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Abstract

Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes

have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific

Islands, and elsewhere. Understanding how environmental conditions affect epidemic

dynamics is critical for predicting and responding to the geographic and seasonal spread of

disease. Specifically, we lack a mechanistic understanding of how seasonal variation in tem-

perature affects epidemic magnitude and duration. Here, we develop a dynamic disease

transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mecha-

nistic, empirically parameterized, and independently validated mosquito and virus trait ther-

mal responses under seasonally varying temperatures. We examine the influence of

seasonal temperature mean, variation, and temperature at the start of the epidemic on dis-

ease dynamics. We find that at both constant and seasonally varying temperatures, warmer

temperatures at the start of epidemics promote more rapid epidemics due to faster burnout

of the susceptible population. By contrast, intermediate temperatures (24–25˚C) at epidemic

onset produced the largest epidemics in both constant and seasonally varying temperature

regimes. When seasonal temperature variation was low, 25–35˚C annual average temp-

eratures produced the largest epidemics, but this range shifted to cooler temperatures as

seasonal temperature variation increased (analogous to previous results for diurnal temper-

ature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Sal-

vador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China;

and Manila, Philippines have mean annual temperatures and seasonal temperature ranges

that produced the largest epidemics. However, more temperate cities like Shanghai, China

had high epidemic suitability because large seasonal variation offset moderate annual aver-

age temperatures. By accounting for seasonal variation in temperature, the model provides

a baseline for mechanistically understanding environmental suitability for virus transmission

by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors

onto this mechanistic temperature-dependent framework is critical for understanding likeli-

hood and magnitude of outbreaks.
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Author summary

Mosquito-borne viruses like dengue, Zika, and chikungunya have recently caused large

epidemics that are partly driven by temperature. Using a mathematical model built from

laboratory experimental data for Aedes aegypti mosquitoes and dengue virus, we examine

the impact of variation in seasonal temperature regimes on epidemic size and duration.

At constant temperatures, both low and high temperatures (20˚C and 35˚C) produce

small epidemics, while intermediate temperatures like 25˚C and 30˚C produce much

larger epidemics. In seasonally varying temperature environments, epidemics peak more

rapidly at higher starting temperatures, while intermediate starting temperatures produce

the largest epidemics. Seasonal mean temperatures of 25–35˚C are most suitable for large

epidemics when seasonality is low, but in more variable seasonal environments epidemic

suitability peaks at lower annual average temperatures. Tropical and sub-tropical cities

have the highest temperature suitability for epidemics, but more temperate cities with

high seasonal variation also have the potential for very large epidemics.

Introduction

Over the last 30–40 years, arboviral outbreaks have dominated the public health landscape

globally [1]. These viruses, most notably dengue (DENV), chikungunya (CHIKV), and Zika

(ZIKV), can cause symptoms ranging from rash, arthralgia, and fever to hemorrhagic fever

(DENV), long-term arthritis (CHIKV), Guillain-Barré syndrome and microcephaly (ZIKV)

[2–4]. DENV, which historically spread worldwide along shipping routes [5], places 3.97 bil-

lion individuals at risk worldwide [6] and causes an estimated 390 million cases annually,

including 96 million symptomatic cases [7]. CHIKV was introduced into the Americas in

December 2013 after an outbreak in St. Martin Island [8]. Since then, autochthonous transmis-

sion has been reported in 45 countries [9], and 1.3 billion people worldwide are at risk of con-

tracting CHIKV [10]. More recently, the ZIKV epidemic in the Americas captured global

attention after the World Health Organization (WHO) designated it a Public Health Emer-

gency of International Concern in February 2016 in response to its association with neurologi-

cal disorders. Following the first reported case in Brazil in May 2015, ZIKV has spread to

48 countries and territories where it is transmitted autochthonously [11]. Because DENV,

CHIKV, and ZIKV are mostly transmitted by Aedes aegypti mosquitoes, they may have similar

geographic distributions and risk factors.

