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Abstract

Biases in medical artificial intelligence (AI) arise and compound throughout the AI lifecycle.

These biases can have significant clinical consequences, especially in applications that

involve clinical decision-making. Left unaddressed, biased medical AI can lead to substan-

dard clinical decisions and the perpetuation and exacerbation of longstanding healthcare

disparities. We discuss potential biases that can arise at different stages in the AI develop-

ment pipeline and how they can affect AI algorithms and clinical decision-making. Bias can

occur in data features and labels, model development and evaluation, deployment, and pub-

lication. Insufficient sample sizes for certain patient groups can result in suboptimal perfor-

mance, algorithm underestimation, and clinically unmeaningful predictions. Missing patient

findings can also produce biased model behavior, including capturable but nonrandomly

missing data, such as diagnosis codes, and data that is not usually or not easily captured,

such as social determinants of health. Expertly annotated labels used to train supervised

learning models may reflect implicit cognitive biases or substandard care practices. Overre-

liance on performance metrics during model development may obscure bias and diminish a

model’s clinical utility. When applied to data outside the training cohort, model performance

can deteriorate from previous validation and can do so differentially across subgroups. How

end users interact with deployed solutions can introduce bias. Finally, where models are

developed and published, and by whom, impacts the trajectories and priorities of future

medical AI development. Solutions to mitigate bias must be implemented with care, which

include the collection of large and diverse data sets, statistical debiasing methods, thorough

model evaluation, emphasis on model interpretability, and standardized bias reporting and

transparency requirements. Prior to real-world implementation in clinical settings, rigorous

validation through clinical trials is critical to demonstrate unbiased application. Addressing

biases across model development stages is crucial for ensuring all patients benefit equitably

from the future of medical AI.
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Author summary

In this work, we explore the challenges of biases that emerge in medical artificial intelli-

gence (AI). These biases, if not adequately addressed, can lead to poor clinical decisions

and worsen existing healthcare inequalities by influencing an AI’s decisions in ways that

disadvantage some patient groups over others. We discuss several stages in the process of

developing a medical AI model where bias can emerge, including collecting data, training

a model, and real-world application. For instance, the way data is collected can exclude or

misrepresent certain patient populations, leading to less effective and inequitable AI sys-

tems. We provide examples, both hypothetical and real, to illustrate how these biases can

alter clinical outcomes. These examples show that biases are not just possible; they are a

significant risk if not actively countered. Our review stresses the importance of diverse

and comprehensive data sets, sophisticated statistical methods to remove biases, and clear

reporting standards—key components of a future where medical AI works equitably and

supports high-quality clinical care for everyone.

Introduction

The application of artificial intelligence (AI) algorithms to the medical domain has exploded

in recent years, facilitating tremendous advances in clinical tasks like risk prediction and dis-

ease screening [1,2]. These medical AI models are increasingly implemented in real-world set-

tings for clinical decision support, providing early warnings, facilitating diagnosis, predicting

treatment responses, and more [3–6]. An idealized promise of medical AI is its objectivity and

reproducibility, removing provider biases and clinical inequities toward optimized and per-

sonalized care for all patients. In reality, however, AI models are frequently found to be biased

toward certain patient groups, leading to disparities not only in performance but also in poten-

tial or actual clinical benefits [7–9].

Awareness of bias and the issues it poses—clinical, ethical, financial—is gradually increas-

ing, as evident by the FDA’s recent Action Plan that emphasized the importance of mitigating

bias in medical AI systems [10,11]. However, while bias detection and mitigation methods are

relatively well developed for traditional statistical techniques like regression, the literature sur-

rounding similar methods for AI algorithms is still nascent [12,13]. Additionally, there is a

lack of standardized bias reporting guidelines within and across academic journals [12].

Here, we highlight how biases in medical AI—especially in applications that involve clinical

decisions—occur and compound throughout the AI development pipeline. These biases, if left

unchecked, will contribute to and exacerbate longstanding health disparities and negatively

affect clinical care and decision-making. Methods to address these biases will prove crucial for

ensuring the equitable realization of the current and future benefits of medical AI.

Related work

The topic of bias in AI has garnered significant attention in recent years, with multiple review

papers addressing different aspects of this critical issue [14–18]. Fewer studies have concen-

trated specifically on the implications and consequences of biased AI in healthcare [19–22].

While these reviews have made valuable contributions to our understanding of bias in medical

AI, they differ in scope, depth, and focus, leaving a gap in understanding how bias permeates

the development of AI for clinical decisions. Our work builds upon and extends these existing

studies to provide a comprehensive and accessible overview of bias and its consequences in

clinical decision-making.
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Our approach distinguishes itself through several key aspects. While many reviews on bias

focus on data and model development, we provide an extensive overview of bias across the

entire AI development pipeline, from data collection to publication and real-world deploy-

ment. This approach allows us to examine how biases can compound and interact at different

stages of model development. While some reviews concentrate on a single medical domain,

particularly in medical imaging [23,24], our discussions integrate real-world examples across

diverse medical domains, enabling unique analysis of cross-domain challenges and broader

systemic issues, such as biases in funding and publication. Several reviews focus primarily on

statistical biases present in AI models—particularly those arising from training data—along

with corresponding statistical debiasing methods [17,25]. While these technical biases are cru-

cial, our study includes extensive discussion of non-technical biases and their clinical conse-

quences. We explore practical mitigations strategies for these biases in diverse healthcare

settings, an area often underexplored in other works. Furthermore, we incorporate a section

on recent advances in medical large language models (LLMs), examining their unique poten-

tial biases in medical applications.

Our review is presented in a narrative format, designed to be accessible to a broad audience,

including healthcare professionals without a technical background in AI. This approach

ensures that the insights we provide are not only theoretically robust but also practically useful.

By addressing the gaps in the current literature and offering a comprehensive, up-to-date anal-

ysis, our review serves as an accessible resource for AI developers and healthcare professionals

alike. It aims to enhance understanding of bias in medical AI and provides actionable guidance

on how to mitigate its effects in downstream clinical decision-making.

Artificial intelligence in medicine

AI seeks to develop algorithms and machines that exhibit human-like intelligence and cogni-

tion [26]. While traditional programming software rely on predefined and fixed instructions

and rules, AI systems leverage huge swaths of data and mathematical models to learn patterns

and make decisions based on the data they are exposed to [27]. The most popular subfield of

AI is machine learning (ML), whose models learn through supervised (trained on data with

“ground-truth” labels) or unsupervised (identifying patterns within data without prior knowl-

edge of outcomes) paradigms [28].

