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Abstract

pathway.

Background: Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone
morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the
XIAP-Tak1-Tab1 complex. Its effect on NF-xB has yet to be explored.

Results: Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation
of IKK -a/f and subsequent transcriptional activation of the p65 subunit of NF-xB. Ablation of endogenous NRAGE
by siRNA inhibited NF-xB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited
overexpression of NRAGE from activating NF-xB. Finally, cytokine profiling of an NRAGE over-expressing stable line
revealed the expression of macrophage migration inhibitory factor.

Conclusion: Modulation of NRAGE expression revealed novel roles in regulating NF-xB activity in the non-
canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor
by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental

Background
The bone morphogenic proteins (BMPs) are a subset of
the transforming growth factor B (TGF-B) superfamily
and function through the dimerization of the BMPR-1a
and BMPR-2a serine threonine kinase receptors. The
canonical BMP pathway regulates gene expression via
SMADI, 4, 5, and 8 [1] while the non-canonical BMP
pathway regulates NF-xB via the XIAP-Takl-Tabl com-
plex [2,3]. Both pathways help direct proper prolifera-
tion and differentiation, embryogenesis and adulthood.
The NF-xB pathway is activated at sites of injury and
controls the expression of inflammatory and immune
regulating cytokines and chemokines as well as regulat-
ing apoptosis and cell cycle. The NF-xB pathway con-
sists of several transcription factors which are bound as
homodimers or heterodimers; p65 (RelA), p50 (NF-kB1),
p52 (NF-kB2), RelB, and c-Rel [4,5]. These transcription
factors reside in an inactive state in the cytoplasm
bound to the IxB family of proteins. Activation with
various stimuli including but not limited to LPS, flagel-
lin, Lipid A, ssRNA, dsRNA and cytokines causes them
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to be translocated to the nucleus [4,5]. The canonical
NF-xB pathway requires IKKaBy phosphorylation and
subsequent degradation of IkBa. Previous research has
linked the canonical NF-xB pathway to the non-canoni-
cal BMP pathway via the formation of the XIAP-Tabl-
Takl complex [2,3,6-8].

Adapter proteins play a pivotal role in the regulation
and function of signal transduction pathways. Activation
of NF-xB pathways through the stimulation of toll-like
receptors (TLRs) or interleukin pathways require
MyD88, IRAK proteins, and TRAF proteins to propagate
the signal from the extracellular matrix to the Takl-
Tabl complex which is responsible for the phosphoryla-
tion of IKK-a./B. The non-canonical BMP pathway also
uses the Takl-Tabl complex to drive phosphorylation
of IKK-a/B, but uses the ring finger protein XIAP
instead of TRAF6 [2,3,6-8]. The similarity of these two
pathways suggested that an additional adapter protein
could be present linking XIAP-Takl-Tabl to the
BMPR1a receptor.

A member of the melanoma antigen family, the neu-
rotrophin receptor-interacting MAGE protein (NRAGE)
is ubiquitously expressed in tissue and contains a unique
WQXPXX hexapeptide repeat domain, suggesting that
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NRAGE has a unique function which differs from the
other MAGE family of proteins. Previous studies linked
NRAGE to XIAP using a yeast two hybrid screen [9]
while we have previously identified NRAGE as a critical
component in the activation of p38 and subsequent
downstream proapoptotic signals via the non-canonical
BMP pathway [10,11]. Using a similar approach to Ken-
dall et al. in which the expression of NRAGE was
modulated through a series of loss of function and gain
of function experiments, we have found that NRAGE is
also a required component in driving NF-xB activation
through the BMPR1a-XIAP-Takl-Tabl complex in
293HEK cells.

