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Abstract: Nitrogen-containing C-dots were prepared by heating (160 ◦C, 1 h) 1,2,4,5-tetracyanobenzene
(TCB) in polyethylene glycol 400 (PEG400). The as-prepared monocrystalline C-dots were
2–4 nm in diameter and contained 24.4 wt. % of nitrogen. They showed intense fluorescence
under excitation at 400–500 nm as well as under excitation at 600–700 nm. In addition to an
excitation-wavelength-depending emission at 400 to 650 nm, the emission spectra exhibited a strong
emission peaking at 715 nm, whose position was independent from the wavelength of excitation.
For this deep-red emission a remarkable quantum yield of 69% was detected. The synthesis of
nitrogen-containing C-dotswas completely performed in the liquid phase. Moreover, the C-dots
could be directly dispersed in water. The resulting aqueous suspensions of PEG400-stabilized
nitrogen-containing C-dots also showed intense red emission that was visible to the naked eye.

Keywords: carbon dot; 1,2,4,5-tetracyanobenzene; polyol synthesis; nitrogen containing; red emission

1. Introduction

Carbon dots (C-dots) have developed into an independent class of materials that is characterized
by unique properties (e.g., inexpensive nature, chemical stability, adaptable surface functionalization,
high biocompatibility, intense photoluminescence) and a wide portfolio of potential applications,
ranging from optoelectronics or catalysis to medicine [1–5]. The photoluminescence of C-dots is a
most remarkable feature typically characterized by broad excitation in the ultraviolet to blue spectral
regime (300–500 nm) as well as by broad and intense emission in the blue to green spectral regime
(450–600 nm) [1,3–6]. Another characteristic feature relates to the dependence of the emission on the
wavelength of excitation. Thus, the emission is simultaneously red-shifted when shifting the excitation
to higher wavelengths. In addition to the excitation-depending shift of the emission, the emission
intensity decreases as the wavelength of the excitation increases [1,3–6]. Typically, C-dots show the
strongest emission intensity in the blue to green spectral range, whereas the emission intensity in the
yellow-red-infrared spectral regime is significantly lower. This behavior was ascribed to competitive
loss processes [7,8]. Red and infrared emission, on the other hand, are important to enable devices with
full-color emission (e.g., displays, lighting). Moreover, red and infrared emission are most interesting
for biomedical application to guarantee deep-tissue penetration [5,6,9].

The synthesis of C-dots was most often performed by controlled thermal treatment of carbon
or carbon-containing compounds. This may include high-temperature treatment of coal [10], the
caramelization of carbohydrates [11], or more curiously, the thermal decomposition of, for instance,
eggs [12] or oranges [13]. Well-controlled synthesis of C-dots via liquid-phase methods meanwhile
is possible by controlled liquid-phase decomposition of sugar [14,15] or thermal decomposition of
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multivalent alcohols (so-called polyols) [16,17]. Polyols and especially polyethylene glycol (PEG) and
its derivatives are also often used for surface stabilization of C-dots. In many cases, it is not even
clear if polyols and PEG serve as surface-stabilizing agents or if the C-dots originate from the thermal
decomposition of the polyols and PEG themselves [18]. Although reliable liquid-phase syntheses of
C-dots have been established, the realization of C-dots showing intense red emission is still a challenge.
Most often red emission was reported for nitrogen- or sulfur-doped C-dots, Eu3+-containing C-dots, or
C-dots that were modified with plasmonic metal nanoparticles [6,19–25]. The quantum yield for red
emission with 30%–35% is nevertheless comparably low in comparison to the blue and green emission
of C-dots (up to 80%) [1,3–8].

Aiming at a reliable liquid-phase synthesis of C-dots that show intense red emission, we here
present the polyol-mediated synthesis of C-dots with 1,2,4,5-tetracyanobenzene (TCB; also abbreviated
in the literature as TCNB) as a precursor. To the best of our knowledge, TCB is used for C-dot
preparation for the first time and results in intense red emission of water-dispersible C-dots.