In the healthcare domain, medical AI and ML models have demonstrated the potential to

improve patient outcomes, reduce cost burdens, accelerate clinical trials, and revolutionize the

way we diagnose, treat, and prevent disease [26,28–31]. State-of-the-art deep learning meth-

ods, which consist of computational models composed of multiple processing layers that can

learn complex representations of data, have achieved unprecedented performance in imaging-

based diagnosis, drug discovery, gene analysis, and natural understanding of medical language

[32–37].

Defining bias in medical AI

In the context of medical AI for clinical decision-making, we define bias as any instance, fac-

tor, or prejudice that drives an AI algorithm to produce differential or inequitable outputs and

outcomes [12]. Although medical AI is a relatively new field, it is important to acknowledge

that the underlying disparities in healthcare that drive bias in medical AI are not recent devel-

opments. Rather, they are rooted in longstanding historical driving forces of inequality in

health systems, which themselves reflect even longer-standing discrimination and other forms

of structural oppression [11,38].
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Below, we discuss potential biases that can arise at different stages in the AI development

pipeline, including biases in training data, model development, model implementation, and

publication. At each stage, we first discuss the nature of these biases and how they can affect AI

models and downstream clinical decision-making. We then highlight illustrative real-world

and hypothetical examples that were intended (or were implemented) for aiding clinical deci-

sions. Finally, we provide a thorough discussion of potential solutions and techniques that

may or may not mitigate each bias. Each of these techniques has its own advantages and limita-

tions, and the choice of method should be guided by the specific characteristics of the data set

and the clinical task at hand. Table 1 summarizes the potential clinical consequences and miti-

gation techniques for the biases and bias-related issue presented throughout this narrative

review.

Biases in training data

The first step in developing medical AI models involves collecting and preparing data. Biases

in the data used to train these models can appear in several forms, some of which are more

overt than others.

Imbalanced sample sizes

Definition and clinical consequences. Perhaps the most straightforward form of data

bias is the presence of imbalanced (insufficient) sample sizes for certain patient groups. Many

data sets used to train AI models for clinical tasks overrepresent non-Hispanic Caucasian

patients relative to the general population [39], and more broadly, over half of all published

clinical AI models leverage data sets from either the United States or China [40]. When an

algorithm is trained on imbalanced data, this can lead to worse performance and algorithm

underestimation for underrepresented groups. An underestimating algorithm will forgo infor-

mative predictions in underrepresented groups—especially on outlier cases—in favor of

approximating mean trends in order to avoid overfitting [41]. Without statistically (or clini-

cally) meaningful predictions for certain groups, any downstream clinical benefits of the AI

model are limited to only the (largest) groups with sufficient data sizes [13]. The benefits and

clinical improvements that result would be similarly constrained, perpetuating healthcare dis-

parities. Imbalanced samples are a form of bias that the medical community has historically

and still currently struggles to address [42].

Illustrative examples. One illustrative example of class imbalance affecting model perfor-

mance is the prediction of melanoma from skin images. Existing disparities in (non-AI) mela-

noma diagnoses are well-documented: at the time of diagnosis, darker-skinned patients

already present with later stages of the disease and have lower survival rates than fair-skinned

patients [43]. Early diagnosis of melanoma is key to effective treatment, and thus AI-based

melanoma prediction has great potential for clinical use [43]. Unfortunately, disparities in AI-

based melanoma prediction models are common: the majority of these models are trained on

data sets (such as the Melanoma Project) that are heavily composed of light-skinned images

from patients in the US, Europe, and Australia (imbalanced sample bias) [43]. These models

exhibit worse performance for images of lesions in darker skin tones, which resulted in worse

predictivity when deployed in real-world settings [43]. Although melanoma incidence occurs

more frequently in non-Hispanic white individuals and is phenotypically different on dark

skin, this should not justify the exclusion of these patient groups from the benefits of AI-based

melanoma detection.

Another noteworthy study aimed to systematically quantify the effect of class imbalance on

the fairness and generalizability of an AI model across different patient groups [44]. The
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model of interest was trained on the MIMIC-III data set (an open source, real-world ICU data

set) to predict in-hospital mortality [44,45]. The researchers found that imbalanced representa-

tion of racial groups had a significant effect on model performance (yielding recall rates as low

as 25%), raising critical concerns for the model’s potential application in real clinical settings

[44].

Mitigation strategies. Given the frequency and impact of imbalanced data bias, AI devel-

opers can proactively counteract its effects on models and downstream clinical decision-mak-

ing. Prior to any model development, a helpful first pass would be to review and characterize

Table 1. Types of bias through medical AI development stages, where they occur, their potential clinical consequences, and mitigation techniques.

Medical AI

development stage

Bias/issue Illustrative example Potential clinical consequences Bias mitigation strategies

Training data Imbalanced sample sizes Training data sets often

overrepresent non-Hispanic

Caucasian patients

Worse performance and algorithm

underestimation for underrepresented

groups

- Characterize data set patient

sociodemographics

- Methods for imbalanced data

(oversampling, data augmentation)

- Cultivation of large, diverse data sets

Nonrandomly missing

patient data

Low socioeconomic patients

often have more missing

data in EHR

AI model systematically underestimates

risks or misses important factors for

certain patients

- Imputation techniques

- Improved data collection methods

- Record linkage algorithms

Data not usually or easily

captured

Social Determinants of

Health (SDoH)

AI model makes less accurate predictions

for patients whose health is significantly

impacted by SDoHs

- Standardized questionnaires, surveys

- NLP/LLM methods for unstructured

clinical text

- Incorporating external, public data

Biases in data labels and

misclassification

Provider cognitive biases Perpetuation and amplification of existing

biases and healthcare disparities

- Expert consensus labeling

- Cultural competency training

Race and ethnicity in

clinical algorithms

Race/ethnicity correction

factors in risk calculators

Race/ethnicity is not a biological construct - Socioeconomic deprivation factors

can be more representative

- Use of zip codes as a proxy for SES

Model

development and

evaluation

Overreliance on whole-

cohort performance metrics

Only evaluate and optimize

whole-cohort accuracy or

AUC

Model learns good predictions for well-

represented patient groups, but performs

much worse in underrepresented patient

groups

- Subgroup analysis

- Bias-centered optimization metrics

- Explicit statistical debiasing methods

- Model interpretability methods

Publication Where medical AI models

are developed and

published, and by whom

Over 50% of published

clinical AI models use data

from US or China

Overrepresentation of certain priorities,

viewpoints, incentives

- Data collection from multiple

countries, healthcare systems

- International data sharing initiatives

AI research is biased

towards positive results and

certain medical domains

Radiology papers accounted

for over 40% of AI

publications in 2019

Lack of published negative results

provides incomplete view of clinical AI

limitations

- Multidisciplinary collaboration of

developers and clinicians

- Journals and funding agencies

incentivize publication in

underrepresented medical specialties

and negative results

Model

implementation

Sample selection bias: real-

world patients differ from

training cohort

Epic sepsis model Differential deterioration of model’s

performance and clinical utility across

patient groups

- Ongoing monitoring systems that

detect and quantify bias in model

predictions

- Explicit regulations for reporting bias

and demonstrating fairness

- Clinical trials for AI validation

End user biases Convoluted user interfaces,

documentation burdens,

inherent physician mistrust

Physicians follow AI recommendations

for certain patients but override it for

others

- Infrastructure for continuous

quantitative and qualitative feedback

- Regular retraining and model

updates

- Developers work with hospital

leaders and care providers to align

model with clinical workflow

- Interpretable AI for clinician trust

and adoption

https://doi.org/10.1371/journal.pdig.0000651.t001
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the data set of interest, ensuring appropriate representation across racial, ethnic, and other

sociodemographic dimensions.

