
Raplee et al. Antimicrob Resist Infect Control           (2021) 10:36  
https://doi.org/10.1186/s13756-021-00903-0

RESEARCH

Emergence of nosocomial associated 
opportunistic pathogens in the gut microbiome 
after antibiotic treatment
Isaac Raplee†, Lacey Walker†, Lei Xu†, Anil Surathu, Ashok Chockalingam, Sharron Stewart, Xiaomei Han, 
Rodney Rouse and Zhihua Li* 

Abstract 

Introduction:  According to the Centers for Disease Control’s 2015 Hospital Acquired Infection Hospital Prevalence 
Survey, 1 in 31 hospital patients was infected with at least one nosocomial pathogen while being treated for unre-
lated issues. Many studies associate antibiotic administration with nosocomial infection occurrence. However, to our 
knowledge, there is little to no direct evidence of antibiotic administration selecting for nosocomial opportunistic 
pathogens.

Aim:  This study aims to confirm gut microbiota shifts in an animal model of antibiotic treatment to determine 
whether antibiotic use favors pathogenic bacteria.

Methodology:  We utilized next-generation sequencing and in-house metagenomic assembly and taxonomic 
assignment pipelines on the fecal microbiota of a urinary tract infection mouse model with and without antibiotic 
treatment.

Results:  Antibiotic therapy decreased the number of detectable species of bacteria by at least 20-fold. Furthermore, 
the gut microbiota of antibiotic treated mice had a significant increase of opportunistic pathogens that have been 
implicated in nosocomial infections, like Acinetobacter calcoaceticus/baumannii complex, Chlamydia abortus, Bacte-
roides fragilis, and Bacteroides thetaiotaomicron. Moreover, antibiotic treatment selected for antibiotic resistant gene 
enriched subpopulations for many of these opportunistic pathogens.

Conclusions:  Oral antibiotic therapy may select for common opportunistic pathogens responsible for nosocomial 
infections. In this study opportunistic pathogens present after antibiotic therapy harbored more antibiotic resistant 
genes than populations of opportunistic pathogens before treatment. Our results demonstrate the effects of anti-
biotic therapy on induced dysbiosis and expansion of opportunistic pathogen populations and antibiotic resistant 
subpopulations of those pathogens. Follow-up studies with larger samples sizes and potentially controlled clinical 
investigations should be performed to confirm our findings.
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Introduction
Patients who acquire a nosocomial infection have 
approximately a 1 in 10 chance of mortality during their 
hospitalization [1]. In 2009, hospital acquired infections 
(HAIs) were estimated to cost about 45 billion dollars 
in direct costs [2]. One of the most common primary 
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nosocomial infections is urinary tract infection (UTI). 
Recent research suggests oral antibiotic treatment of a 
primary nosocomial infection, like a UTI, is indirectly 
linked to secondary nosocomial antibiotic resistant infec-
tions [3, 4]. Secondary nosocomial infections are often 
multi-drug resistant opportunistic pathogens, such as, 
the Acinetobacter calcoaceticus/baumannii complex or 
Clostridioides difficile [5–7]. The human gut and intes-
tinal microbiome are heavily populated with diverse 
microbial organisms. It is well known that antibiotic 
treatment reduces the diversity and number of bacte-
ria in the digestive microbiome. Furthermore, it is well 
established that normal microbiota helps prevent the 
growth of pathogenic bacteria [8, 9]. We acknowledge the 
great amount of work showcasing antimicrobial therapy 
induced Clostridiodes difficile infection [10]. However, to 
our knowledge there is very little other direct experimen-
tal evidence that antibiotic treatment specifically selects 
for opportunistic pathogens associated with HAI in the 
gut microbiome.