Results

NRAGE is required for NF-xB activation in the non-
canonical BMP-4

Previous reports linked NRAGE to the XIAP-Tab1-Takl
complex and phosphorylation of p38 [10,11]. We
wanted to determine if NRAGE was also required for
the activation of NF-xB through the non-canonical
BMP pathway. Overexpression of full length NRAGE in
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293HEK cells resulted in the constitutive phosphoryla-
tion of IKK-a and IKK-f (Figure 1A) while disruption
of NRAGE expression through siRNA resulted in the
inhibition of IKK-a./B phosphorylation (Figure 1A).
When compared to cells transfected with control
siRNA, the NRAGE siRNA transfected cells showed an
ablation in transcriptional activation of the p65 subunit
of NF-xB after treatment with BMP-4 (Figure 1B). Sti-
mulation with BMP-4 or transfection with NRAGE
resulted in translocation of p65 to the nucleus as veri-
fied by immunofluorescence (Figure 1C). Transfection
of 293HEK cells with NRAGE siRNA prior to stimula-
tion with BMP-4 abrogated this effect as p65 was still
found sequestered in the cytoplasm (Figure 1C).

To ensure that the activity of NRAGE on the NF-xB
pathway was specific to the non-canonical BMP path-
way, the inhibitor IKK-VII was used to eliminate the
phosphorylation of IKK-a and IKK-B and IKK-y and
subsequent ubiquitination of IxBa. IKK-VII is a concen-
tration dependent specific ATP competitive inhibitor of
IKK proteins. Inhibition of the IKK proteins resulted in
a decrease in p65 transcriptional activity in the NRAGE
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Figure 1 Activation of the NF-xB pathway requires NRAGE in the BMP-4 pathway. A: A total of 293 cells were transfected with NRAGE:
EGFP, NRAGE siRNA or a control vector, stimulated with 10 ng/ml BMP-4 for 15, 30 and 60 minutes, and western blotted for NRAGE, phospho-
IKK a/B and total IKK a.. B: A total of 293 cells were transfected with NRAGE siRNA or a control siRNA, stimulated with 10 ng/nl BMP-4, and
activation assessed by luciferase assay. Luciferase assays were performed in triplicate and presented as fold increase over renilla. C:
Immunofluorescence of phospho-p65 in the NRAGEEGFP stable line. Magnification at 40x. * P < 0.05; siRNA control by the two-tailed unpaired
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transfected cells (Figure 2A). Stimulation of GFP trans-
fected with BMP-4 served as an internal control (Figure
2A).

Previous work has shown that a Takl or Tabl mor-
pholino is sufficient for ablation of p38 activity in cells
overexpressing NRAGE [10,11]. Similar to this, we
found that NF-xB transcriptional activation (Figure 2B)
and IKK-o/B phosphorylation (Figure 2C) were ablated
in 293HEK cells overexpressing NRAGE when treated
with Takl or Tabl morpholinos for 48 hours. Figure 2C
depicts endogenous phospho-IKK-a and phospho-IKK-3
after stimulation with BMP-4 and after incubation with
Takl or Tabl morpholinos for 48 hours.

Immunoprecipitation studies using rabbit anti GFP to
purify protein complexes involving NRAGE revealed
that phospho-IKK-a and phospho-IKK-f are bound
upon overexpression of NRAGE:GFP fusion protein
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(Figure 2D). Incubation of NRAGE:GFP transfected cells
with either Takl or Tabl morpholinos for 72 hours pre-
vented the formation of the phospho-IKK-a/B and
NRAGE complex (Figure 2D). The efficiency of Takl
and Tabl morpholinos are shown in Figure 2E.
Overexpression of NRAGE results in the expression of
macrophage migration inhibitory factor