During data preprocessing, statistical methods that account for data imbalance can be

employed. A popular strategy is oversampling, which aims to balance the data set by increasing

the number of instances in a minority class that a model is trained on [46–48]. Common tech-

niques include Synthetic Minority Over-sampling Technique (SMOTE), which generates syn-

thetic examples for the minority class by interpolating between existing minority class

instances, and Adaptive Synthetic Sampling (ADASYN), which uses a similar method to

SMOTE but focuses more on examples that are harder to classify (near the decision boundary)

[49,50]. Another related strategy is data augmentation, which involves generating new samples

based on random perturbations of existing data points [51–53].

Standardized reporting checklists such as the Prediction Model Risk of Bias Assessment

(PROBAST) tool have been developed to assess the risk of imbalanced data biases, which

allows both developers and downstream users (e.g., physicians, hospitals) to better understand

the suitability and limitations of AI-based systems in specific clinical settings [54–56].

Ultimately, the most powerful solution for sample size biases is to cultivate large, diverse

data sets. Although a resource-demanding process, such data sets can successfully represent

and account for variations within and across patient groups and will most directly lead to equi-

table and generalizable AI for clinical decisions. Collaborative efforts across institutions and

countries can facilitate the creation of such representative data sets.

Capturable but missing data

Definition and clinical consequences. AI models are computationally superhuman in

that they can quickly process and incorporate massive amounts of data in parallel, e.g., thou-

sands of past and present lab values in a patient’s electronic health record (EHR). On the other

hand, a key limitation of these algorithms is that they can only use data that is readily available,

and these data can be missing nonrandomly. This is especially true when models are applied to

clinical use-cases: Patients with low socioeconomic status (SES) have been shown to receive

fewer diagnostic tests and medications for certain (chronic) diseases [57]. These patients are

also more likely to receive care at multiple health institutions, which may utilize different EHR

systems (e.g., Epic versus Cerner) for storing patient data [57]. The recent advance of tele-

health has greatly increased the availability of patient-reported data collection (e.g., pain sur-

veys on smartphone apps) [58], but certain patient groups may have lower (digital) health

literacy or may be less able to self-report health outcomes. Even a patient’s choice to seek care

at all varies across sociodemographic factors [59]. Inequities in data missingness carry over to

AI tools trained on these data, especially those developed for assisting in clinical decision-mak-

ing. Such AI systems could systematically underestimate risks or miss important factors for

these patients, leading to worse care recommendations.

Illustrative example: ED bed allocation. For example, an algorithm that aims to identify

high-risk patients admitted to the emergency department for priority bed allocation might

incorporate past medical history into its risk computation, such as the presence or frequency

of certain ICD codes (previous diagnoses or procedures) from the patient’s existing EHR data

(e.g., past heart failure). From the algorithm’s perspective, the data either contains or does not

contain the ICD code; the algorithm cannot discern patients who “truly” have not had a prior

heart failure (despite a robust EHR record) from patients who only do not have the ICD record

due to some other factor (stored in the EHR of another institution). In the latter case, the algo-

rithm would assign a lower risk for these patients, which would systematically bias them

toward a lower risk prediction and may fail to qualify them for priority bed allocation. Thus,
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AI models trained on non-randomly missing patient data can yield worse clinical utility for

certain patient populations.

Mitigation strategies. Several mitigation strategies can be implemented to address the

issue of capturable but missing data. One common solution involves removing patients with a

certain threshold of missing variables from the training set. However, selecting for only near-

complete data can remove large portions of certain populations, biasing the data further and

leading to uninformative predictions for those groups. A better alternative involves statistical

techniques such as data imputation, where missing variables are filled in with likely values

based on similar patients (e.g., regression or nearest-neighbor based multiple imputation),

which can help mitigate bias caused by differential missing data [60,61]. Engineering compos-

ite features that are less sensitive to individual missing data points (trend-based variables such

as slopes) have shown resilience to data gaps [62].

Regarding fractured care across multiple EHR systems, strengthening data sharing proto-

cols and improving interoperability between health record systems can help ensure completion

and continuity of patient data for AI model training. Initiatives such as the Fast Healthcare

Interoperability Resources (FHIR) standard will be critical towards this goal [63]. Probabilistic

record linkage algorithms can help facilitate the combination of patient records across health

systems and data sets, reducing gaps in missing patient data [64,65]. Increased efforts have

been made to improve health literacy and encourage more consistent healthcare engagement

across diverse demographic groups [66,67], and in parallel, user-friendly interfaces for patient-

reported outcome measures, accommodating various levels of digital literacy, have shown

promise in increasing data completeness [68,69]. Developing protocols for targeted follow-up

with patients may assist the collection of high-value missing information, and design user

interfaces that highlight missing data to clinicians may encourage more complete data entry

during patient encounters.

Data that are not usually captured: Social determinants of health

Definition and clinical consequences. Social determinants of health (SDoH) are an illus-

trative example of data that are not often explicitly captured in patient records. SDoHs can be

dually defined as both (1) the social factors that promote or undermine individual or popula-

tion health; and (2) the social processes that underlie the unequal distribution of these factors

across groups [70,71]. Examples of SDoHs include access to care, social support networks,

education, transportation, and clinical knowledge [71,72]. These determinants can have pro-

found effects on patients’ health, particularly on older patients that have disproportionately

accumulated these effects over the life course (the “Weathering” effect) [73–75]. While some

factors like access to care can be proxied (e.g., using zip codes), others such as social supports

are likely not explicitly captured in patient records or are only sparsely present in unstructured

form (e.g., clinical notes).