The introduction of high-throughput sequencing tech-
nology has led to powerful advances in microbial com-
munity ecology composition and function assessments. 
Despite the extensive advancements in high-throughput 
sequencing there is a large portion of the human gut 
microbiome composition still uncharacterized. The two 
major sequencing methods used to assess microbial com-
munities of human systems are amplicon sequencing and 
whole metagenome sequencing (WMS). While amplicon 
sequencing may provide enough information to assess 
composition, there are biases present, from amplification 
and primer selection, that cannot be ignored [11]. Addi-
tionally, WMS is the preferred method for strain assess-
ment and functional profiling of diverse microbiomes. 
Traditionally, taxonomy profiling of WMS data relies on 
mapping each individual read to reference databases. 
However, a common issue with such a method is the 
large portion of unmappable reads from uncharacterized 
species and subspecies present in the microbiome. Most 
reference databases are built from cultivated microbes. 
Unfortunately, many species present in microbial ecosys-
tems are not able to be cultivated and therefore reference 
genome databases only represent a portion of species 
present. Even culture-independent genomic approaches 
have a large presence of unexplored microbial popula-
tions [12, 13].

Recently we applied a traditional read-mapping based 
method to the metagenome analysis of antibiotic treated 
mice and revealed a decrease of gut microbiota diversity 
and enrichment of antibiotic resistance genes (ARGs) 
in the gut [14]. However, as with many other studies, 
the read-mapping method left a large portion of the 
reads uncharacterized. In this paper we implemented 

an inhouse pipeline that incorporates metagenome 
assembly, gene prediction, and lowest common ancestor 
taxonomic assignment (Fig. 1). Such a method not only 
greatly increased the portion of characterizable reads, but 
also expanded upon the direct evidence that antibiotic 
treatment for a common healthcare-associated infection 
selects for a gut antibiotic resistant reservoir of oppor-
tunistic pathogens associated with HAIs, in addition to 
the well-established digestive microbiome dysbiosis.

Materials and methods
Animal studies
Experiments were conducted on BALB/c female mice 
(Taconic Biosciences, Derwood, MD) 8 – 10 weeks old. 
The same strain, sex and age mice were obtained from the 
same vendor and the same location in the vendor facil-
ity. Mice were randomly allocated to control or treatment 
groups (Ampicillin, Ciprofloxacin, or Fosfomycin treated 
groups), each with 4 animals. Not all animals yielded suf-
ficient amount of sequencing reads (> ~ 10 million per 
sample) and in the end 3 animals per group were used for 
subsequent sequencing analysis. To recapitulate the most 
common nosocomial infection, a urinary tract infection 
model previously described [15–17] was used. All mice, 
except two of the three control mice, were inoculated 
with CFT073 uropathogenic E.coli (ATCC, Manassas, 
VA) to create the UTI model. Our previous study showed 
no discernable difference in the gut microbiome of naïve 
and urinary tract infection model mice [14]. Treatment 
groups include antibiotics Ampicillin, Ciprofloxacin, and 
Fosfomycin. Ampicillin treatment was with ampicillin 
trihydrate (Sigma, St. Louis, MO) 200  mg/kg in 0.1  M 
HCl twice daily with an 8-h interval for three consecu-
tive days. Ciprofloxacin treatment was with a 5% oral 
suspension 50  mg/kg (Bayer HeathCare, Whippany, NJ) 
twice daily with an 8-h interval for three consecutive 
days. Fosfomycin treatment was with Monurol® Fosfo-
mycin tromethamine 1000  mg/kg (Forest Pharmaceuti-
cal Inc., St Louis, MO) once daily for three consecutive 
days. Fecal samples to be sequenced were collected from 
the distal ileum and proximal colon after the third day of 
treatment. All animal studies were done in accordance 
with an approved protocol from the Institutional Ani-
mal Care and Use Committee of the White Oak Federal 
Research Center.

DNA extraction and sequencing
Genomic DNA extraction and sequencing was com-
pleted as previously described [14]. Briefly, collected fecal 
samples had DNA extracted using QIAamp DNA stool 
mini kit (Qiagen, Germantown, MD) with slight modifi-
cations to the protocol. Libraries were prepared with the 
Nextera DNA Library Prep Kit (Illumina, San Diego, CA) 
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and sequenced on the NextSeq 500 Sequencing system 
(Illumina, San Diego, CA).