2. Materials and Methods

2.1. Synthesis

Synthesis of C-dots with TCB: In a standard recipe, 180 mg of 1,2,4,5-tetracyanobenzene (TCB,
ABCR, Karlsruhe, Germany, 98%) were dissolved in 50 mL of polyethylene glycol 400 (PEG400,
Alfa Aesar, Karlsruhe, Germany) and heated in a round-bottomed flask under nitrogen atmosphere
with a mantle heater to 160 ◦C. This temperature was maintained for 1 h. The proceeding decomposition
of PEG400 and the formation of the C-dots can be followed by the naked eye and is indicated by the
color of a yellow solution that slowly turns to a deep black suspension at 100–120 ◦C. Subsequent to the
synthesis of natural cooling to room temperature, the resulting deep black suspensions can be directly
diluted with water to obtain colloidally highly stable aqueous suspensions. Alternatively, the C-dots
can be separated after addition of 350 mL of propan-2-ol by centrifugation (20,000 r.p.m., 10 min).
Thereafter, the C-dots were purified three times by redispersion/centrifugation in/from propan-2-ol to
obtain 130 mg of C-dots.

2.2. Analytical Tools

Transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS) were
conducted with a FEI Osiris microscope (FEI, Eindhoven, The Netherlands) at 200 kV, equipped
with a Bruker Quantax system (XFlash detector, Ettlingen, Germany). TEM samples of the as-prepared
C-dots were prepared by vacuum evaporation of aqueous suspensions at 120 ◦C on amorphous carbon
(lacey-) film-coated copper grids.

X-ray powder diffraction (XRD) was performed with a Stoe STADI-P diffractometer (Stoe,
Darmstadt, Germany) operating with Ge-monochromatized Cu-Kα-radiation (λ = 1.54178 Å) and
Debye–Scherrer geometry.

Fourier-transform infrared spectra (FT-IR) were recorded on a Bruker Vertex 70 FT-IR spectrometer
(Bruker, Ettlingen, Germany) using KBr pellets.

Thermogravimetry (TG) was performed with a Netzsch STA 409C instrument (Netzsch, Selb,
Germany) applying α-Al2O3 as a crucible material and reference. The as-prepared C-dots were heated
in a nitrogen atmosphere to 900–1100 ◦C with a rate of 5 ◦C/min. The resulting data were baseline
corrected by subtracting the results of a measurement of an empty crucible. TG-IR coupling was
realized with Bruker TGA/IR 588 equipment to the aforementioned FT-IR spectrometer.

Elemental analysis (EA): C/H/N elemental analysis was performed via thermal combustion with
an Elementar Vario Microcube device (Elementar, Langenselbold, Germany) at a temperature of about
1100 ◦C.
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UV–Vis spectroscopy: Optical spectra of the as-prepared C-dots were recorded on a UV2700
spectrometer (Shimadzu, Kyoto, Japan). Then 4–8 mg of the C-dots were mixed with 100–120 mg of
dried BaSO4 (spectroscopic grade) and measured against dried BaSO4 as a reference.

Fluorescence spectroscopy (FL) and determination of quantum yield: Excitation and emission
spectra were recorded with a resolution of ±1 nm using a photoluminescence spectrometer Horiba
Jobin Yvon Spex Fluorolog 3 (Horiba Jobin Yvon, Bensheim, Germany), equipped with a 450 W Xenon
lamp, double monochromators, Ulbricht sphere, and photomultiplier as the detector (90◦ angle between
excitation source and detector). The determination of the absolute quantum yield (QY) was performed
as suggested by Friend [23]. First of all, the diffuse reflection of the sample was determined under
excitation. Thereafter, the emission was measured for the respective excitation wavelength. Integration
over the reflected and emitted photons in wavelength range of 390–720 nm by use of an Ulbricht
sphere allows calculating the absolute quantum yield. Standard corrections were used for the spectral
power of the excitation source, the reflection behavior of the Ulbricht sphere, and the sensitivity of
the detector. The QY was obtained for suspensions of the as-prepared C-dots in PEG400 that were
adjusted to an absorbance of 0.1. The sample holder for determining the absolute quantum yield of
suspensions in an Ulbricht sphere was constructed according to Friend [26].

Fluorescence lifetimes were obtained as process decay times with the above described Horiba
Jobin Yvon Spex Fluorolog 3 spectrometer. The samples were prepared in quartz glass cuvettes under
an inert gas atmosphere. The decay times were recorded by time-correlated single-photon counting
(TCSPC) with pulsed laser diodes having their emission maximum at 424 and 633 nm. The time
resolution was ≥0.1 nanoseconds. The fluorescence emission was collected at right angles to the
excitation source, and the emission wavelength was selected with a monochromator and detected by a
photomultiplier as a detector. The resulting intensity decays were calculated through tail fit analysis.
The quality of the fits was evidenced by low χ2 values (χ2 < 1.4).