Incorporating such data is challenging, often requiring the balancing of competing priori-

ties and incentives from multiple stakeholders. EHR software companies must invest time and

finances into developing necessary data infrastructures and user interfaces. Full research stud-

ies may be required to create meaningful and approved operationalizations of SDoHs. Even

then, the burden of parsing SDoH information that is clinically relevant (e.g., from verbally or

anecdotally conveyed information) may lie on a provider who is overwhelmed with adminis-

trative duties. Nevertheless, incorporating SDoHs and similarly uncaptured data is crucial

toward building clinically useful and unbiased decision-making tools. Failure to do so may

lead not only to worse performing models overall (missing out on clinically meaningful infor-

mation) but also disproportionately worse performance in groups whose SDoHs have
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increased and compounded effects [76]. In turn, a deployed AI system that does not incorpo-

rate SDoH data may produce worse care recommendations for patients whose health is signifi-

cantly impacted by social determinants.

Mitigation strategies. Standardized, easy-to-use data instruments like structured ques-

tionnaires or screening surveys that can (1) quantify SDoHs; and (2) be easily incorporated

into EHRs and clinical workflows would help facilitate systematic collection of SDoH data.

Some studies have already shown promise in both the logistical feasibility and clinical utility of

these instruments [77]. More recent natural language processing (NLP)-based methods, par-

ticularly LLMs like GPT-4, have also shown success in capturing SDoH information from

unstructured clinical notes and patient narratives, yielding tangible benefits for patient out-

comes [78,79].

Incorporating external, publicly available data sets on individual and community-level

SDoH factors, such as census data and environmental quality indices, can provide valuable

context to individual patient data about factors like living conditions and neighborhood

resources. Developing secure data-sharing partnerships with social service agencies and com-

munity organizations to access relevant SDoH information can further enrich the collection of

these information. Government programs and funding (reimbursement) initiatives can pro-

vide a system-level solution by incentivizing healthcare organizations to capture SDoH data.

Better capturing of these SDoHs may in turn more equitable and effective policymaking, espe-

cially through policies like Medicare and Medicaid that enable greater healthcare access for

marginalized populations [80,81].

Data labels and misclassification

Definition and clinical consequences. A third form of data bias involves the labels that

supervised machine learning models are trained to predict. Examples of common prediction

targets include in-hospital mortality, 30-day unplanned readmission, length of stay (LOS), and

diagnosis. The same implications of nonrandom missing patient data described previously

(related to patient features) also apply to prediction labels. However, additional factors that

drive bias in labels must be considered, along with their consequences for clinical decision-

making. For the purposes of a supervised training paradigm, data labels are considered the

“ground truth” from which models are optimized [82]. However, in clinical settings, the out-

come (e.g., diagnosis) reflects a subjective decision made by a single care provider.

A natural consequence of data label bias emerges in the form of misclassification, which

can be defined as systematic errors that occur when individuals are assigned to a category

other than the one they “should be” assigned to [83]. In clinical settings, what exactly consti-

tutes a misclassification can be difficult to define. A relatively clear misclassification could

involve the assignment of a hypertension diagnosis despite normal-range blood pressure val-

ues [83]. Whether that patient was “correctly” discharged shortly afterwards, however, may be

less objective. Furthermore, the degree of practitioner misclassification can vary along sociode-

mographic factors. This can be partially attributed to disparities in healthcare systems and the

delivery of medical care: Low SES patients are more likely to be seen at teaching institutions,

where clinical reasoning may be systematically different than other clinical settings serving

higher SES individuals [84]. Furthermore, uninsured and publicly insured patients (regardless

of institution) receive worse medical care than those with private insurance [85]. Implicit cog-

nitive biases of healthcare providers related to patient attributes (gender, race) can also lead to

variation in diagnoses (misclassification rates) and the quality of care, manifesting anywhere

from body language and word choice to biased treatment decisions [84]. Consequently, AI

models trained on potentially biased labels may perpetuate and amplify not only differential
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misclassifications and substandard care practices based on these social factors, but also the

original cognitive biases in its own predictions and recommendations.

Mitigation strategies. One solution for mitigating misclassification involves obtaining

higher quality labels through expert consensus. Multiple physicians can provide independent

labels (e.g., diagnosis) can help reduce individual bias. This approach can be particularly effec-

tive when combined with methods to assess inter-rater reliability and resolve discrepancies.

When appropriate, ensuring diversity of expertise and background in data labeling teams can

help mitigate systematic biases. Still, this process is expensive, time consuming, and may not

fully remove the effects of differential misclassification. Quantification of label and prediction

uncertainty provides another potential solution, where Bayesian approaches and ensemble

methods can be employed to provide confidence intervals or probability distributions of pre-

dictions [86–88]. Beyond the AI development pipeline, more direct healthcare initiatives, such

as implicit bias and cultural competency training programs, can improve awareness of uncon-

scious biases that may affect clinical decision-making. Reducing provider bias during diagnos-

tic and treatment decisions has been shown to demonstrably improve both algorithm

performance and overall clinical care quality [89].

Race and ethnicity in clinical algorithms

Definition and clinical consequences. In addition to racial and ethnic imbalances in

training data, there has been increased scrutiny on the use of race and ethnicity in predictive

clinical algorithms [9]. These concerns are rooted in a few factors. Race and ethnicity are social

constructs, not biological constructs [9,90]. Indeed, there is mounting evidence that race is not

a reliable proxy for genetic differences and, despite this lack of evidence, it has become accept-

able to adjust for race even without understanding what it represents in a given context [9].

The meaning of ethnicity can be context dependent, ranging from national origin to categories

that governments use to collect data for administrate and other purposes [90]. Another related

factor is overreliance of association without proper evidence of causation: Racial differences

may only be surrogates for socioeconomic or cultural deprivation [91]. The point is not to

neglect the fact that, as societal constructs, race and ethnicity can influence health and disease,

but rather to be as precise as possible about the causative social (e.g., racism, social class) and

biological factors (e.g., genetic variation) [90]. This is of particular importance when using AI

methods that typically lack straightforward interpretability and that prioritize predictive per-

formance over mechanistic understanding. Third, attribution of race and ethnicity by health-

care providers to patients is demonstrably unreliable [90], further complicating the use of

these factors in AI models. There are several well-documented instances of insufficient evi-

dence for race and ethnicity to be used as predictive factors in models. For example, there is

limited evidence for using black race as a factor for calculating estimated glomerular filtration

rate, a critical measure of kidney function [92]. Using race as a factor leads to overestimation

of kidney function in black patients, potentially leading to longer times to get on kidney trans-

plant lists [92–95].

