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Abstract: Glycosylation mediated by Family-1 UDP-glycosyltransferases (UGTs) plays crucial roles in
plant growth and adaptation to various stress conditions. Prunus mume is an ideal crop for analyzing
flowering for its early spring flowering characteristics. Revealing the genomic and transcriptomic
portfolio of the UGT family in P. mume, a species in which UGTs have not yet been investigated, is
therefore important. In this study, 130 putative UGT genes were identified and phylogenetically
clustered into 14 groups. These PmUGTs were distributed unevenly across eight chromosomes and
32 tandem duplication and 8 segmental duplication pairs were revealed. A highly conserved intron
insertion event was revealed on the basis of intron/exon patterns within PmUGTs. According to
RNA-seq data, these PmUGTs were specifically expressed in different tissues and during the bud
dormancy process. In addition, we confirmed the differential expression of some representative
genes in response to abscisic acid treatment. Our results will provide important information on the
UGT family in P. mume that should aid further characterization of their biological roles in response to
environmental stress.
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1. Introduction

Increasing evidence is suggesting that glycosylation mediated by glycosyltransferases (GTs) plays
crucial roles in plant growth and response to biotic and abiotic stresses [1]. According to numerous
studies, GTs catalyze the transfer of sugar moieties from active sugar molecules to a variety of acceptor
molecules, namely, hormones, lipids and some other small molecules [1,2]. The formation of a
glycosidic bond can change an acceptor’s chemical properties and bioactivity, adjustments that are
essential for the maintenance of cellular homeostasis. In addition, conjugation by GTs allows plant
cells to modulate their biochemical proprieties and thus have a strong influence on their biological
activity and compartmental storage [3].

GTs constitute a highly diverse, multigene family [4]. To date, 105 GT families have been identified
in the carbohydrate-active enzyme database (CAZy, available online: http://www.cazy.org/) the
largest of which is family 1 (GT1) [5,6]. Because it uses UDP-glucose as the sugar donor molecule, GT1

Int. J. Mol. Sci. 2018, 19, 3382; doi:10.3390/ijms19113382 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/19/11/3382?type=check_update&version=1
http://www.cazy.org/
http://dx.doi.org/10.3390/ijms19113382
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 3382 2 of 16

is also known as UDP-glycosyltransferase (UGT) [1]. UGTs possess a highly conserved 44-amino-acid
C-terminal consensus sequence, referred to as the plant secondary product glycosyltransferase (PSPG)
box [7,8]. Putative UGT genes have recently been identified in many plants, including 107 in Arabidopsis,
148 in Glycine max and 148 in Zea mays [4,9–11]. In perennial trees, the number of isolated putative
UGT genes includes 168 in Prunus persica, 254 in Malus domestica and 184 in Vitis vinifera [12,13].

Phytohormones have been thoroughly demonstrated to play critical roles in developmental
processes and to adapt to external environmental changes [14–18]. Plants have therefore evolved a
range of mechanisms to keep different hormones in homeostasis [19]. Glycosylation is thought to
be one of these mechanisms. Abscisic acid (ABA) is a relatively well-studied phytohormone that is
critical for plant development. To adapt to changing environmental conditions, plants must fine-tune
ABA levels and keep different ABA forms in balance [20]. The conjugation of ABA with ABA-glucose
ester (ABA-GE) is a well-studied phenomenon that changes ABA bioactivity. Several ABA-related
UGTs have been functionally characterized, such as UGT71B6 (Arabidopsis), ABAGT (V. angularis) and
UGT71A35 (strawberry) [21–23]. In regard to indole-3-acetic acid (IAA), the first identified UGT was
IAGLU in maize [24]. In Arabidopsis, IAA-related UGT (UGT84B1) has also been recently isolated and
its overexpression leads to an auxin deficiency phenotype [25]. Overexpression of UGT73C5, another
UGT of Arabidopsis, reduces levels of active brassinosteroid (BR), with transgenic plants displaying
BR-deficient phenotypes, which suggests that UGT73C5 glucosylates BR and reduces its bioactivity [26].
UGT76C1 and UGT76C2, two UGTs with N-glucosyltransferase activity toward cytokinins, have also
been identified [27]. Two other UGTs, UGT74F1 and UGT74F2, are active toward salicylic acid (SA) and
benzoic acid [28]. To the best of our knowledge, however, gibberellin-related UGT is few characterized.