Host reads removal and metagenomic assembly
Sample outputs were processed into raw read fastq files 
with bcl2fastq2 (version 2.18.0.12, Illumina Inc.). Host 
reads were removed by first aligning reads to an indexed 
mouse genome (generated by downloading all sequences 
from the National Center for Biotechnology Information 
(NCBI) databases with the taxonomy ID of 10,090) using 
BWA-MEM (version 0.7.12), then unmapped reads were 
extracted using SAMtools (version 0.1.18) with param-
eters “-h -f 4”, and the output was converted to fastq 
with Picard-Tools (version 2.1.1) SamToFastq function. 
Assembly was performed with SPAdes (version 3.12.0) 
using the recommended parameters “-k 21,33,55,77” 
with the –meta flag to initiate MetaSPAdes mode for 
paired end samples (Control, Ampicillin and Ciprofloxa-
cin cohorts) [18] and -s flag for single end samples (Fos-
fomycin) [19]. All scaffolds with greater than 500 bps 

were retained for downstream analysis. To further select 
for microorganism scaffolds another round of host read 
removal was performed.

Gene prediction and scaffold divergence classification
The MetaGeneAnnotator program [20] was used to 
predict genes within retained scaffolds for each sample. 
The resulting text file output was converted to BED for-
mat using an inhouse python script (https​://githu​b.com/
FDA/metag​enome​). Gene sequences were extracted 
from the retained scaffold using BEDTools [21] and the 
BED file of results, generating a gene prediction results 
fasta file. We characterized each scaffold using meth-
ods described by Kowarsky et  al. [22]. Briefly, scaffolds 
were characterized as either novel, divergent, or known. 
Novel scaffolds were all those with BLASTn alignments 
that spanned less than 20% of bases and had an average 
gene identity below 60%. Scaffolds were assigned to the 
known category if their average gene identity was greater 
than 80%. Divergent scaffolds were all those that neither 

Fig. 1  Bioinformatics pipeline. While traditional metagenome analysis methods align reads with sequences in reference databases and perform 
taxonomy assignment directly, the method we used assembles reads into longer scaffolds before mapping to reference databases, and relies on 
lowest common ancestor (LCA) analysis to perform taxonomy assignment because scaffolds can potentially harbor multiple predicted genes. The 
longer length of scaffolds also makes it possible to classify scaffolds into one of the known, divergent, or novel categories based on their overall 
sequence similarity with reference databases. Publicly available tools used are annotated on top of boxes where used in the pipeline. Boxes in the 
center refer to publicly available databases used in the pipeline. NCBI: National Center for Biotechnology Information

https://github.com/FDA/metagenome
https://github.com/FDA/metagenome
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fit into novel or known. To determine gene identity of 
each scaffold each samples’ predicted genes results fasta 
file was aligned with BLASTx to the NCBI nonredundant 
protein database (https​://ftp.ncbi.nlm.nih.gov/blast​/db/
FASTA​/nr.gz). To determine alignment coverage scaf-
folds greater than 500bps in length were aligned with 
BLASTn to NCBI nucleotide database (https​://ftp.ncbi.
nlm.nih.gov/blast​/db/FASTA​/nt.gz). BLASTn alignments 
to determine coverage were completed with the follow-
ing parameters “-task megablast -evalue 1e-6 -max_tar-
get_seqs 1 -best_hit_score_edge 0.05 -best_hit_overhang 
0.05 -window_size 0 -percent_identity 90”. BLASTx 
alignments to determine percent identity were com-
pleted with the following parameters “-max_target_seqs 
1 -evalue 1e-6”. All BLAST alignments were completed 
using a local installation of the BLAST command line 
application BLAST + (version 2.3.0) [23].