Mitigation strategies. To extend beyond (or even replace) race as an input feature for

medical AI models, there have been significant efforts to reassess the use of race in risk calcula-

tors, which often leads to its elimination as a factor. Recent examples include cardiovascular

risk assessment [96], kidney function (e.g., estimated glomerular filtration rate) [93–95], and

risk of urinary tract infection in infants [97,98].The American Heart Association’s PREVENT

Equations use a social deprivation index to recognize the impact that social deprivation can

have on cardiovascular-kidney-metabolic conditions [96,99]. The Organ Procurement and

Transplantation Network recently required kidney programs to assess their waiting lists and
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correct waiting times for any black kidney candidates disadvantaged by the overestimation of

their kidney function due to race-inclusive calculations [95]. The development of optimal cal-

culators for estimating risk of urinary tract infection in infants is ongoing and reflects the com-

plex interplay between social constructs, clinical evidence, data analytics, and clinical change

management [98]. Greater capture and utilization of social determinants of health in medical

AI models for clinical risk prediction will be paramount.

Bias in model development and evaluation

Definition and clinical consequences. The next stage of developing a clinical AI model

involves the selection and training of algorithms (model development) and the subsequent

evaluation of these models on independent patient cohorts [11]. These steps inherit biases in

the training data and can also introduce their own biases. A naïve approach to developing

medical AI models on the part of the developer would be to assume inherent objectivity in

model outputs. From the model’s perspective—and perhaps the developer’s as well—the best-

performing solution is the one with the lowest loss or the best performance metric (e.g., area

under the curve; AUC). But this may result in a model learning good predictions for well-rep-

resented patient groups but performing much worse in underrepresented patient groups.

Model evaluation is thus a crucial checkpoint at which developers can identify bias introduced

during model training.

Mitigation strategies. One way to identify bias introduced during model development is

the method of subgroup analysis [100]. In addition to the overall performance, the model

developer will evaluate and report their AI model’s performance across patient subgroups

(e.g., for Low versus High SES patients, public versus private insured patients). Alternatively,

or in parallel, a developer might choose to leverage alternative optimization metrics beyond

accuracy or AUC that quantify bias (and thus inherently aim to debias model performance).

Such quantitative bias metrics include equalized odds and predictive parity [101]. Importantly,

these bias metrics should be chosen based on the algorithm’s intended clinical use. For exam-

ple, a model that exhibits predictive parity (no difference in precision across groups) may not

have equalized odds (similar sensitivity and specificity across groups), which metric is more

important to optimize on depends on the intended clinical use-case [101].

Model interpretability is another important step in both validation and bias mitigation,

offering insights into how decisions are generated (e.g., which features are most involved) or

explaining the behavior of “black box” models (e.g., deep learning models with millions of

parameters) [11]. Understanding how an AI model leverages features to make predictions

allows validation against current standards of care. Interpretability can also detect bias by

examining how the features that drive model predictions differ for patients in different sub-

groups (which may be differentially aligned with best care practices) [101]. Popular interpret-

ability methods for machine learning models include Shapley Additive Explanations (SHAP)

and Local Interpretable Model-agnostic Explanations (LIME) [102,103].

During model training, the loss function can be modified to assign higher weights to sam-

ples from underrepresented groups, encouraging the model to prioritize correct predictions

for these samples [104]. Regularization terms that penalize disparities in prediction across sub-

groups can achieve a similar result. Other statistical debiasing approaches for AI algorithms

that rigorously employ models into accounting for underrepresented groups include adversar-

ial debiasing and Prejudice Regularization [105,106]. These methods have been successfully

shown to achieve equitable subgroup performance while maintaining or even improving over-

all model performance [107,108], demonstrating that bias mitigation need not be at the

expense of overall performance.
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Bias in publication

Definition and clinical consequences. Where models are developed and published can

yield additional sources of bias in medical AI solutions for clinical decisions. One study found

that over half of all published clinical AI models in 2019 used training data from the US or

China, which likely reflects the advanced technological infrastructure of these countries con-

ducive to AI development [40]. This study also demonstrated disparities in author’s gender

(75% male), expertise (authors were predominately “data experts” rather than clinical experts),

and medical domain (radiology was substantially overrepresented at over 40%) [40]. Together,

these factors can bias the trajectories and priorities of future medical AI publications: a data

scientist may have different goals than a clinician with respect to model development and

implementation (e.g., optimizing performance versus maximizing clinical utility). This could

lead to an overemphasis on developing AI for certain applications while neglecting other that

may be equally or more impactful in clinical settings. Furthermore, the tendency of journals to

favor AI studies with positive results—especially those that demonstrate superior performance

—skews the published literature, giving an incomplete view of the AI landscape [109]. Bench-

mark data sets are commonly used to demonstrate relative (superior) performance, and only

algorithms that do well on these benchmarks get published [110].

Mitigation strategies. Researchers should strive to include data from a wider range of

countries and healthcare systems. This could involve international collaborations and cross-

country data sharing initiatives, facilitating AI model training on diverse and more globally

representative data sets and thereby improving their clinical utility for more patient popula-

tions. To reduce biases introduced by domain-specific perspectives, AI research teams should

consist of collaborations between clinicians, who understand practical healthcare needs, and

data scientists, who specialize in model development, which can lead to models that prioritize

clinical utility over solely technical performance. Journals and funding agencies might encour-

age and incentivize multidisciplinary co-authorship for studies that develop AI solutions

intended for clinical use, particularly in underrepresented medical AI domains like primary

care, mental health, and pediatrics [40]. To counteract positive-result publication bias, journals

might create dedicated spaces for publishing negative results or unsuccessful AI models, pro-

viding valuable insights for the field. In parallel, journals might require more detailed failure

commentary, where authors describe where and why their models may not perform well in

certain clinical contexts. Implementing preregistration of AI development for clinical use

where studies must be evaluated on methodology (regardless of final outcome) may also

reduce publication bias.

Bias in model implementation

The integration of AI models into real-world clinical workflows involves several stakeholders

across multiple levels of a healthcare system, including hospitals, providers, data scientists,

software engineers, and the government. Critically, bias can still emerge at this stage, even in

models that have received regulatory approval or appear to have “fully debiased” outputs.

Model deterioration in the real world: Sample selection bias

If the real-world patient cohort of interest differs from patients in the training and/or valida-

tion data set (e.g., by demographic makeup), medical AI model performance can deteriorate

and can do so differentially for different patient groups [11]. A similar trend can occur when

models trained at one institution are applied to the data at another institution [13]. This phe-

nomenon, known as sample selection bias, is well-studied in the literature and can lead to

biased and potentially harmful decisions in real-world clinical settings [111].
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A well-known example of sample selection bias is the Epic Sepsis Model (ESM), developed

on EHR data to generate automated warnings for clinicians that patients may be developing

sepsis [112]. The study authors found that the ESM had significantly worse AUC, sensitivity,

and specificity after deployment relative to initial reports, missing two-thirds of sepsis cases

and frequently issuing false alarms [112]. The fact the ESM performed much worse in real-

world deployment than in initial reports highlights the risk of AI systems being used clinically

before their real-world performance across diverse populations is thoroughly validated.