Although a primary result of non-canonical BMP signal-
ing is apoptosis, we surmise that there is an anti-apopto-
tic component to this pathway since there is a niche of
neural stem cells in the adult brain despite BMP
induced apoptosis of neural stem cells during develop-
ment [12-14]. Analysis of 293HEK cells stably trans-
fected with either GFP or the adapter protein NRAGE:
GFP using the Human Cytokine Protein Array (R&D
Systems, Minneapolis, Minnesota, United States, Cat:
ARYO005), revealed that macrophage migration inhibitory
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Figure 2 Activation of NF-xB through NRAGE is specific to the non-canonical BMP pathway. A: 293 cells were transfected with full length
NRAGE:EGFP or stimulated with BMP-4 and incubated with or without IKK VII inhibitor, and NF-xB activation assessed by luciferase assay. B: 293
cells were transfected with full length NRAGE:EGFP or stimulated with BMP-4 and incubated with or without Tak1 or Tab1 morpholinos, and NF-
KB activation assessed by luciferase assay. C: Endogenous phosphorylation of IKK-a./ in 293 cells transfected with Tak1l or Tab1 morpholinos
prior to 10 ng/ml BMP-4 stimulation for one hour. D: 293 cells were transfected with full length NRAGE:EGFP, incubated with or without Tak1 or
Tab1 morpholinos immunoprecipitated with rabbit anti-GFP and western blotted for IKK a/B-phosphorylation and total IKK o.. E: Western blot of
Tak1 and Tab1 proteins in 293 cells with and without morpholinos. Luciferase assays were performed in triplicate and presented as fold increase
over renilla. * P < 0.05; vs NRAGE construct or BMP-4 treatment by the two-tailed unpaired Student’s t-test.
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factor (MIF) was highly expressed (square box Figure
3A). Analysis of the 293HEK EGFP stable line stimu-
lated with and without BMP-4 was used to determine
endogenous expression of MIF (Figure 3B, Lane 2 and
3). MIF expression of the 293HEK NRAGE:EGEFP stable
line is shown in lane 1 of Figure 3B. Ablation of MIF
expression occurred when Takl morpholino was added,
prior to BMP stimulation (Figure 3B, Lane 4 and 5) and
when NF-«B inhibitor was added prior to BMP-4 stimu-
lation (Figure 3B, Lane 6 and 7).

Overexpression of NRAGE in the mouse kidney

Next, we used mice overexpressing a NRAGE:Cherry
fusion protein in the kidney under the control of the
HoxB7 promoter, to determine if NF-xB would be con-
stitutively active in vivo. Histological analysis revealed
that there was constitutive phosphorylation of IKK-a/f
(Figure 4B) and translocation p65 to the nucleus (Figure
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4C, 4K-40) in the NRAGE:Cherry transgenic mouse.
There was no detected phosphorylation of either IKK-o./
B in the wild type kidneys (Figure 4G) or nuclear trans-
location of the p65 subunit of NF-xB (Figure 4H). His-
tological analysis of the kidney from the overexpressing
NRAGE:Cherry transgenic mouse revealed that there
was a dramatic increase in MIF expression detected by
Alexa Flour 488 (Figure 4D), as compared to the wild-
type kidney (Figure 4I). In vivo overexpression of
NRAGE does not result in the influx of inflammatory
cells (Figure 4E and 4J) as seen by hematoxylin and
eosin staining.

NRAGE induces NF-xB activation and MIF expression in
P19 cells

Experiments were conducted in P19 cells to demon-
strate that the results obtained using 293 cells are phy-
siologically relevant. Overexpression of full length
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Figure 3 BMP-4 induces the expression of MIF. A: Dot blot array for the secretion of cytokines and chemokines induced by NRAGE
overexpression in 293HEK cells. Squared area indicates duplicate MIF blotting. B: Qualification of macrophage migrating inhibitory factor
expression by western blot in 293HEK cells. MIF expression is induced after 24 hours stimulation with 10 ng/ml BMP-4 or NRAGE overexpression,
and is inhibited by Tak morpholino and NF-xB inhibitor.
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Figure 4 In vivo overexpression of NRAGE in the mouse kidney. A: Control staining of secondary antibodies in the NRAGE:Cherry transgenic
mouse. B: Merged picture of NRAGE:Cherry and IKKa./B-phosphorylation. C: Merged picture of NRAGE:Cherry and NF-xB activation. Note the
translocation of NF-kB to the nucleus denoted by teal colored nuclei. D: Merged picture of NRAGE:Cherry and MIF. E: Hematoxylin and Eosin
staining of NRAGE:Cherry transgenic kidney. F: Control staining for secondary antibodies in the wild type mouse. G: Staining of IKKo/B-
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NRAGE in P19 cells resulted in the constitutive phos-
phorylation of IKK-o./f while disruption of NRAGE
expression through siRNA resulted in the inhibition of
IKK-o/B phosphorylation (Figure 5A). Transfection of
P19 cells with NRAGE, renilla and a NF-xB-luciferase
reporter vector showed transcriptional activation of the
p65 subunit of NF-xB (Figure 5B). Ablation of NRAGE
expression with the NRAGE siRNA disrupted NF-xB
transcriptional activity (P-value of 0.027). IKK-a./B phos-
phorylation and luciferase expression were ablated when
NRAGE siRNA was transfected prior to BMP-4 stimula-
tion. As was seen in Figure 3B, BMP-4 stimulation or
NRAGE transfection resulted in an increase in MIF
expression (Figure 5C).