The roles of UGTs in response to biotic and abiotic stresses have been extensively studied but
their precise contribution remains elusive [29]. In Arabidopsis, UGT74F1 and UGT74F2 have been
functionally characterized in their response to Pseudomonas syringae infection. UGT74F2 mutant plants
exhibit higher SA levels and higher levels of resistance to Pseudomonas syringae [30,31]. Similarly,
ectopic over-expression of UGT74F2 results in lower levels of SA and an increased susceptibility to
the bacterium, while UGT74F1 mutants exhibit lower SA levels and lowered resistance [28]. Similar
results have also been reported in UGT73B3 and UGT73B5, which resistant to P. syringae pv tomato in
Arabidopsis [30]. There is also increasing evidence for important biological roles of UGTs in response
to abiotic stresses. For example, overexpression of UGT74E2 in Arabidopsis and UGT85A5 in tobacco
produces transgenic plants that display increased tolerance to salinity and drought stress [32,33].
Similar results have been observed in UGT85U1/2 and UGT85V1 in Arabidopsis, which have been found
to be involved in salt and oxidative stress tolerance [34].

Prunus mume, a member of the Rosaceae family, has high ornamental value. One of striking
features of P. mume is early flowering habit, even under relatively low temperatures in the spring [35,36].
Bud dormancy is likely responsible for this phenomenon and UGTs have been reported as bud
dormancy candidate genes [36]. Their precise contributions have not been well defined, however,
which prompted us to further explore and characterize the potential functions of P. mume UGTs. In the
present study, we used bioinformatics techniques to carry out comparative genomic and transcriptomic
analyses of UGTs in P. mume (PmUGTs). We also analyzed the phylogenetic relationships and gene
duplication history of 130 putative PmUGTs. Then, the expression pattern of nine group E members
was tested under ABA treatment. To the best of our knowledge, this is the first report of UGTs on a
genome-wide scale in P. mume and our findings should help inform future research on their potential
roles in stress response.
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2. Results

2.1. Identification of the Putative UGTs in P. mume

The UGT proteins play crucial roles in various plant developmental processes. Three strategies
were used to identify candidate UGT genes in P. mume, as mentioned in the Material and Methods part.
Subsequently, 130 potential UGT protein sequences were identified, which were named based on the
chromosomal location of the corresponding genes. All these 130 putative UGT sequences started with
a methionine and were full-length sequences. The protein length, molecular weight, isoelectric point
and putative subcellular localization of these proteins varied widely (Supplementary Table S1). The
protein sequence length and molecular weight were ranged from 279 (Pm027884) to 764 (Pm000189)
amino acids (aa) and 31.25 (Pm027884) to 85.14 (Pm000189) kDa, with an average length of 470 aa
and 52.45 KDa, respectively. The predicted isoelectric points varied from 4.63 (Pm000211) to 8.79
(Pm019106). Protein subcellular localization of 130 PmUGTs was also predicted by bioinformatics
methods. Most of PmUGT proteins were predicted to be located in the chloroplast (75 members). 32
PmUGTs were predicted to be located in the cytoplasm and 13 were in the nucleus. More detailed
information was provided in Supplementary Table S1.