Taxonomy, opportunistic pathogen, and antibiotic 
resistance profiling
Taxonomic assignment for scaffolds was performed in 
three steps. First, the top 10 hits from each predicted 
gene in a BLASTx alignment to the NCBI RefSeq data-
base sorted by bitscore were retained and stored in an 
in-house developed SQLite database through the R pack-
age RSQLite (https​://cran.r-proje​ct.org/packa​ge=RSQLi​
te). The top scoring hits for a predicted gene with at least 
60% positive scoring matches were retained for low-
est common ancestor analysis. Second, the full length 
of each scaffold was mapped to the NCBI NT database 
through BLASTn, and any scaffold with over 90% percent 
identity with any mouse sequences were removed. Third, 
the taxon id of the lowest common ancestor of all the 
retained top BLASTx hits was assigned to the scaffold. To 
determine the abundance of opportunistic pathogens we 
counted how many reads of each sample aligned to the 
genome of opportunistic pathogens using Bowtie2 (ver-
sion 2.1.0). For plotting purpose, normalization was per-
formed by multiplying mapped read counts by 1 million 
and then dividing by the total number of reads from the 
respective sample (reads per million). To determine the 
profile of antibiotic resistance genes for specific species 
present we aligned predicted genes using BLASTx to the 
CARD database (August, 2019) [24]. Counts were tallied 
for every read that was aligned to the CARD database 
and was associated with a scaffold from an opportunistic 
pathogen.

Statistical analysis
ARG counts and counts of reads mapping to opportun-
istic pathogens were normalized using edgeR’s default 
normalization method (TMM normalization) and edg-
eR’s analysis functions, glmFit, and glmLRT were used 

to estimate the dispersion and test for differential abun-
dance [25].

Results
Scaffold assembly increased percent of reads mapped
To characterize the microbiome, filtered reads were 
mapped using BLASTn to the NCBI nucleotide data-
base. To increase mapping rates, we performed de novo 
assembly of reads into scaffolds. A total of 313,519 scaf-
folds greater than 500 bps were created for the Control 
cohort. Ampicillin, Ciprofloxacin, and Fosfomycin-
treated groups had 12,438, 25,171, and 5,331 scaffolds 
greater than 500 bps generated, respectively. Assembly 
in conjunction with de novo gene prediction (see Meth-
ods) increased the average percent of reads mapped in 
the Control cohort by ~ 77%, and ~ 67% in Fosfomycin 
cohort (Fig. 2). Little change occurred in mapping rates 
for the Ampicillin and Ciprofloxacin Cohorts.

A large portion of uncharacterized scaffolds are 
not present in antibiotic treated mice gut microbiomes
Through a characterization method described in 
Kowarsky et  al.[22], we classified the assembled scaf-
folds into three categories: novel (BLASTn < 20% of 
nts and gene identity < 60%), known (BLASTn > 80% of 
nts), and divergent (neither novel or known; see Meth-
ods). We determined that 129,272 of the 313,519 Con-
trol scaffolds were collected from novel scaffolds likely 
to originate from genomes not fully characterized. 
Ampicillin-treated mice had 2,877 of their 12,438 scaf-
folds classified as novel. Interestingly, the Ciprofloxa-
cin group only had 274 of its 25,171 scaffolds classified 
as novel. Lastly, Fosfomycin-treated group had 192 of 
its 5,331 scaffolds classified as novel. Because different 
scaffolds had different lengths, we further analyzed the 
portion of base pairs assigned to each category to nor-
malize the effect of scaffold length. Control had 42% of 
scaffold base pairs assigned to the novel characteriza-
tion (Fig.  3). Ampicillin, Ciprofloxacin, and Fosfomy-
cin had 28%, 2%, and 1% of scaffold base pairs assigned 
to novel, respectively. In addition, Control had ~ 40% 
of their predicted genes come from novel scaffolds 
(Additional file  1:  Table  1). Ampicillin, Ciprofloxacin, 
and Fosfomycin treatment groups had 24%, 2%, and 
2% of their predicted genes come from novel scaffolds, 
respectively (Table 1). Markedly, antibiotic treated mice 
had a large reduction in scaffolds, predicted genes, and 
reads coming from novels scaffolds (Fig.  3, Additional 
file 1:  Table 1). Further break down of the characteriza-
tion of scaffolds for each cohort can be found in Addi-
tional file 1:  Table 1.