Discussion

Stimulation of cells with BMP-4 activates the canonical
and non-canonical BMP pathways. Signal transduction
through the canonical pathway utilizes SMAD proteins,
while the non-canonical pathway utilizes XIAP-Tabl-

Takl, ultimately using the kinase activity of Takl to
activate the p38, JNK, and NF-«xB pathway. Signal trans-
duction of NF-xB through the non-canonical BMP path-
way is similar to the toll-like receptor pathways and
interleukin-1 pathway which require the formation of
TRAF6-Tab1-Takl. Both TRAF6 and XIAP are ring fin-
ger proteins which dimerize and consist of three baculo-
virus IAP repeat domains required for proper
orientation of the Tab1-Takl complex. The difference is
that the TLR and IL-1 pathways also utilize several
adapter molecules linking the TRAF6-Tabl-Takl com-
plex to their membrane bound receptors such as, Tram,
Tirap, MyD88, and IRAK [4,5]. Because NRAGE has
already been identified as an adapter protein for p38 sig-
naling through the non-canonical BMP pathway, we
thought it feasible that NRAGE also plays a role in NF-
kB signaling.

Experiments in which cells were transfected with a full
length NRAGE expression vector illustrated that IKKof3
became phosphorylated (Figure 1A), induced luciferase
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Figure 5 NRAGE is required for NF-KB activation in P19 cells. A: P19 cells were transfected with NRAGE siRNA or a control siRNA stimulated
with 10 ng/ml BMP-4 for 24 hours, and western blotted for IKK a/B-phosphorylation and total IKK a.. B: P19 cells were transfected with NRAGE,
NRAGE siRNA or a control siRNA, stimulated with 10 ng/nl BMP-4 for 24 hours, and NF-KB transcriptional activity assessed by luciferase assay.
Luciferase assays were performed in triplicate and presented as fold increase over renilla. C: P19 cells were transfected with NRAGE or stimulated
with 10 ng/nl BMP-4 for 24 hours and western blotted for MIF expression. * P < 0.05; vs NRAGE construct or BMP-4 treatment by the two-tailed
unpaired Student's t- test.

expression (Figure 2A and 2B) and p65 translocated to
the nucleus (Figure 1C). Experiments in which the
expression of NRAGE, Tabl, or Takl were reduced,
either by siRNA or morpholino showed that all three
proteins were required for NF-xB pathway activation
(Figures 1A, B and 2B, C, D). It was also found that
despite overexpression of NRAGE, silencing of Tabl or
Takl inhibited NF-xB activation (Figure 2A), showing
that a reduction in downstream kinase protein concen-
tration is able to overcome an increase in upstream pro-
tein concentration. Immunoprecipitation of the activated
non-canonical BMP complex revealed that NRAGE and
phosphorylated IKKo/B but not IKKa are indirectly
bound through Tabl and Takl (Figure 2D).

Taken together, these observations support a manda-
tory role for NRAGE in NF-xB signalling through the
non-canonical BMP pathway.