Daylight illumination: An Osram Xenophot HLX 64634 (3300 K) halogen bulb was used for
daylight illumination of the C-dots. To select a certain color of light (green, yellow, red light), color
filters were inserted between the lamp and light fiber. To differentiate scattered light and emitted
light, moreover, photographs were taken through colored glass plates (i.e., if excitation of C-dots was
performed with green light, the photographs were taken through a red glass plate to observe emitted
red light only).

3. Results and Discussion

3.1. Polyol Synthesis of Carbon Dots (C-Dots)

In previous studies, we could already show the direct formation of C-dots via liquid-phase
synthesis by partial decomposition of polyols [16,18,27]. To this concern, polyols such as glycerol
(GLY), diethylene glycol (DEG), or polyethylene glycol (PEG400) were heated under inert conditions.
The influence of the temperature (150–230 ◦C), the type of heating (conventional resistance heating,
microwave heating), and the duration of heating (1–6 h) were examined [16]. Moreover, the influence
of metal halides (e.g., ZnCl2, MgCl2) as Lewis acids and oxygen scavengers was validated. This
polyol-mediated synthesis results in C-dots with a diameter of 3–5 nm at narrow size distribution,
which show the expected broad-band excitation and emission at 300–500 nm and 450–700 nm,
respectively [18]. Here, it needs to be noticed that the optimal temperature for C-dot formation from
thermal decomposition of PEG400 is at 220 ◦C [16,18,27]. The highest quantum yields of polyol-made
C-dots were observed with 45%–50% for blue-light emission. After the addition of TbCl3 or EuCl3, we
could furthermore realize Tb3+- and Eu3+-containing C-dots [16,27]. After C-dot excitation, efficient
energy transfer from the C-dot to the rare-earth metal was observed and results in the characteristic
green and red line-type emission of Tb3+ and Eu3+. Here, quantum yields of 85% for Tb3+-modified
C-dots and of 75% for Eu3+-modified C-dots were obtained [16,27]. These data still belong to the
highest quantum yields reported for C-dots. Intense line-type emission of Tb3+-/Eu3+-modified C-dots,
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however, was only possible in absence of water. If H2O molecules coordinate to the rare earth cations,
the emission intensity and quantum yield decrease dramatically, since relaxation takes place via O–H
oscillations, which are considerably faster in comparison to the quantum-mechanically permitted f–f
transitions [28].

To address the challenge of C-dots that show intense red emission in aqueous suspension, we have
reassumed the polyol-mediated synthesis. According to an optimized recipe, 1,2,4,5-tetracyanobenzene
(TCB) was heated in PEG400 under nitrogen atmosphere for 1 h to 160 ◦C to obtain C-dots via thermal
decomposition of TCB. PEG400 was selected as a solvent and surface-active stabilizer due to the
fact that it remains in the liquid state at room temperature, whereas higher-weight PEG derivatives
(≥500 g/mol) are extremely viscous if not solid. Furthermore, it needs to be noticed that the applied
1,2,4,5-tetracyanobenzene is also often abbreviated as TCNB in the literature. In order to avoid
confusion with 1,2,4,5-tetrachloro-3-nitrobenzene, we use the abbreviation TCB throughout. TCB is
well known for its photoluminescence and shows excitation at 300–400 nm and broad-band emission
at 500–700 nm but only in charge-transfer crystals (e.g., with naphthalene [29]). Efficient emission
of TCB is only observed for dissolved molecules (e.g., in dichloromethane [30,31]). In the solid state
the emission is more or less completely quenched due to concentration quenching. Based on this
situation, our intention was to examine the option of preparing nitrogen-containing C-dots based on
the thermal treatment of TCB in PEG400 (Figure 1a). Accordingly, TCB was dissolved in PEG400 and
simultaneously heated with the polyol at 160 ◦C for 1 h. The proceeding formation of the C-dots can be
directly followed by the naked eye (Figure 1b). Thus, in a temperature range of 100 to 120 ◦C, the yellow
solution of TCB in PEG400 slowly changed to a deep black C-dot suspension. Subsequent heating at
160 ◦C turned out as optimal to complete the synthesis and to crystallize the C-dots. Thereafter, the
deep black suspension was left for natural cooling to room temperature.
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Figure 1. Polyol-mediated synthesis of C-dots with 1,2,4,5-tetracyanobenzene (TCB) in polyethylene
glycol 400 (PEG400): (a) scheme of the synthesis of nitrogen-containing C-dots with PEG surface
functionalization; (b) course of the reaction and color change at 100 to 120 ◦C while heating a solution of
TCB in PEG400 from room temperature to 160 ◦C as well as dark black C-dot suspension after cooling
to room temperature.