Deployed AI models for clinical decisions like the ESM can inappropriately increase triage

and trigger unnecessary diagnostic testing and prescriptions, decreasing the quality of clinical

care and increasing hospital costs [101]. A key strategy toward mitigating bias at the deploy-

ment stage, therefore, involves proper feedback loops that can continuously monitor and verify

model outputs and performance in clinical settings, particularly how these measures differ

across sociodemographic factors. Ongoing monitoring systems should also detect and quantify

biases in model predictions using bias metrics discussed previously. In addition to the tech-

niques for mitigating data biases discussed previously, advanced statistical methods that aim to

address sample selection bias by target population identification are under development [111].

End users of AI models

Another potential source of bias in model implementation is how end users (e.g., physicians)

use or do not use the deployed model solution. Initially, a physician may hesitate to trust a

model without understanding its underlying reasoning, which may prevent the realization of

equitable outcomes; model interpretability methods can help resolve this issue. Furthermore,

some clinicians may also choose to use or ignore model recommendations for other reasons

such as convoluted user interfaces or documentation burden, potentially leading to bias in

when AI is applied. If doctors are more likely to follow AI advice for certain patient groups but

override it for others, this could lead to inequitable application of the AI system. Feedback

infrastructures like surveys that can capture why these behaviors occur must therefore be

implemented to help understand and account for these factors. Developers must work in con-

junction with hospital leaders and care providers to align model implementation with clinical

workflow demands [101]. Integration of dashboards, visualizations, or notifications that help

clinicians understand potential biases in AI-assisted decisions may facilitate physician aware-

ness of AI limitations.

Validating AI for unbiased clinical application

The FDA’s Software as a Medical Device (SaMD) Action Plan regulates the translation of AI

models into real-world clinical use, often dubbed “translational AI” [10]. However, while the

evaluation criteria of SaMD focus on risk mitigation and the reproducibility and robustness

from the software perspective, there are no explicit FDA regulations that examine fairness or

bias in medical AI outputs, and indeed, many AI-driven SaMDs have displayed substandard

performance among racial and ethnic minorities [113]. Already, AI is employed in clinical tri-

als to accelerate enrollment, monitor patients (e.g., wearables), and improve retention

[29,114,115]. Prior to real-world implementation in clinical settings, we argue that rigorous

validation of translational AI is through clinical trials: AI should not only meet criteria for per-

formance, usability, and safety risks, but also report and demonstrate unbiased application.

Biases in medical large language models

Although recent LLMs have achieved unprecedented performance on NLP tasks in medicine

and other domains [116–118], medical LLMs deployed for clinical decision-making pose
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unique limitations and risks with respect to bias [119–122]. LLMs are autoregressive in nature,

which means they rely on the statistical patterns of which words have preceded others in their

training text corpora [123]. If a medical LLM has been trained on data that contains misinfor-

mation or biased content, LLMs deployed for clinical decision-making are at risk of reproduc-

ing these problematic contents [120,124–126]. This could lead to the AI system generating

biased and inaccurate information to clinicians. Furthermore, an LLM cannot assess itself—it

does not know whether the clinical guidelines it produces are accurate or harmful, recent or

outdated [120]. Finally, due to the probabilistic nature of LLM output generation, LLMs can

produce different outputs despite being prompted by the same instructions multiple times. In

a clinical setting, this inconsistency could lead to unreliable or inconsistent recommendations,

potentially affecting patient care. The bias mitigation techniques discussed throughout this

review apply to medical LLMs, particularly proper mechanisms for filtering and clinical verifi-

cation of training data, as well as continuous physician oversight and awareness of an LLM’s

potential to “hallucinate.” Some statistical debiasing methods designed for language models

are emerging; however, their implementation in real-world clinical LLMs remains limited

[127–132].

Conclusion

Bias can occur at all stages in the medical AI development pipeline, including biases in data

features (imbalanced samples, missing, or hard to capture variables), data annotations

(implicit provider biases), model development and evaluation (developer naivety), model

implementation (real world generalizability, end-user acceptance and utilization), and publica-

tion (authors and their priorities). These biases can have detrimental effects on both models

and clinical decision-making, which can contribute to and exacerbate longstanding disparities

in healthcare.

Addressing these biases is becoming increasingly possible due to methods and metrics that

can uncover and mitigate bias, but more research is needed. Going forward, larger and more

powerful medical AI models will be increasingly data hungry; efforts to collect larger and more

representative patient data must parallel these advancements. Improved bias reporting and

transparency in literature will be critical, as will the development of methods tailored to detect-

ing and mitigating bias in clinical decision-based AI. Additional discourse on intersecting

sources of bias that affect AI and clinical decision-making will be paramount, including biases

in healthcare regulation and insurance. Debiasing medical AI models will prove crucial in pre-

venting the perpetuation and exacerbation of health disparities and ensuring all patients bene-

fit equally from the future of medical AI.
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23. Koçak B, Ponsiglione A, Stanzione A, Bluethgen C, Santinha J, Ugga L, et al. Bias in artificial intelli-

gence for medical imaging: fundamentals, detection, avoidance, mitigation, challenges, ethics, and

prospects. Diagn Interv Radiol. 2024. https://doi.org/10.4274/dir.2024.242854 PMID: 38953330

24. Jones C, Castro DC, De Sousa RF, Oktay O, McCradden M, Glocker B. A causal perspective on data-

set bias in machine learning for medical imaging. Nat Mach Intell. 2024; 6(2):138–146.

25. Hort M, Chen Z, Zhang JM, Harman M, Sarro F. Bias mitigation for machine learning classifiers: A

comprehensive survey. ACM J Responsib Comput. 2024; 1(2):1–52.

26. Liu R, Rong Y, Peng Z. A review of medical artificial intelligence. Glob Health J. 2020; 4(2):42–45.

27. Chollet F. Deep learning with Python: Simon and Schuster; 2021.

28. Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V. Comparison of Conventional Statistical

Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina.

2020; 56(9):455. https://doi.org/10.3390/medicina56090455 PMID: 32911665

29. Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelli-

gence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discovery. 2024-

01-02; 19(1). https://doi.org/10.1080/17460441.2023.2273839 PMID: 37887266

30. Silcox C, Zimlichmann E, Huber K, Rowen N, Saunders R, McClellan M, et al. The potential for artificial

intelligence to transform healthcare: perspectives from international health leaders. NPJ Digit Med.

2024; 7(1). https://doi.org/10.1038/s41746-024-01097-6 PMID: 38594477

31. Khalifa M, Albadawy M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computer

Methods and Programs in Biomedicine. Dent Update. 2024:100146.

32. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444. https://doi.org/10.

