosphorylation).
41

 In addition, a TR-

FRET based high-throughput-screening assay (HTS) was used to screen 79,552 compounds 

and 2 ATP non-competitive lead compounds exhibiting PERK specificity were identified. 

Both compounds worked at low micro molar range in both in vitro experiments and cell 

cultures.
43

Based on GSK2606414, a second compound, GSK2656157, was developed for preclinical 

studies.
40,42

 GSK2656157 exhibited promising results in multiple human tumor xenograft 

models. Consistent with murine genetically engineered mouse models of PERK 

deficiency,
135,138

 mice receiving GSK2656157 exhibited significant pancreatic toxicity.
40

 It 

may yet be possible to optimize drug dosage or combine with other therapies and thereby 

limit toxic side effects. Combining PERK inhibitors with current standards of care may 

provide an avenue to reduce doses and limit potential toxicities associated with either 

therapy. One possible combination could include combining PERK inhibitors with 

proteasome inhibitors like Velcade, a current therapy commonly used for treating patients 

with Multiple Myeloma. Multiple Myeloma affects antibody secreting immune cells. The 

highly secretory nature of these target cells likely endows this cancer with its sensitivity to a 

proteasome inhibitor, which is known to trigger ER stress.
165

 The use of a PERK inhibitor in 

this context could sensitize Multiple Myeloma cells to Velcade thereby reducing the dose of 

Velcade necessary for effective Multiple Myeloma eradication and thus reduce the toxicity 

of Velcade. A more complete and detailed understanding of PERK downstream signaling is 

essential for developing such approaches.

As with many molecularly defined targets, the potential efficacy of PERK-based therapy 

remains unsettled. Genetic approaches have defined both the potential efficacy of such an 

approach and side toxicities. The advantage of small molecule therapies is their reversibility 

and the potential to control dose. Both of these issues will need further delineation to subvert 

potential toxicities and maximize anti-tumor effects.
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Figure 1. 
PERK activation caused by a variety of cellular stresses. PERK can be activated by 

physiologically relevant stresses such as glucose deprivation, oxygen restriction (hypoxia), 

viral infection, proteotoxicity (increased load of misfolded/unfolded proteins in ER) and 

increased lipid biosynthesis.
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Figure 2. 
Direct PERK substrates. Activated PERK, in response to ER stress, phophorylates 

downstream substrates such as: translation initiation factor 2α (eIF2α), transcription factors 

FOXO (Forkhead box O protein), nuclear factor erythroid-derived 2 transcription factor 

(Nrf2) and a lipid signaling second messenger diacyglycerol (DAG) and regulates cell 

homeostasis.
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Figure 3. 
PERK lipid kinase activity and regulation of downstream effectors. PERK possesses lipid 

kinase activity toward its substrate diacyglycerol (DAG), forming phosphatidic acid (PA) 

and activating AKT, mTOR and MAP kinase pathways.
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