2.2. Chromosomal Distribution, Duplication and Divergence

The genomic distribution of 130 PmUGTs revealed that 121 PmUGTs distributed across eight
chromosomes and nine located on scaffolds (Figure 1). There were 26 UGTs on chromosome 2, followed by
20, 19 and 17 members on chromosome 4, 1 and 6, respectively. Tandem and segmental duplication events
were also analyzed for its importance to elucidate the chromosomal/gene segments and tandem exons.
As shown in Figure 1, 32 gene pairs, including 56 PmUGTs, involved in tandem duplication. Moreover,
eight gene pairs (Pm001086/Pm030144, Pm002233/Pm004391, Pm002464/Pm021221, Pm005787/Pm026572,
Pm010818/Pm014833, Pm018404/Pm024073, Pm019826/Pm024073, Pm025006/Pm030552) were involved in
the segmental duplication events (Figure 1, Supplementary Table S2). These results suggest that tandem
duplication might play major roles in the PmUGT family amplification. When compared with P. persica
genome, 23 segmental duplications pairs were found, as detailed in Table 1. To further analyze the
syntenic relationships of UGTs between P. mume and P. persica, we mapped the 23 segmental duplication
pairs to the duplicated blocks (Figure 2).
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Table 1. Calculation of Ka/Ks and the divergence time of the duplicated UGT gene pairs in P. mume
and P. persica genomes.

Duplicated Gene Pairs Ka Ks Ka/Ks Duplication Type Purifying Time (MYA)

Pm001086-Pm030144 0.2807 2.0011 0.140273 WGD/Segmental Yes 66.70
Pm002233-Pm004391 0.4411 1.7464 0.252577 WGD/Segmental Yes 58.21
Pm002464-Pm021221 0.5638 1.6179 0.348476 WGD/Segmental Yes 53.93
Pm005787-Pm026572 0.7050 2.9734 0.237102 WGD/Segmental Yes 99.11
Pm010818-Pm014833 0.4487 1.7679 0.253804 WGD/Segmental Yes 58.93
Pm018404-Pm024073 0.3273 1.6211 0.2019 WGD/Segmental Yes 54.04
Pm019826-Pm024073 0.6853 2.1848 0.313667 WGD/Segmental Yes 72.83
Pm025006-Pm030552 0.4543 1.4351 0.316563 WGD/Segmental Yes 47.84

Pm002233-ppa021249m 0.0534 0.2157 0.247566 WGD/Segmental Yes 7.19
Pm002464-ppa005187m 0.5639 1.6813 0.335395 WGD/Segmental Yes 56.04
Pm004192-ppa024612m 0.0130 0.0217 0.599078 WGD/Segmental Yes 0.72
Pm005059-ppa017646m 0.0195 0.0815 0.239264 WGD/Segmental Yes 2.72
Pm006589-ppa020820m 0.0124 0.0599 0.207012 WGD/Segmental Yes 2.00
Pm007628-ppa023949m 0.0526 0.1238 0.424879 WGD/Segmental Yes 4.13
Pm007721-ppa005161m 0.033 0.1163 0.283749 WGD/Segmental Yes 3.88
Pm008679-ppa017941m 0.0432 0.0867 0.49827 WGD/Segmental Yes 2.89
Pm011332-ppa005654m 0.175 0.7565 0.231328 WGD/Segmental Yes 25.22
Pm014846-ppa023681m 0.172 0.7111 0.241879 WGD/Segmental Yes 23.70
Pm014869-ppa016262m 0.0129 0.0481 0.268191 WGD/Segmental Yes 1.60
Pm015735-ppa024768m 0.204 0.4454 0.458015 WGD/Segmental Yes 14.85
Pm016014-ppa024744m 0.3188 0.8492 0.375412 WGD/Segmental Yes 28.31
Pm019616-ppa005162m 0.015 0.0354 0.423729 WGD/Segmental Yes 1.18
Pm021221-ppa005187m 0.0177 0.05 0.354 WGD/Segmental Yes 1.67
Pm021307-ppa005517m 0.3865 2.1649 0.17853 WGD/Segmental Yes 72.16
Pm022854-ppa002535m 0.0032 0.037 0.086486 WGD/Segmental Yes 1.23
Pm024975-ppa022508m 0.0142 0.0735 0.193197 WGD/Segmental Yes 2.45
Pm025006-ppa018626m 0.0182 0.046 0.395652 WGD/Segmental Yes 1.53
Pm027007-ppa025742m 0.0298 0.0677 0.440177 WGD/Segmental Yes 2.26
Pm027211-ppa025742m 0.0267 0.0889 0.300337 WGD/Segmental Yes 2.96
Pm030552-ppa024271m 0.0187 0.0568 0.329225 WGD/Segmental Yes 1.89
Pm028190-ppa016005m 0.0412 0.0547 0.753199 WGD/Segmental Yes 1.82