1038/nature14539 PMID: 26017442

33. Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018; 320

(11):1101–1102. https://doi.org/10.1001/jama.2018.11100 PMID: 30178065

34. Visan AI, Negut I, Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context

of Revolutionizing Drug Delivery. Lifestyles. 2024;14, Page 233:2024-02-07; 14(2). https://doi.org/10.

3390/life14020233 PMID: 38398742

35. Chen H, King FJ, Zhou B, Wang Y, Canedy CJ, Hayashi J, et al. Drug target prediction through deep

learning functional representation of gene signatures. Nature IDAA Commun. 2024; 15:1. 2024-02-

29;15(1). https://doi.org/10.1038/s41467-024-46089-y PMID: 38424040

36. El Nahhas OSM, Loeffler CML, Carrero ZI, van Treeck M, Kolbinger FR, Hewitt KJ, et al. Regression-

based Deep-Learning predicts molecular biomarkers from pathology slides. Nature IDAA Commun.

2024;15:1. 2024-02-10; 15(1). https://doi.org/10.1038/s41467-024-45589-1 PMID: 38341402

37. Nazi ZA, Peng W, Nazi ZA, Peng W. Large Language Models in Healthcare and Medical Domain: A

Review. Inform. 2024; 11, Page 57:2024-08-07; 11(3). https://doi.org/10.3390/informatics11030057

38. Gibbons MC. A Historical Overview of Health Disparities and the Potential of eHealth Solutions. J Med

Internet Res. 2005; 7(5):e50. https://doi.org/10.2196/jmir.7.5.e50 PMID: 16403714

39. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S, et al. Assessing and Mitigating Bias in

Medical Artificial Intelligence. Circ Arrhythm Electrophysiol. 2020; 13(3). https://doi.org/10.1161/

circep.119.007988 PMID: 32064914

40. Celi LA, Cellini J, Charpignon M-L, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial

intelligence that perpetuate healthcare disparities—A global review. PLoS Digit Health. 2022; 1(3):

e0000022. https://doi.org/10.1371/journal.pdig.0000022 PMID: 36812532

41. D’Alessandro B, O’Neil C, Lagatta T. Conscientious Classification: A Data Scientist’s Guide to Discrim-

ination-Aware Classification. Big Data. 2017; 5(2):120–134. https://doi.org/10.1089/big.2016.0048

PMID: 28632437

42. Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. Racial bias in pulse oximetry measure-

ment. N Engl J Med. 2020; 383(25):2477–2478. https://doi.org/10.1056/NEJMc2029240 PMID:

33326721

PLOS DIGITAL HEALTH Bias in medical AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000651 November 7, 2024 15 / 19

https://doi.org/10.1038/s41746-023-00913-9
https://doi.org/10.1038/s41746-023-00913-9
http://www.ncbi.nlm.nih.gov/pubmed/37700029
https://doi.org/10.1001/jamadermatol.2021.3129
http://www.ncbi.nlm.nih.gov/pubmed/34550305
https://doi.org/10.4274/dir.2024.242854
http://www.ncbi.nlm.nih.gov/pubmed/38953330
https://doi.org/10.3390/medicina56090455
http://www.ncbi.nlm.nih.gov/pubmed/32911665
https://doi.org/10.1080/17460441.2023.2273839
http://www.ncbi.nlm.nih.gov/pubmed/37887266
https://doi.org/10.1038/s41746-024-01097-6
http://www.ncbi.nlm.nih.gov/pubmed/38594477
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1001/jama.2018.11100
http://www.ncbi.nlm.nih.gov/pubmed/30178065
https://doi.org/10.3390/life14020233
https://doi.org/10.3390/life14020233
http://www.ncbi.nlm.nih.gov/pubmed/38398742
https://doi.org/10.1038/s41467-024-46089-y
http://www.ncbi.nlm.nih.gov/pubmed/38424040
https://doi.org/10.1038/s41467-024-45589-1
http://www.ncbi.nlm.nih.gov/pubmed/38341402
https://doi.org/10.3390/informatics11030057
https://doi.org/10.2196/jmir.7.5.e50
http://www.ncbi.nlm.nih.gov/pubmed/16403714
https://doi.org/10.1161/circep.119.007988
https://doi.org/10.1161/circep.119.007988
http://www.ncbi.nlm.nih.gov/pubmed/32064914
https://doi.org/10.1371/journal.pdig.0000022
http://www.ncbi.nlm.nih.gov/pubmed/36812532
https://doi.org/10.1089/big.2016.0048
http://www.ncbi.nlm.nih.gov/pubmed/28632437
https://doi.org/10.1056/NEJMc2029240
http://www.ncbi.nlm.nih.gov/pubmed/33326721
https://doi.org/10.1371/journal.pdig.0000651


43. Adamson AS, Smith A. Machine Learning and Health Care Disparities in Dermatology. JAMA Derma-

tol. 2018; 154(11):1247. https://doi.org/10.1001/jamadermatol.2018.2348 PMID: 30073260

44. Röösli E, Bozkurt S, Hernandez-Boussard T. Peeking into a black box, the fairness and generalizabil-

ity of a MIMIC-III benchmarking model. Sci Data. 2022; 9(1). https://doi.org/10.1038/s41597-021-

01110-7 PMID: 35075160

45. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A. Multitask learning and benchmark-

ing with clinical time series data. Sci Data. 2019; 6(1). https://doi.org/10.1038/s41597-019-0103-9

PMID: 31209213

46. Mohammed R, Rawashdeh J, Abdullah M, editors. Machine learning with oversampling and under-

sampling techniques: overview study and experimental results. 2020 11th international conference on

information and communication systems (ICICS); 2020: IEEE.

47. Zhou Y, Kantarcioglu M, Clifton C, editors. On improving fairness of AI models with synthetic minority

oversampling techniques. Proceedings of the 2023 SIAM International Conference on Data Mining

(SDM); 2023: SIAM.

48. Viloria A, Lezama OBP, Mercado-Caruzo N. Unbalanced data processing using oversampling:

machine learning. Procedia Comput Sci. 2020; 175:108–113.

49. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling tech-

nique. J Artif Intell Res. 2002; 16:321–357.

50. He H, Bai Y, Garcia EA, Li S, editors. ADASYN: Adaptive synthetic sampling approach for imbalanced

learning. 2008 IEEE international joint conference on neural networks (IEEE world congress on

computational intelligence); 2008: IEEE.

51. Jaipuria N, Zhang X, Bhasin R, Arafa M, Chakravarty P, Shrivastava S, et al., editors. Deflating dataset

bias using synthetic data augmentation. Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops; 2020.

52. Mumuni A, Mumuni F. Data augmentation: A comprehensive survey of modern approaches. Array.

2022; 16:100258.