https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
https://cran.r-project.org/package=RSQLite
https://cran.r-project.org/package=RSQLite
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Antibiotic treatment selects for opportunistic pathogens
Higher level analysis was performed through taxonomic 
profiling based on a lowest common ancestor approach 
briefly described in methods. Lowest common ances-
tor assignment revealed that most control cohort scaf-
folds only had enough information to be assigned to the 
phylum level, with Firmicutes being the top phylum. 
Some control scaffolds were able to be identified at the 
species level and the top 10 species were from the Fir-
micutes phylum and Clostridiales order with the initia-
tion of divergent branching occurring at the family level 
(Table  1). A total of 1,878 unique bacterial species with 
at least 5 scaffolds each were found in the control cohort. 
Conversely, Ampicillin, Ciprofloxacin, and Fosfomycin-
treated groups only had 44, 108, and 49 unique bacterial 
species assigned with at least 5 scaffolds, respectively. 
Unlike the control cohort, the top 10 species present in 
each antibiotic treatment cohort had opportunistic path-
ogens present. Most notably, Ampicillin treated animals 
presented with Acinetobacter calcoaceticus/bauman-
nii complex and Chlamydia abortus species of oppor-
tunistic pathogens (Table 1, highlighted in red). The top 
10 species for Ciprofloxacin treated animals included 

opportunistic pathogens Chlamydia abortus, Clostridi-
oides difficile, and Staphylococcus aureus (Table 1, high-
lighted in red). Fosfomycin’s top 10 species included 
Bacteroides fragilis and Bacteroides thetaiotaomicron, 
common gut microbes known for pathogenesis outside of 
the gut system (Table 1, highlighted in red). Importantly, 
some scaffolds we identified are likely from uncharacter-
ized genomes (or epichromosomal elements) of specific 
pathogen species, as they harbor genes that are similar 
to, but distinct from, known genes of pathogen origin 
(Fig. 4).

Quantitative analysis of read counts reveals opportunistic 
pathogen selection following antibiotic treatment
Employing a quantitative analysis (see Methods) based 
on reads mapped to predicted genes harbored by oppor-
tunistic pathogens, we determined that Chlamydia abor-
tus and Acinetobacter calcoaceticus/baumannii complex 
had roughly 40-fold and 7-fold more normalized read 
counts in the Ampicillin group than in the Control group, 
respectively (Fig.  5). Chlamydia trachomatis, which 
was undetectable in Control group, registered a mod-
est increase in normalized read counts in Ampicillin 

Fig. 2  Comparison of Mapped Reads before and after assembly. Pre-assembly mapped reads (Grey): percentage of reads that can be mapped to 
the NCBI nucleotide database. Post-assembly mapped reads (Gold): percentage of read that can either be mapped to the NCBI nucleotide database 
or be assembled into a gene that can be mapped to the NCBI nucleotide or protein databases. Control, Ampicillin, and Ciprofloxacin cohorts had 
scaffolds assembled using pair-end reads. Fosfomycin cohort contigs were assembled using single end reads. See Methods for details
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and Ciprofloxacin treated mice. The Fosfomycin cohort 
had > 30-fold more normalized reads mapped to both 
Bacteroides fragilis and Bacteroides thetaiotaomicron 
than the Control cohort. According to our analysis the 
opportunistic pathogen with the highest relative abun-
dance (read counts relative to/normalized by the total 
microbiome reads from each sample) following antibiotic 
treatment was Bacteroides fragilis, which had on average 
17,678 reads per million in the Fosfomycin-treated sam-
ples. This is a 46-fold increase in the relative abundance 

from the control group, where this opportunistic patho-
gen had on average 376 reads per million (Fig. 5).

Higher number of antibiotic resistant genes in antibiotic 
selected opportunistic pathogen populations
Some top opportunistic pathogen species selected by 
antibiotics (Table 1) do not show an increase in relative 
abundance after antibiotic treatment compared to con-
trol (Fig. 5). To examine other changes of these opportun-
istic pathogen populations in antibiotic treated cohorts, 