MYA, Millions of years ago; Ks, synonymous substitutions; Ka, nonsynonymous substitutions; Ka/Ks,
nonsynonymous substitutions per synonymous site.
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Figure 2. Syntenic relationships among UGTs in P. mume and P. persica. Chromosome are shown in
the outer circle, with Pm1–8 and Pp1–8 indicated in brown and green, respectively. Genome-wide
duplicated UGTs in P. mume are connected by blue lines. Genome-wide duplicated UGTs between
P. mume and P. persica are connected by green lines.

All the segmental duplicated UGT gene pairs had undergone a whole-genome duplication
and the Ka/Ks ratios were less than 1. This result indicated that these UGTs experienced negative
selection during species evolution process. Moreover, the divergence times of the duplicated UGTs
at P. mume were significantly larger than that between P. mume and P. persica. The divergence time
of the eight duplicated pairs at P. mume genome spanned from 47.84 (Pm025006-Pm030552) to 99.11
(Pm005787-Pm026572) million years ago (MYA). However, the largest divergence time of the duplicated
UGTs between P. mume and P. persica was 72.16 MYA (Pm021307-ppa005517 m), followed by 56.04 MYA
(Pm002464-ppa005187 m). Most duplicated gene pairs diverged around 1 to 5 MYA.

2.3. Phylogenetic Analysis of P. mume

These 130 putative PmUGTs and 112 A. thaliana UGTs (AtUGTs) were used for phylogenetic
analysis to highlight the gene loss and gene gain events. Besides, 2 maize UGTs (GRMZM2G075387
and GRMZM5G834303) and 4 peach UGTs (Prupe.7G055200, Prupe.6G265900, Prupe.6G267000 and
Prupe.6G266600) represented O and P groups were also added to identify PmUGTs O and P candidates.
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Phylogenetic result revealed that 14 groups, A to N, were clustered and no member was identified in
group O and P (Figure 3). In each group, most of the UGT members were the same between P. mume
and A. thaliana except in G (18 in P. mume and 6 in A. thaliana) and H (10 in P. mume and 19 in A. thaliana).
Five of them possessed most of the members, with 23, 18, 17, 17 and 16 members in E, G, D, L and A
groups, respectively.
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Figure 3. Phylogenetic tree of the plant UGTs. 130 PmUGTs, 112 A. thaliana UGTs, 2 maize UGTs
(GRMZM2G075387 and GRMZM5G834303) and 4 peach UGTs (Prupe.7G055200, Prupe.6G265900,
Prupe.6G267000 and Prupe.6G266600) were included. The full-length sequences of the UTG proteins
were aligned using CLUSTALW and the phylogenetic tree was constructed using the ML method in
the MEGA 6.0 [37]. The colored lines mark the groups of the UGTs.

2.4. Genomic Characteristics of the Putative UGTs in P. mume

We analyzed the exon/intron and conserved motif characteristics of the 130 PmUGTs to investigate
their structural diversity. Among them, 70 UGTs possess at least 1 intron and 60 possess no introns.
Of the 70 intron-containing UGTs, most UGTs had 1–4 introns, with a ratio of 1.44 introns per
intron-containing UGTs. And Pm022854 contained the maximum number of introns (14), followed
by Pm000211 with 7 introns. In each phylogenetic group, the intron numbers were different. The
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maximum number of introns was found in E, D, L and H, whereas the minimum number of introns
was found in B, C, F, I, M and N groups. It is interesting that members within each group exhibited
similarity intron/extron genomic characteristics (Supplementary Figure S1). The same result was
also obtained in conserved motifs structure (Figure 4). These results suggested that PmUGT family
members within group were relatively conserved and diverged greatly among different groups.
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2.5. Transcriptome Analysis of Tissue-Specific Expression of PmUGTs