Takl is the functional kinase in the non-canonical
BMP pathway as well as in interleukin, toll-like receptor
and TGF-B signaling pathways; responsible for the phos-
phorylation and activation of p38, NF-xB, and JNK, and
is found complexed together in the cytoplasm with
Tabl. Figure 2C shows that siRNA knockdown of Takl
but not Tabl results in complete inhibition of IKKa/f
phosphorylation. This observation is similar to experi-
ments by Shim et al., which show that NF-xB activation

in embryonic fibroblasts from Takl -/- mice but not
Tabl -/- and Tab2 -/- mice is perturbed. It is known
that Tab2 and Tab3 also associate with Takl and Tabl
to regulate the classical NF-xB pathway. Redundancy in
function or protein:protein interactions may compensate
for the loss or inactivation of one or more of the Tab
proteins.

It is interesting to note that NRAGE influences both
apoptosis and NF-xB signaling through two distinct
mechanisms in two different pathways. In the non-cano-
nical BMP pathway, NRAGE binds XIAP, sequestering it
to the cell membrane resulting in the activation of
MAPK and NF-xB. While in response to DNA damage,
NRAGE prevents the expression of XIAP via NF-xB by
sequestering Che-1 in the cytoplasm where it is targeted
for ubiquitination and degradation [15,16]. Does this
constitute an intrinsic link between NRAGE/XIAP/NEF-
xB and apoptosis? And if so will NRAGE be found to
regulate other NF-xB pathways such as the toll-like
receptors where XIAP is upregulated upon TLR-4 sti-
mulation [17]?

Protein array analysis of secreted cytokines from the
NRAGE:EGFP stable line revealed that macrophage
migration inhibitory factor (MIF) was highly expressed
(Figure 3A) and western blot of protein lysates con-
firmed MIF expression in the cytoplasm. Stimulation of
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the EGFP stable line with BMP-4 for 24 hours revealed
that MIF expression is specific to the BMP pathway,
while ablation of Takl detail that MIF is being induced
through the non-canonical BMP pathway (Figure 3B).
The MIF promoter contains two NF-xB binding sites,
located at positions -2538/-2528 bp and -1389/-1380 bp
[18], inhibition of IKK prior to BMP-4 stimulation pre-
vented the expression of MIF (Figure 3B).

Classical research into MIF has focused on its regula-
tory role of immune system [19]. Recent findings
though indicate that MIF can control the cell cycle
through interactions with JAB1 and p27KIP1 [20], con-
trol proliferation [19], and inhibit apoptosis through the
stabilization of p53 and Mdm2 [21,22]. Constitutive
activation of the BMP pathway [23-26] and the expres-
sion of MIF [27-30] have been linked to a variety of
cancers.

The BMP pathway is required for proper kidney devel-
opment and function and injury repair [31-35]. MIF is
constitutively expressed in the kidney [36] and is upre-
gulated in chronic kidney disease, glomerulonephritis,
and oxidative stress [37-40]. Nikopoulos et al. used
transgenic mice in which a NRAGE:Cherry fusion pro-
tein is under control of the HoxB7 promoter and results
in constitutive phosphorylation of p38MAFX in the kid-
ney through the non-canonical BMP signaling pathway
[11]. Our immunohistological analysis of these trans-
genic kidneys revealed that there was also constitutive
activation of the NF-xB pathway (Figure 4B-C) and an
increase in MIF expression (Figure 4D). It would be
interesting to determine if BMP induces MIF expression
in response to both renal development and injury, coun-
teracting BMP induced renal apoptosis.

BMP expression is present in neural stem cell migra-
tory pathways and the neural crest during embryogen-
esis, controlling neural crest differentiation and
apoptosis in the hindbrain. On mouse embryonic Day
13, when corticogenesis begins, BMP-2 and 4 expression
are dramatically increased, affecting neural stem cells in
the ventricular zone, inhibiting their proliferation
through apoptosis [41-43]. Eventually, two neural stem
cell niches are established having escaped BMP induced
apoptosis; one in the subventricular zone (SVZ) and one
in the subgranular zone (SGZ). We used the mouse
embryonic carcinoma P19 cell line a model for BMP
induced apoptosis in neural stem cells [44], to illustrate
that the BMP NRAGE NF-xB link is not just restricted
to 293HEK cells (Figure 5). With the novel finding that
MIF expression can be linked to BMP signaling and that
MIF is expressed during embryogenesis [45-48], it is
imperative that the correlation between the anti-apopto-
tic cytokine MIF and BMP driven apoptosis be
elucidated.
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Conclusion