Fig. 3  Composition of different categories of genomic scaffolds in each cohort. For each cohort, the assembled scaffolds are classified into one of 
the three categories: known, novel, and divergent. The classification is based on the degree of similarity between the predicted genes on scaffolds 
and known genes in the NCBI database. Novel scaffolds have BLASTn alignments that spanned less than 20% of bases and had an average gene 
identity below 60%. Known scaffolds had an average gene identity greater than 80%. Divergent scaffolds were all those that neither fit into novel or 
known (in Gene Prediction and Scaffold Divergence Classification section of Methods). The percentage of base pairs from scaffolds in each category 
relative to the total number of base pairs from all scaffolds is shown. Of note samples from the Fosfomycin cohort went through single-end 
sequencing while all other cohorts went through paired-end sequencing (see Methods and Discussion). The three categories of scaffolds (Novel, 
Known, and Divergent) were separately analyzed in downstream analysis
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Table 1  Top species by the number of contigs for the control and antibiotic treatment cohorts

Control Ampicillin Ciprofloxacin Fosfomycin

Acetatifactor muris Acinetobacter pittii
Clostridioides 
difficile

Bacteroides 
ovatus

Oscillibacter sp. 1-3

Acinetobacter 
calcoaceticus/baumannii 
complex

Lactobacillus 
johnsonii

Lactobacillus 
murinus

Firmicutes bacterium 
ASF500 Acinetobacter baumannii

Clostridium sp. 
C105KSO15

Bacteroides 
xylanisolvens

Lachnospiraceae 
bacterium 10-1 Escherichia coli Campylobacter coli

Bacteroides sp. 
3_1_23

Eubacterium 
plexicaudatum Acholeplasma brassicae

Staphylococcus 
aureus

Bacteroides 
fragilis

Lachnospiraceae 
bacterium 28-4 Acinetobacter calcoaceticus

Clostridium sp. 
C105KSO14

Bacteroides 
thetaiotaomicron

Lachnospiraceae 
bacterium A4 Acholeplasma palmae Chlamydia abortus

Bacteroides sp. 
D2

Lachnospiraceae 
bacterium A2 Candidatus Izimaplasma sp. HR1

Streptomyces 
lydicus

Bacteroides sp. 
2_2_4

Dorea sp. 5-2
Chlamydia abortus

Helicobacter pylori
Parabacteroides 

goldsteinii

Oscillibacter sp. PC13 Tenericutes bacterium MZ-XQ
Chlamydia 
trachomatis

Bacteroides sp. 
KFT8

For each cohort (either control or antibiotic treated groups), the top 10 species that have the highest number of assembled contigs are shown. Red shading indicates 
opportunistic pathogens. All three antibiotic treated cohorts, but not the control cohort, have opportunistic pathogens among the top 10 species

Fig. 4  Gene track visual of two scaffolds that are likely from uncharacterized pathogen genomes (or epichromosomal elements). Labelled 
percentages are percent identity of query (predicted genes on the scaffolds) to subject (target proteins in the database). Transparent red boxes 
represent query coverage to subject. Top: an Acinetobacter calcoaceticus/baumannii scaffold (node 218) from the Ampicillin-treated cohort with a 
length of 1671 nucleotides (nts), with 3 predicted genes (green track) mapped to their targets. Bottom: a Clostridioides difficile scaffold (node 14,106) 
from the control cohort with a length of 2406 nts with 4 predicted genes (green track)
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we assessed the Antibiotic Resistant Gene (ARG) profile. 
We determined that the Acinetobacter calcoaceticus/bau-
mannii subpopulations selected for in Ampicillin treated 
mice harbored a greater number of antibiotic resistant 
genes (328 ARGs) than the entire Acinetobacter calcoace-
ticus/baumannii population in the Control cohort (13 
ARGs). The difference in antibiotic resistant gene diver-
sity is even more stark when comparing these numbers 
relative to the total number of predicted genes in their 
respective sample. For example, the average number of 
relative Acinetobacter calcoaceticus/baumannii antibiotic 
resistant gene counts was 520 (normalized as per 10  K 
gene) in Ampicillin treated mice and 0.17 in the Control 
cohort (Benjamini-Hochberg (BH) adj. p value = 0.00075) 
(Fig.  6). Additionally, antibiotic resistant gene counts in 
Chlamydia abortus (BH adj. p value = 0.0001) and Chla-
mydia trachomatis (BH adj. p value = 0.00075) exhibited 
a statistically significant increase in Ampicillin cohort 
compared to Controls. We further examined the diver-
sity profile of each treatment group and found that 