53. Sharma S, Zhang Y, Rı́os Aliaga JM, Bouneffouf D, Muthusamy V, Varshney KR, editors. Data aug-

mentation for discrimination prevention and bias disambiguation. Proceedings of the AAAI/ACM Con-

ference on AI, Ethics, and Society; 2020.

54. Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to

assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019; 170(1):51–

58. https://doi.org/10.7326/M18-1376 PMID: 30596875

55. Hernandez-Boussard T, Bozkurt S, Ioannidis JP, Shah NH. MINIMAR (MINimum Information for Medi-

cal AI Reporting): Developing reporting standards for artificial intelligence in health care. J Am Med

Inform Assoc. 2020; 27(12):2011–2015. https://doi.org/10.1093/jamia/ocaa088 PMID: 32594179

56. Szczekocka E, Tarnec C, Pieczerak J, editors. Standardization on bias in Artificial Intelligence as

industry support. 2022 IEEE International Conference on Big Data (Big Data); 2022: IEEE.

57. Arpey NC, Gaglioti AH, Rosenbaum ME. How Socioeconomic Status Affects Patient Perceptions of

Health Care: A Qualitative Study. J Prim Care Community Health. 2017; 8(3):169–175. https://doi.org/

10.1177/2150131917697439 PMID: 28606031

58. Calvert M, Thwaites R, Kyte D, Devlin N. Putting patient-reported outcomes on the ‘Big Data Road

Map’. J R Soc Med. 2015; 108(8):299–303. https://doi.org/10.1177/0141076815579896 PMID:

25827908

59. Council NR. Understanding racial and ethnic differences in health in late life: A research agenda 2004.

60. Al-Helali B, Chen Q, Xue B, Zhang M. A new imputation method based on genetic programming and

weighted KNN for symbolic regression with incomplete data. Soft Comput. 2021; 25(8):5993–6012.

61. Beesley LJ, Bondarenko I, Elliot MR, Kurian AW, Katz SJ, Taylor JM. Multiple imputation with missing

data indicators. Stat Methods Med Res. 2021; 30(12):2685–2700. https://doi.org/10.1177/

09622802211047346 PMID: 34643465

62. Futoma J, Hariharan S, Heller K, editors. Learning to detect sepsis with a multitask Gaussian process

RNN classifier. International conference on machine learning; 2017: PMLR.

63. Vorisek CN, Lehne M, Klopfenstein SAI, Mayer PJ, Bartschke A, Haese T, et al. Fast healthcare inter-

operability resources (FHIR) for interoperability in health research: systematic review. JMIR Med

Inform. 2022; 10(7):e35724. https://doi.org/10.2196/35724 PMID: 35852842

64. Randall SM, Ferrante AM, Boyd JH, Bauer JK, Semmens JB. Privacy-preserving record linkage on

large real world datasets. J Biomed Inform. 2014; 50:205–212. https://doi.org/10.1016/j.jbi.2013.12.

003 PMID: 24333482

PLOS DIGITAL HEALTH Bias in medical AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000651 November 7, 2024 16 / 19

https://doi.org/10.1001/jamadermatol.2018.2348
http://www.ncbi.nlm.nih.gov/pubmed/30073260
https://doi.org/10.1038/s41597-021-01110-7
https://doi.org/10.1038/s41597-021-01110-7
http://www.ncbi.nlm.nih.gov/pubmed/35075160
https://doi.org/10.1038/s41597-019-0103-9
http://www.ncbi.nlm.nih.gov/pubmed/31209213
https://doi.org/10.7326/M18-1376
http://www.ncbi.nlm.nih.gov/pubmed/30596875
https://doi.org/10.1093/jamia/ocaa088
http://www.ncbi.nlm.nih.gov/pubmed/32594179
https://doi.org/10.1177/2150131917697439
https://doi.org/10.1177/2150131917697439
http://www.ncbi.nlm.nih.gov/pubmed/28606031
https://doi.org/10.1177/0141076815579896
http://www.ncbi.nlm.nih.gov/pubmed/25827908
https://doi.org/10.1177/09622802211047346
https://doi.org/10.1177/09622802211047346
http://www.ncbi.nlm.nih.gov/pubmed/34643465
https://doi.org/10.2196/35724
http://www.ncbi.nlm.nih.gov/pubmed/35852842
https://doi.org/10.1016/j.jbi.2013.12.003
https://doi.org/10.1016/j.jbi.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24333482
https://doi.org/10.1371/journal.pdig.0000651


65. Karr AF, Taylor MT, West SL, Setoguchi S, Kou TD, Gerhard T, et al. Comparing record linkage soft-

ware programs and algorithms using real-world data. PLoS ONE. 2019; 14(9):e0221459. https://doi.

org/10.1371/journal.pone.0221459 PMID: 31550255

66. Kountz DS. Strategies for improving low health literacy. Postgrad Med. 2009; 121(5):171–177. https://

doi.org/10.3810/pgm.2009.09.2065 PMID: 19820287

67. Nutbeam D, McGill B, Premkumar P. Improving health literacy in community populations: a review of

progress. Health Promot Int. 2018; 33(5):901–911. https://doi.org/10.1093/heapro/dax015 PMID:

28369557

68. Fitzpatrick PJ. Improving health literacy using the power of digital communications to achieve better

health outcomes for patients and practitioners. Front Digit Health. 2023; 5:1264780. https://doi.org/10.

3389/fdgth.2023.1264780 PMID: 38046643

69. Fromme EK, Kenworthy-Heinige T, Hribar M, Fromme EK, Kenworthy-Heinige T, Hribar M. Develop-

ing an easy-to-use tablet computer application for assessing patient-reported outcomes in patients

with cancer. Support Care Cancer. 2010;19(6). https://doi.org/10.1007/s00520-010-0905-y PMID:

20512360

70. Graham H. Social Determinants and Their Unequal Distribution: Clarifying Policy Understandings. Mil-

bank Q 2004; 82(1):101–124. https://doi.org/10.1111/j.0887-378x.2004.00303.x PMID: 15016245

71. Marmot M. Social determinants of health inequalities. Lancet. 2005; 365(9464). https://doi.org/10.

1016/S0140-6736(05)71146-6 PMID: 15781105

72. Islam MM. Social Determinants of Health and Related Inequalities: Confusion and Implications. Front

Public Health. 2019: 7. https://doi.org/10.3389/fpubh.2019.00011 PMID: 30800646

73. Griffith DM, Ellis KR, Allen JO. An Intersectional Approach to Social Determinants of Stress for African

American Men. Am J Mens Health. 2013; 7(4_suppl):19S–30S. https://doi.org/10.1177/

1557988313480227 PMID: 23462019
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