To detect the expression differences of PmUGTs, we analyzed their transcript abundances in bud,
fruit, leaf, root and stem according to RNA-seq data. After filtering the low and missing expression
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values, 123 PmUGTs were finally examined to be expressed across the different tissues. Through
hierarchical clustering analysis, these 123 PmUGTs were grouped into five discrete clusters in the five
tested tissues (Figure 5). The expressed 16 PmUGTs in cluster A showed consistent downregulated
expression patterns in bud, fruit, leaf and root but upregulated patterns in stem. The expression
levels of 24 PmUGTs in cluster B were relatively higher in bud and fruit when compared with other
tissues. In cluster C, 18 UGTs were detected to display upregulated expression level only in bud,
with relatively low levels in other four tissues. PmUGTs in Cluster D, with the largest number of
37, exhibited upregulated expression in fruit; while 28 PmUGTs in Cluster E displayed upregulated
expression in root and Cluster F showed high level in leaf (Figure 5).
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bud, fruit, leaf, root and stem were according to RNA-seq data. The scale represents signal intensity
of FPKM values. Red indicates high relative gene expression and green indicates low relative gene
expression. Letters assigned to major clusters are indicated on the dendrogram.

2.6. Transcriptome Analysis of PmUGTs Expression during Bud Dormancy Transition

In the present paper, we also displayed the PmUGTs expression profiles at four dormancy stages:
EDI (with no flush sign in the phytotron), EDII (with 45% flush rate), EDIII (with 95% flush rate) and
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NF (natural flush). More details can be seen in Zhang et al. [37]. The expression profiles of PmUGTs
during bud dormancy transition were hierarchically clustered into five groups (Figure 6). Cluster A
(including 19 PmUGTs) exhibited highest levels at EDII and then gradually decreased as dormancy
release progressed. Nine genes in Cluster B had highest level at EDI stage and then maintained
relatively lower level at EDII, EDIII and NF stages. Cluster C genes showed highest expression level
at EDI and sharply decreased at EDII and EDIII. After dormancy released, these genes subsequently
increased at NF stage. The 10 PmUGTs in cluster D displayed relatively low expression levels at the
EDI and EDII stages and then increased sharply at EDIII and maintained relatively high level at NF
stage. Cluster E contained the large number of PmUGTs (80 genes). These genes showed relatively low
expression level at dormancy stages and sharply increased once the dormancy completely released.
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2.7. Quantitative Real-Time PCR Analyses of PmUGTs in Response to ABA Treatment

Previous studies revealed that UGTs from group E might participate in response to ABA stress.
In this paper, 12 group E PmUGTs were identified and then RT-qPCR was employed to investigate
the expression patterns under ABA treatment. According to the RNA-seq data, PmUGT61/Pm014846,
PmUGT62/Pm014847 and PmUGT63/Pm014848 showed extremely low expression levels in bud, leaf,
stem and fruit. Moreover, these three PmUGTs displayed low expression pattern and showed no change
during bud dormancy process. Thereafter, in this study, we only investigated the expression patterns
of the other nine PmUGTs under ABA treatment in leaves. Of the nine PmUGT genes, seven genes were
obviously up-regulated in response to ABA stress, while the remaining two genes PmUGT5/Pm000549
and PmUGT46/Pm010818 showed slight expression changes (<2-fold) (Figure 7). It is interesting
that all seven selected PmUGTs were up-regulated at early stages and then down regulated after
reaching a peak expression. The PmUGT56/Pm014838, PmUGT57/Pm014839, PmUGT59/Pm014843 and
PmUGT60/Pm014844 were strongly up-regulated at 4 h after ABA treatment by more than 10-fold
compared to the control, whereas, their expression revealed relatively decreased thereafter. Besides
PmUGT58/Pm014842, PmUGT54/Pm014833 and PmUGT55/Pm014836 were slightly up-regulated by
about 5-fold compared to the control. It is noting that these three PmUGTs showed different peaking
time, suggesting their roles might be slightly different (Figure 7).
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3. Discussion