Ciprofloxacin treated mice had well over 500-fold more 
antibiotic resistant genes associated with Campylobac-
ter coli (BH adj. p value = 0.0037) than Control (57 ARGs 
vs 0.09 ARGs, Fig.  6). Similar to Ampicillin cohort, we 
observed a statistically significant uptick in the number 
of antibiotic resistant genes associated with both spe-
cies of Chlamydia in Ciprofloxacin treated mice. Lastly, 
Fosfomycin treated mice had an average of 10.8 and 6.2 
antibiotic resistant genes in Bacteroides fragilis and Bac-
teroides thetaiotaomicron, respectively. For both species 
of Bacteroides, the number of relative antibiotic resistant 
gene counts in Fosfomycin treated mice is > fivefold more 
than that in the control.

Discussion
Urinary tract infection (UTI) is the leading cause of hos-
pital acquired infections worldwide [26]. Previous stud-
ies suggest UTIs make up roughly 40% of all nosocomial 
infections in the USA [27, 28]. However, recent guide-
lines for prevention of catheter-associated UTIs and 

Fig. 5  Opportunistic pathogen and antibiotic resistant gene abundance. The height of each bar in each panel indicates the normalized read 
counts (reads per million) for the opportunistic pathogen in a specific antibiotic-treated cohort. The blue and orange portion of the bar indicates 
the normalized read counts associated with ARGs (antibiotic resistant genes) and non-ARGs, respectively. Reads associated with ARGs (blue portion) 
were obtained by mapping the predicted genes to CARD (Comprehensive Antibiotic Resistance Database). *: Benjamini-Hochberg (BH) adjusted p 
value < 0.05
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implementation of evidence-based interventions have 
resulted in significant decreases in nosocomial UTIs [29]. 
Despite the improvements in best practices and nosoco-
mial UTI rates, the Centers for Disease Control (CDC) 
reports that UTIs are still among the most common type 
of hospital-associated infection in the USA (https​://www.
cdc.gov/hai/ca_uti/uti.html). Oral antibiotic administra-
tion to treat nosocomial infections, like hospital acquired 
UTIs, have been implicated in gastrointestinal microbiota 
dysbiosis, and secondary infections in human and mouse 
studies [30–34]. Furthermore, these treatments often 
select for an antibiotic resistant population, likely from 
an antibiotic resistant (AR) reservoir [3].

Our results strongly support the previously described 
hypothesis with direct evidence of gut microbiota dys-
biosis, opportunistic pathogen selection, and a higher 
percentage of selected opportunistic pathogens harbor-
ing antibiotic resistant genes occurring after oral anti-
biotic administration. Here, the reduction of our total 

sequencing reads, characterized scaffolds, and number of 
unique species present define the state of dysbiosis after 
antibiotic administration. Furthermore, the shift from Fir-
micutes to Proteobacteria, that we present in our results, 
is a known state of dysbiosis after antibiotic treatment 
[35] and during disease [36–38]. Importantly, our scaf-
fold assembly and lowest common ancestor assignment 
approach allowed us to identify which top species were 
selected for after antibiotic treatment. The assembly of 
short reads into longer scaffolds before aligning to ref-
erence sequences decreased the number of ambiguous 
alignments and increased the number of reads that can 
be mapped to reference databases. The lowest common 
ancestor approach increased taxonomic resolution for 
longer scaffolds with multiple predicted genes. These 
methods can be applied to other metagenomic studies 
to potentially gather more information from the com-
plex metagenome datasets compared to traditional read-
mapping based methods. Many studies have correlated 