The finding that NRAGE regulates NF-xB signaling in
the non-canonical BMP pathway adds an extra level of
control to an already highly regulated developmental
pathway. The observation that stimulation of the non-
canonical BMP pathway results in MIF expression,
represents novel crosstalk between a classical immune
cytokine and a developmental pathway which requires
future consideration.

Methods

Cell culture and transfection

293HEK cells were cultured in DMEM:F12 media sup-
plemented with 10% FBS, gentamycin at 37°C 5% CO.,.
Cells were trypsinized and passaged at 75% confluency.
Genejuice (EMDBiosciences, Darmstadt, Germany) was
used per manufacturers’ instructions for the transfection
of plasmids into 293HEK cells and Endoporter (Gene-
Tools, Philomath, OR, USA) was used per manufac-
turer’s instructions for the transfection of morpholinos.
Cells transfected with siRNA, shRNA or morpholinos
were cultured for at least 48 hours prior to analysis.
Cells were exposed to IKK-VII (EMDBiosciences, Cat.
410486) at varying concentrations throughout the entire
procedure to inhibit NF-xB activation. In all experi-
ments, cells were serum starved for approximately four
hours prior to the addition of 10 ng/ml of BMP-4 (R&D
Systems, Minneapolis, MN, USA).

Plasmids and morpholinos

Full length NRAGE was cloned into the mammalian
expression vector pEGFP-N3 (Clonetech, Mountain
View, CA, USA, Cat. PT3052-5). The pEGFP-N3 vector
codes of the neomycin resistance gene and was used to
aid in the creation of a NRAGE:EGFP stable line.
NRAGE siRNA Sense GGCUUGGAAUGACACUACUtt
and Anti Sense AGUAGUGUCAUUCCAAGCCtt
(Ambion, Austin, TX, USA) were cloned into psuppres-
sor.retro (Imgenex, San Diego, CA, USA). Control
siRNA #1 was supplied by Ambion (Cat. 4611). The fol-
lowing morpholinos were used: NRAGE morpholino
GGTTTCTGAGCCATAGCTCTCGTC (Gene-Tools),
Takl morpholino AGCGCCCTTCAGCCCGGAGCCC
(Gene-Tools), Tabl morpholino
CAGGCTCCTCCTCTGCGCCGCCATC (Gene-Tools),
Control morpholino CCTCTTACCTCAGTTACAATT-
TATA (Gene-Tools).