Subsequent to the polyol-mediated synthesis, the as-prepared C-dots can be directly diluted
with water to obtain colloidally highly stable aqueous suspensions. Alternatively, collection of the
C-dots via centrifugation is possible after reduction of the high viscosity of the PEG400 suspension,
for instance, by addition of propan-2-ol. Subsequently, the as-prepared C-dots can be purified by
redispersion/centrifugation in/from propan-2-ol, which was typically performed three times. The deep
black C-dots were obtained with about 130 mg per 50 mL of PEG400.
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3.2. Synthesis and Characterization of C-Dots

Subsequent to polyol-mediated synthesis, separation, and purification, the presence of C-dots
and their size were examined by transmission electron microscopy (TEM). Accordingly, C-dots with
a spherical shape, narrow size distribution, and diameters of 2–4 nm were obtained (Figure 2).
High-resolution (HR)TEM images clearly show lattice fringes and indicate the crystallinity of the
as-prepared C-dots (Figure 2b). The observed lattice distance of 1.91 Å relates to graphite (d101 with
2.03 Å, [32,33]) but definitely shows a certain reduction. Such reduced lattice fringe distance was already
observed for nitrogen-containing C-dots and is ascribed to the higher polarity of heteroatom-containing
graphite layers in comparison to pure graphite layers [6,20–25]. In contrast, C-dots prepared via the
polyol synthesis with similar conditions but in absence of TCB exhibited a larger lattice fringe distance
of 2.05 Å [16,18]. In regard to the determination of the particle size, it needs to be noticed that dynamic
light scattering (DLS) could not be performed since the fluorescence of the as-prepared C-dots after
excitation with the DLS-internal laser (λEmission: 633 nm) deteriorated the data evaluation.
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Figure 2. Size and size distribution of the as-prepared C-dots: (a) overview transmission electron
microscopy (TEM) image; (b) high-resolution (HR)TEM image with lattice fringes.

X-ray diffraction patterns (XRD) of the as-prepared C-dot powders are characterized by a broad
background due to non-specific scattering. Only the most intense (002)-Bragg peak of graphite is visible
at 26.6◦ of 2-theta (Figure 3a). The broadening and low intensity of this Bragg peak are in accordance
with the small size of the C-dots. Moreover, Bragg peaks related to TCB as the starting material do not
occur. Fourier-transform infrared (FT-IR) spectra show the as-prepared C-dots in comparison to pure
TCB and PEG400 (Figure 3b). Due to the synthesis in PEG400, the surface of the as-prepared C-dots
is inherently coated by the polyol. Thus, FT-IR spectra show the characteristic vibrations of PEG400
with ν(O–H) (3600–3100 cm–1), ν(C–H) (3000–2800 cm–1), ν(C=O) (1100 cm–1), and the fingerprint with
weak δ(C–H)/δ(C–C) vibrations between 1400 and 750 cm–1. These vibrations are in agreement with
pure PEG400 as a reference (Figure 3b). Additional vibrations at 1750–1600 cm–1 point to aromatic
C=C bonds and indicate the formation of graphite-type C-dots [32–34]. Finally, the characteristic
vibrations at 2228 cm–1 (ν(C≡N)) and 1315 cm–1 (ν(C–N)) validate the presence of the remaining cyano
groups and point to the nitrogen-containing carbon network (Figure 3b). Interestingly, ν(C≡N) shifts
by about 15 cm–1 to lower wavenumbers in comparison to pure TCB (ν(C≡N): 2245 cm–1), which can
be attributed to a different chemical environment in the C-dots.
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(starting material) and graphite (ICDD-No. 00-056-0159) as references; (b) Fourier-transform infrared
spectra with pure TCB and pure PEG400 as references.