Fig. 6  Opportunistic pathogen’s antibiotic resistance diversity profile. Y axis: number of genes associated with antibiotic resistance (normalized as 
per 10 K predicted genes). X axis: the control cohort and the three antibiotic-treated cohorts. *: Benjamini-Hochberg (BH) adjusted p value < 0.05
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nosocomial infection of Acinetobacter calcoaceticus/
baumannii complex after antibiotic administration for a 
primary nosocomial infection [4, 39]. We provide direct 
evidence for an increase of relative abundance of Acine-
tobacter calcoaceticus/baumannii, Chlamydia abortus, 
Chlamydia trachomatis, Bacteroides fragilis, and Bacte-
roides thetaiotaomicron after various antibiotic treatment. 
For other pathogens studied, for example Campylobacter 
coli in the Ciprofloxacin cohort, we found that while the 
relative abundance is not increased, the numbers of ARGs 
are, suggesting more ARG-enriched subpopulations were 
selected by the treatment. Interestingly, our previous 
study suggested that ARGs enriched in cohorts treated by 
one class of antibiotics are often resistant to other classes 
of antibiotics [14]. We also observed that some oppor-
tunistic pathogens have more ARG-associated reads in 
control compared to antibody-treated groups (Fig.  5), 
probably because the relative abundance of these patho-
gens was reduced so much after antibiotic treatment that 
any reads coming from them, including ARG-associated 
reads, became almost undetectable.

We acknowledge several limitations of our studies. 
First, the number of animals in each cohort is small, and 
some animals were not included in the analysis due to 
insufficient number of sequencing reads. It is unknown 
whether the excluded animals would have any impact 
on the final results. Second, paired-end sequencing was 
completed on all samples except the entire Fosfomycin 
cohort, which was single-end sequenced. This poten-
tially had several effects on our Fosfomycin results. 
For example, the number of scaffolds generated that 
passed our quality control measures were far lower in 
Fosfomycin than other cohorts. This was likely due to 
the method of assembly differences necessary to build 
the scaffolds, as reported in our methods. Additionally, 
the assembly process may have contributed to the dif-
ferences seen in the characterization of scaffolds, where 
a larger portion of control and Fosfomycin scaffolds 
were characterized as novel. This large portion of novel 
scaffolds is expected for the control cohort as there is 
substantial evidence for a large unknown population 
of microbiota present in unperturbed gut microbiome 
[40]. However, the assembly pipeline we used, metaS-
PAdes, is optimized to use pair-end reads and there is a 
possibility the assembly process of metagenomic single-
end reads into scaffolds won’t maintain the high con-
fidence found in the pair-end assembly protocol [18]. 
The decision to sequence Fosfomycin cohorts single-
ended was made in the beginning of this project as it 
was not clear if paired-end sequencing would generate 
enough reads for a good coverage of the gut microbi-
ome. As subsequent experiments revealed paired-end 
sequencing not only generated enough reads but also 

provided higher quality reads for assembly, we switched 
to paired-end sequencing for all other samples. How-
ever, we feel it is still important to report the findings 
from the single-end-sequenced Fosfomycin cohorts 
as the observed pattens (selection for opportunistic 
pathogens and enrichment of ARGs) are consistent 
with other cohorts with slightly different (paired-end 
sequencing) techniques. A third limitation in this pipe-
line is the difficulty in differentiating divergent contigs 
from plasmids and free phages which may have been 
present. This limitation may be mitigated with further 
downstream analysis to include a plasmid and phage 
identifier tool. A final limitation is the use of a mouse 
model as there are many differences at the cellular level 
as well as the gross anatomy level from a mouse to a 
human. However, overall the gut microbiota of mice 
and humans is mostly comprised of Bacteroidetes and 
Firmicutes [41]. Furthermore, the amount of knowl-
edge on mouse gastroenterology, genetics, and micro-
biome composition provide ample advantage on any 
other model for microbiota research [42]. Therefore, 
we believe the findings from our mouse UTI model 
potentially revealed a general mechanism where the 
use of single oral antibiotic treatment directly induces 
the expansion of opportunistic pathogens and ARG-
enriched subpopulations in the gut microbiome, which 
may subsequently lead to secondary nosocomial infec-
tions. While more work, especially controlled clini-
cal studies, are warranted to confirm this mechanism 
in humans, this raised a possibility that we may need 
to consider combination antibiotic treatments to sup-
press the expansion of opportunistic pathogens during 
an antimicrobial therapy. New studies are being con-
ducted to investigate this possibility.
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