Increasing studies indicate that UGT proteins play important roles in plant growth and adaptation
to environmental stress. In addition, UGT is involved in carbohydrate metabolism during the bud
dormancy release process [36]. To our knowledge, no further information is available about the UGT
gene family in P. mume. Here, we conducted a comprehensive investigation of the PmUGT family.

Plant genomes contain numerous UGT genes, with UGT members varying among species. For
example, 107 UGTs have been identified in A. thaliana [9] and 191 in P. trichocarpa [19]. Members of the
UGT multigene family have also been recently identified in peach (168), grape (184), kiwifruit (188),
strawberry and apple (254) [12,13,38–40]. In the present study, 130 UGTs were uncovered in P. mume,
all containing the conserved PSPG box.

Phylogenetic analysis consistently clustered 14 distinct groups (A–N) with Arabidopsis [9].
This result indicates that the UGT family in P. mume has not phylogenetically diversified after
separation from Arabidopsis. In some species of Rosaceae, including peach, apple and grape, 16
distinct phylogenetic groups (A–P) are known, while 17 groups (A–Q) have been observed in Z.
mays [10,12,13,38]. The O and P groups found in peach and maize are absent in P. mume, which
suggests they were lost at some stage during evolution. Surprisingly, PmUGT members in different
groups, except for those in G and H, were similar to members of corresponding groups in Arabidopsis,
which suggests that they have a conserved substrate specificity. Groups E, G and H were reduced in
P. mume relative to peach, which indicates that these UGTs may be less critical in P. mume.

PmUGTs exhibit tissue-specific expression patterns. Determining whether the expressed UGT
genes are functionally diverged or conserved should improve our understanding of plant adaptation
to changing environments [4]. PmUGT2, PmUGT42, PmUGT77, PmUGT80, PmUGT98, PmUGT105,
PmUGT120 and PmUGT121 were expressed at relatively high levels in all tested tissues, suggesting
their involvement in overall tissue development process. PmUGT17, PmUGT28, PmUGT36, PmUGT43,
PmUGT49, PmUGT50, PmUGT51, PmUGT53, PmUGT73, PmUGT74 and PmUGT122 were expressed
at extremely low or undetectable levels in all tissues, which suggests that these genes do not play an
important role in P. mume development. PmUGT120 and PmUGT32 was specifically highly expressed
in leaf and in root, which implies that these genes may have a specific function in leaf and root,
respectively. The same result was observed in peach. Prupe.1G091100 and Prupe.1G091000 (homologs
of Pm027780 and Pm019616, respectively) were mainly expressed in peach flowers [41]. These two
UGTs are responsible for anthocyanin synthesis in peach flowers [41]. The dynamic expression
patterns of several hormone-related UGTs, such as Pm014836 (UGT71B6, associated with ABA),
Pm030035 (UGT74B1, IAA), Pm014886 (UGT85A1, CK) and Pm026307 (UGT73C1, CK), suggest that
hormone conjugation plays important roles during the P. mume dormancy process. Even closely related
homologs exhibited different spatial- and tissue-specific expression patterns. For example, the AtUGTs,
UGT71B6, UGT71B7 and UGT71B8 exhibited very high expression levels in leaves, flowers and siliques,
respectively [42].

Phytohormones play crucial roles in the regulation of protective responses against biotic and
abiotic stresses but the mechanism of hormone glycosylation remains poorly understood. The
availability of data from Arabidopsis provides sufficient information about the UGT family and several
UGT genes have been functionally characterized as the glycoconjugates of phytohormones. For
example, the AtUGTs, UGT75D1, UGT71C5 and UGT71B6 glycosylate ABA; UGT74B1, UGT74D1
and UGT84B1, glycosylate IAA. In addition, UGT74F1, UGT73B3 and UGT73B5 participate in SA
glycosylation, while UGT76B1 is involved in crosstalk between SA and JA [21,31,43–45].