The thermal behavior of the as-prepared C-dots was examined by thermogravimetry (TG) with
coupled FT-IR spectroscopy to detect gaseous decomposition products (Figure 4). Upon heating to
1100 ◦C in a nitrogen atmosphere, three-step decomposition was observed. The first step (210–390 ◦C,
9.0 wt. %) can be attributed to the decomposition of surface-adhered PEG400 (decomposition and
evaporation of pure PEG400 at 250–310 ◦C, [16,18]) (Figure 4a). FT-IR spectra monitored at 314 ◦C, clearly
shows broad C–H- (ν(C–H): 3000–2800 cm–1) and C–O-related (ν(C–O): 1200–1050 cm–1) vibrations as
well as sharp vibrations of CO2 (ν(C=O): 2360, 2330 cm–1, δ(O=C=O): 670 cm–1) (Figure 4b). Taking the
size of the as-prepared C-dots into account (2–4 nm), a PEG400 coating with an amount of 5–10 wt. % is
to be expected. The second decomposition step (400–610 ◦C, 15.6 wt. %) can be assigned to the release
of hydrocyanic acid (HCN), which is clearly visible in FT-IR spectra recorded at 611 ◦C (Figure 4b).
Thus, ν(C≡N) at 2250 cm–1 and δ(H–C≡N) at 710 cm–1 evidence the loss of HCN. The final continuous
decomposition (>650 ◦C) only shows CO2 as a gaseous decomposition product (Figure 4b), which can
be ascribed to traces of oxygen in the gas flow. The thermal residue at 1100 ◦C, according to XRD, still
shows a broad (002)-Bragg peak of bulk graphite at 26.6◦ of 2-theta, which is similar to XRD patterns of
the as-prepared C-dots (Figure 3a). Finally, it needs to be noticed that the thermal decomposition of the
nitrogen-containing C-dots differentiates significantly from pure TCB, which evaporates completely
between 250 and 350 ◦C (Figure 3a).
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Figure 4. Thermal decomposition of the as-prepared C-dots: (a) thermogravimetry (nitrogen
atmosphere, 27.7 mg of sample) with pure TCB as a reference (nitrogen atmosphere, 29.6 mg of sample);
(b) Fourier-transform infrared spectra of the gaseous decomposition products of the thermogravimetric
analysis at three selected temperatures.

To determine the TCB load of the C-dots elemental analysis (EA) was performed, resulting in
C/H/N contents of 60.5 wt. % C, 2.5 wt. % H, and 24.4 wt. % N (remaining 12.6 wt. % O). Hence,
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the nitrogen content was indeed considerably high. With TCB being the only nitrogen source and
PEG400 being the oxygen source, the relative contributions of TCB and PEG400 to the composition
of the as-prepared C-dots can be estimated from the observed C:N and C:O ratios. Accordingly, a
TCB:PEG400 ratio of 6.5:1 was deduced. Based on this ratio, the calculated C/H/N/O contents result
in 60.5 wt. % C, 1.5 wt. % H, 24.4 wt. % N, and 11.1 wt. % O, which is in good agreement with the
experimental data. Accordingly, the yield of nitrogen-containing C-dots related to the introduced
amount of TCB is 79%.

3.3. Fluorescence of As-Prepared C-Dots

The optical properties of the as-prepared C-dots were studied by UV–Vis as well as by fluorescence
spectroscopy. UV–Vis spectra of suspensions in PEG400 indicate a strong absorption below 400 nm
(Figure 5a). Distinct absorption maxima are observed at 257, 290, and 360 nm, which are clearly
different from the absorption of pure TCB (Figure 5a), which only shows a strong absorption below
340 nm. These findings are confirmed by excitation spectra, which also point to the difference between
the as-prepared C-dots and pure TCB (Figure 5b). In addition to the typical excitation of C-dots in
the UV-to-blue spectral regime (< 500 nm), excitation spectra of the as-prepared nitrogen-containing
C-dots most interestingly also show a strong absorption at 600–700 nm (Figure 5b).
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Figure 5. Absorption of the as-prepared C-dots: (a) UV–Vis spectra and (b) excitation spectra
(suspension in PEG400, monitored at λem = 715 nm, excitation of the C-dots could not be measured
below 370 nm due to λem/2 peak at 357 nm). Pure TCB is shown as a reference (solution in chloroform,
monitored at λem = 332 nm).