Western blotting and immunoprecipitation

Cells were serum starved for approximately four hours
prior to the addition of 10 ng/ml of BMP-4 (R&D Sys-
tems) or cells were transfected with respective vectors
for 24 hours prior to being lysed with either RIPA buffer
or NP-40 buffer supplemented with tyrosine phospha-
tase inhibitors (Upstate, Billerica, MA, USA, Cat. 20-
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203), Ser/Thr phosphatase inhibitors (Upstate, Cat.20-
204) and Protease Inhibitor Cocktail Set III (Calbio-
chem, Darmstadt, Germany, Cat. 539134). Lysates were
then centrifuged at 10,000 rpm and the supernatant
stored at -80°C until use. Protein concentration was
obtained via Pierce BCA Kit (Rockford, IL, USA, Cat.
23235) per manufacturer’s instructions. Western blotting
and immunoprecipitation were performed as previously
described [44]. The following antibodies were used for
western blotting: rabbit anti-phospho-IKK o/ (Cell Sig-
naling, Danvers, MA, USA, Cat. 2078) (1:1000 dilution),
rabbit anti-IKK a (Cell Signaling, Cat. 2682) mouse anti
B-actin (Novus, Littleton, CO, USA, Cat. NB 600-501)
(1:10000 dilution), mouse anti-Takl (Santa Cruz, Santa
Cruz, CA, USA, Cat. sc-7967) (1:1000 dilution), goat
anti-Tab1l (Santa Cruz, Cat. sc-6052) (1:1000 dilution),
goat anti-NRAGE (Santa Cruz, Cat. sc-14400 and sc-
14398) (1:500 dilution), rabbit anti-GFP (Santa Cruz,
Cat. sc-8334) (1:1000 dilution), and rabbit anti-MIF
(Santa Cruz, Cat. sc-20121) (1:1000 dilution). The fol-
lowing secondary antibodies were all diluted to 1:3000;
goat anti-rabbit HRP (Bio-Rad, Hercules, CA, USA, Cat.
170-6515), goat anti-mouse HRP (Bio-Rad, Cat. 170-
6516), and donkey anti-goat HRP (Santa Cruz, Cat. sc-
2020). Analysis of cytokine expression on the EGFP and
NRAGE:EGFP stable line using the Human Cytokine
Protein Array (R&D Systems, Cat: ARY005) was per-
formed as per manufacturer’s instructions.

Luciferase assay

293HEK cells in a 100 mm dish were first transfected
with NF-xB luciferase (Stratagene, LaJolla, CA, USA,
Cat. 219078-51) and Renilla via Genejuice (EMDBios-
ciences). These cells were then trypsinized, counted and
plated at a density of 30,000 cells/well in 24 well culture
plates, prior to transfection with various plasmids using
Genejuice. The Dual Luciferase Assay Kit (Promega,
Madison, WI, USA, Cat. E1980) was used for the analy-
sis of NF-xB activation. All data are presented as a fold
increase over renilla activity and were performed in
triplicate.

Immunohistochemistry

Six-month-old wild type and NRAGE:Cherry HoxB7
mice were euthanized via CO, asphyxiation, kidneys dis-
sected and fixed with 4% PFA. Kidneys were then
embedded into paraffin, 5 pm sections cut, deparaffined
with xylene and rehydrated in decreasing amounts of
alcohol. Sections were blocked with 5% BSA, 0.1% goat
serum, in TBST for one hour at room temperature. Sec-
tions were incubated with the following primary antibo-
dies for two hours at room temperature in blocking
buffer: mouse anti NFKB p65 (Transduction Labora-
tories, BdBiosciences, San Jose, CA, USA, Cat. N67620-
050) (1:10 dilution), rabbit anti-phospho-IKK o/B (Cell
Signaling, Cat. 2078) (1:10 dilution), rabbit anti MIF
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(Santa Cruz, Cat. sc-20121) (1:50 dilution), rabbit anti-
phospho-p65 (Cell Signaling, Cat. 3033) (1:50 dilution).
After washing with PBS, the sections were then incu-
bated for 30 minutes at room temperature with goat
anti-mouse Alexa fluor 488 (Molecular Probes, Carslbad,
CA, USA, Cat. A-11029) (1:1000) or goat anti rabbit
Alexa fluor 488 (Molecular Probes, Cat. A-11008)
(1:1000) in blocking buffer. Dual primary antibody stain-
ing was performed in sequential fashion. The cells were
then washed with PBS, stained with DAPI and stored at
4°C. Images were taken on a Zeiss Axiovert 200 fluores-
cent microscope and pseudo colored with MetaMorph
software version 6.1 (Universal Imaging Corporation,
Sunnyvale, CA, USA).

NRAGE:Cherry HoxB7 transgenic mice

Creation and maintenance of transgenic mice is as pre-
viously described [11]. Protocols and procedures were
approved by MMCRI's IACUC; under the title of
Numb/NRAGE in tumor Metastasis, project number
0801.

Abbreviations

BMP: bone morphogenic protein; GFP: green fluorescent protein; MIF:
macrophage migration inhibitory factor; NRAGE: neurotrophin receptor-
interacting MAGE protein; TGF-B: transforming growth factor .
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