ABA is an important hormone regulating plant development and adaptive responses but
information regarding ABA homeostasis is limited. The fine-tuning of ABA biosynthetic and
catabolic pathways is crucial for balancing cellular ABA levels [1]. Cellular ABA content is lowered
via two pathways, hydroxylation and conjugation [44–48]. In the first pathway, cytochrome P450
monooxygenase hydroxylates ABA at the C-80 position to form unstable 80-hydroxy ABA that is
converted to phaseic acid. In the second pathway, ABA and hydroxy ABA are conjugated with glucose
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for inactivation [23,47,48]. It is the ABA glucosyltransferase that performs the conjugation and ABA-GE
is the predominant form [23]. It is reported that ABA-GE can be transported between tissues and in
some tissues, conjugation is the major pathway of ABA inactivation. Meanwhile, ABA-GE provided
an ABA source for subsequent hydrolysis [43,49,50].

Several ABA-related UGTs and their close homologs have been functionally characterized, which
can inactivate ABA and lower ABA levels. For example, ABA glycosylation by UGT71B6, UGT71B7 and
UGT87A2 has been well documented in Arabidopsis, with this function also reported for UGT71A33 and
UGT71A35 in strawberry and ABAGT in Vigna angularis [21,22,43,44]. As inferred by the suppression
of RD29Ap:LUC, UGT71B6, UGT71B7 and UGT71B8 reduce cellular ABA levels. UGT RNAi (triple
knock-out mutant) transgenic plants are sensitive to exogenous ABA and salinity stress during seed
germination and subsequent development process. In contrast, the over-expression of UGT71B6 in
an atbg1 mutant background aggravates the ABA-deficient phenotype [42]. In the present study,
12 UGT71B6 homologs were identified and placed in group E. We examined the transcript levels
of nine of these PmUGTs under exogenous ABA treatment. As shown in Figure 7, seven PmUGTs
were significantly upregulated by exogenous ABA treatment, albeit at different levels. The other
two PmUGTs were only slightly changed. This result indicates that these UGTs are involved in ABA
glucosylation in P. mume.

4. Materials and Methods

4.1. Genome-Wide Identification of UGT Family Genes in P. mume

To identify the candidate UGT genes in P. mume, a total of 120 Arabidopsis UGT protein sequences
were retrieved from CAZy (available online: http://www.cazy.org/GlycosylTransferases.html)
and 168 peach UGT proteins were downloaded from Phytozome V12.1 (available online: https:
//phytozome.jgi.doe.gov/pz/portal.html). All these sequences were used as query to BLASTP against
P. mume proteome with a cut-off E-value of 1 × 10−10. Subsequently, the conserved PSPG box sequence
was also used as a query to BLASTP against P. mume proteome database. Furthermore, the Hidden
Markov Model (HMM) profile of UDPGT domain (PF00201) was retrieved from Pfam 29.0 (available
online: http://pfam.xfam.org/) and used to search against the P. mume proteome database. The amino
acid sequences of candidates from these three strategies were screened by SMART (available online:
http://smart.emblheidelberg.de) to remove proteins without a complete PSPG box.

4.2. PmUGT Genes Location and Characteristics

InterPro was used to check the validation of final UGT genes [51]. The ORF and chromosome
distribution of P. mume UGTs was obtained from P. mume genome database. MapChart (v2.3) was used
to visualize the chromosomal location of PmUGTs [52]. ExPASy (available online: http://expasy.org/)
was used to estimate the isoelectric point and molecular weight. The subcellular localization of each
PmUGT was analyzed using the CELLO v2.5 server (available online: http://cello.life.nctu.edu.tw/).