Emission spectra of the as-prepared C-dots indicate continuous emission between 400 and 850 nm
with a broad maximum at 400–600 nm and a narrow maximum at 715 nm (Figure 6a). The emission at
400 to 600 nm clearly depends on the wavelength of excitation (Figure 6a). In contrast, the emission
maximum at 715 nm is stationary and its wavelength position not influenced by the wavelength of
excitation. The emission intensity of this deep-red emission is comparably high if excited via the C-dots
at 400–500 nm with large Stokes shift (Figure 6a). The deep-red emission is comparably low upon
excitation between 500 and 600 nm since the absorption of the C-dots is low in this wavelength regime.
However, the deep-red emission is even by a factor of 2–3 stronger if excited above 600 nm with small
Stokes shift. For long-wavelength excitation (690 nm) with subsequent deep-red emission (715 nm),
moreover, a remarkably high quantum yield of 69% was determined. Excitation at 424 nm results in a
slightly lower quantum yield of 50% for the deep-red emission (715 nm). This finding is to be expected
due to the larger Stokes shift between excitation and emission. Lifetime measurements for the emission
at 715 nm for both types of excitation (λexc = 454 nm and λexc = 633 nm) result in a decay of 1.4 to
4.3 ns (τ1 = 1.8, τ2 = 4.4 ns for λexc = 454 nm; τ1 = 1.4, τ2 = 3.6 ns for λexc = 633 nm) (Figure 7). These
values are in good agreement with previously reported lifetime data of C-dots (τ ~ 1–10 ns) [35–37].
Finally, it needs to be noticed that the emission of C-dots made from TCB is significantly different from
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the emission of pure TCB (Figure 6b). Thus, pure TCB only exhibits an emission peak at 320–370 nm,
which is independent from the wavelength of excitation. Moreover, no emission occurs above 400 nm.Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 11 
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The deep red emission at 715 nm of the TCB-made C-dots can become highly interesting for
biomedical application, including histology and imaging [5,6,9]. This includes both types of excitations:
at the low-wavelength excitation at 400–500 nm with a large Stokes shift as well as the long-wavelength
excitation at 600–700 nm with a small Stokes shift to emission (Figure 6a). Most interestingly, the
deep-red emission does not only occur for the as-prepared suspensions in PEG400 (Figure 8a) but
also after dispersion in water (Figure 8b). If excited with daylight, blue-green light or yellow light,
the red emission of the C-dots is clearly visible in aqueous suspensions even with the naked eye. The
respective visible light for excitation was generated by a halogen lamp equipped with colored glass
filters and a quartz-glass fiber. The visibility of the red emission is even better if the emitted light is
observed through a red colored glass plate, which absorbs all light from excitation and emission except
for red light (Figure 8b).
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Figure 8. Photos showing the red emission of the as-prepared C-dots in (a) PEG400 and (b) H2O upon
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well as with a red filter to prove red-light emission.

4. Discussion

On the one hand, heteroatom-containing C-dots have turned out most promising in regard to
intense fluorescence, and on the other hand, to establishing emission features that are independent from
the wavelength of excitation. In this regard, we present a simple one-pot, liquid-phase preparation of
nitrogen-containing C-dots via a polyol-mediated synthesis. Accordingly, 1,2,4,5-tetracyanobenzene
(TCB) was selected as a nitrogen-containing precursor. Polyethylene glycol 400 (PEG400) was selected
as the solvent and stabilizing agent. The formation of the C-dots can be followed by the naked eye,
when heating the TCB solution in PEG400 to 160 ◦C. At 100–120 ◦C the yellow solution turned to a deep
black suspension of the C-dots. After 1 h of heating to 160 ◦C, the synthesis was finished. Transmission
electron microscopy, X-ray diffraction, and infrared spectroscopy confirm the presence of crystalline
C-dots with a diameter of 2–4 nm. Elemental analysis and thermogravimetry prove the incorporation
of nitrogen and validate a nitrogen content of 24.4 wt. %. Suspensions of the C-dots are colloidally
highly stable, even after dispersion in water.

The as-prepared, nitrogen-containing C-dots show intense fluorescence upon excitation at
400–500 nm and 600–700 nm. The emission comprises an excitation-wavelength-depending part
at 400 to 650 nm as well as a strong emission peaking at 715 nm, which is independent from the
wavelength of excitation. For the deep-red emission at 715 nm a remarkably high quantum yield of
69% was determined. The PEG400-stabilized nitrogen-containing C-dots can be dispersed in water and
result in colloidally stable aqueous suspensions, which also show red emission. Taken together, the
one-pot, liquid-phase synthesis of fluorescent nitrogen-containing C-dots can become interesting for
reliable C-dot synthesis in general as well as in regard to deep-red emitting biomarkers for histology
and imaging.
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