4.3. Analyses of Gene Structure and Conserved Motifs of UGT Genes

According to the general feature format file of P. mume, the exon-intron structures of the PmUGTs
were obtained and graphed with the Gene Structure Display Server (GSDS: available online: http:
//gsds.cbi.pku.edu.ch). The conserved motifs of the putative UGT proteins were predicted by using
the on-line MEME procedure with maximum 15 motifs per sequence. The sequence logo was obtained
using the online Weblogo platform (available online: http://weblogo.berkeley.edu).

4.4. Homology Analysis and Selection Pressures of UGT Gene Pairs between P. mume and P. persica

To estimate the divergence of the putative tandem-duplicated UGT genes between P. mume
and P. persica, the duplicated pairs were detected in the Plant gene duplication database (available
online: http://chibba.agtec.uga.edu/duplication/). Mcscan [53] was employed to identify
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homologous regions and syntenic blocks were evaluated using Circos-0.64 [54]. The ratios of Ka
(non-synonymous)/Ks (synonymous rate) of UGT gene pairs between P. mume and P. persica were
calculated to estimate selection modes by using PAML software. 1.5 × 10−8 was taken as synonymous
substitutions per site per year in the case of dicotyledonous plants for MYA calculation. The
Ka/Ks ratios greater than 1, equal to 1 and less than 1 represent positive, neutral and negative
selection, respectively.

4.5. Sequence Alignments, Phylogenetic Analyses of UGT Genes

The UGT protein sequences, including 130 PmUGT, 112 AtUGTs, 2 maize UGTs (GRMZM2G075387
and GRMZM5G834303) and 4 peach UGTs (Prupe.7G055200, Prupe.6G265900, Prupe.6G267000 and
Prupe.6G266600) were used for phylogenetic analysis by program CLUSTALW in MEGA 6.0 software [37].
Then, the output alignment file was used to construct Maximum Likelihood (ML) trees with pair-wise
deletion and 1000 replications.

4.6. Transcriptome Analysis for Tissue-Specific Expression

To check tissue-specific expression of the putative UGTs in P. mume, the RNA-Seq data in different
tissues, such as flower, leaves, roots and stem, were obtained. Besides, the transcript data at four
crucial dormancy stages were also retrieved as detailed described by Zhang et al. [36]. The expression
values for each PmUGT were calculated by fragments per kilobase of the exon model per million
mapped reads by using the RNA-seq data of P. mume. The heat-maps of PmUGTs were established
using R packages “heatmap”.

4.7. RT-qPCR Analyses of the PmUGTs in Response to ABA Treatment

The seeds of P. mume were collected on cultivar “Lve” grown in the Jiufeng International Plum
Blossom Garden, Beijing, China (40◦07′ N, 116◦11′ E). The seeds were sterilized with 20% sodium
hypochlorite, washed with sterile water three times and were stored in the sand under 4 ◦C to promote
germination. After three months, germinated seedlings were transplanted in nutritional soil in the
greenhouse. For hormone treatment, 100 µM ABA were sprayed on the young seedlings until dropped.
Fresh leaves were collected at 0, 1, 2, 4, 8, 12, 24 and 48 h, respectively. Samples were frozen in liquid
nitrogen and then stored at −80 ◦C until used. Total RNA extraction and qPCR were performed as
described in Zhang et al. [37] Primers sequences were listed in Supplementary Table S3.

5. Conclusions

A total of 130 PmUGTs were identified and clustered into 14 groups based on phylogenetic
analysis and their chromosomal locations, gene structure, duplication events and conserved motifs
were further investigated. RNA-seq analysis revealed specific expression patterns in different tissues.
In addition, various changes in transcript levels were detected during bud dormancy release. We also
uncovered differential responses of PmUGT expressions to ABA treatment using RT-qPCR. A major
future research challenge is obtaining a better understanding of how plants regulate UGT members
during development and in response to abiotic and biotic stress. Exploring the crosstalk between
UGTs and other genes/proteins is also necessary. Our results provide important information on the
UGT family in P. mume that will aid the further characterization of their biological roles in response to
environmental stress.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/11/
3382/s1.
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