Informed public health decisions to limit the spread and magnitude of these arboviral epi-

demics depend on a robust understanding of transmission dynamics. One mechanistic model-

ing framework, the Susceptible–Infected–Recovered (SIR) model, has been implemented

successfully to model the dynamics of outbreaks of influenza, measles, and vector-borne dis-

eases such as CHIKV and ZIKV [12–14]. This approach tracks virus population dynamics by

compartmentalizing individuals by their state in an epidemic (i.e., Susceptible (S), Infected

(I), Recovered (R)). This framework can be extended to include additional compartments,

such as a latency stage, or to incorporate the dynamics of the mosquito population for vector

transmission.

Arbovirus dynamics are strikingly seasonal and geographically restricted to relatively warm

climates [6,7]. This arises because several life history traits of the mosquitoes that transmit

DENV, CHIKV, and ZIKV are strongly influenced by temperature and seasonality [15–22].

For simplicity, many existing models assume static life history traits [14], and those that

address seasonal forcing tend to incorporate sinusoidal variation as a single transmission
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parameter, β [23]. Treating seasonal temperature variation as a sinusoidal forcing function on

the transmission parameter implies a monotonic relationship between temperature and trans-

mission, such that transmission is maximized at high temperatures and decreases at low temper-

atures. However, decades of experimental work have demonstrated strongly nonlinear (often

unimodal) relationships between mosquito and pathogen traits and temperature that are not

well captured in a single sinusoidal forcing function [24]. Efforts by Yang et al. [25,26] addressed

the need to include seasonal variation by adopting an SEI-SEIR compartmental framework with

time-varying entomological parameters and fitting the model to DENV incidence data in Cam-

pinas, Brazil. Other previous work has integrated the effects of temperature on mosquito and

parasite traits into temperature-dependent transmission models for DENV, CHIKV, and/or

ZIKV, and revealing a strong, nonlinear influence of temperature with peak transmission

between 29–35˚C [27–34]. However, we do not yet have a mechanistic estimate for the relation-

ship between seasonal temperature regimes and transmission potential, incorporating the full

suite of transmission-relevant, nonlinear thermal responses of mosquito and parasite traits.

Here, we expand on previous work with three main advances: (1) we incorporate the full

suite of empirically-derived, unimodal thermal responses for all known transmission-relevant

mosquito and parasite traits; (2) we examine the influence of seasonal temperature mean and

variation (in contrast to constant temperatures or daily temperature variation); and (3) we use

a dynamic transmission framework to explore the impact of different seasonal temperature

regimes on the epidemiologically-relevant outcomes of epidemic size, duration, and peak inci-

dence (in contrast to R0, or vectorial capacity, which are difficult to measure directly). To do

so, we incorporate previously estimated and independently validated thermal response func-

tions for all vector and parasite traits [24] into a dynamic SEI-SEIR model [25,26]. We explore

field-relevant temperature regimes by simulating epidemics across temperature means (10–

38˚C) and seasonal ranges (0–17˚C) from across the predicted suitable range for transmission.

Specifically, we use the model to ask: (1) How does final epidemic size vary across constant

temperatures? (2) Under seasonally varying temperatures, how does the temperature at the

start of the epidemic affect the final epidemic size and duration? (3) How do temperature

mean and seasonal range interact to determine epidemic size? (4) Which geographic locations

have high epidemic suitability based on climate?

Methods

Model

Model framework. We adopted an SEI-SEIR compartmental modeling framework to

simulate arboviral transmission by the Aedes aegypti vector (Fig 1). We introduced tempera-

ture-dependence into the model by using fitted thermal response curves for the mosquito life

history traits provided by Mordecai et al. [24]. The full model is:

dSV
dt
¼ EFD Tð Þ � pEA Tð Þ �MDR Tð Þ � mðTÞ� 1

� NV � 1 �
NV

KðTÞ

� �

� aðTÞ � pMIðTÞ �
IH
NH
þ mðTÞ

� �

� SV ; ð1Þ

dEV

dt
¼ a Tð Þ � pMI Tð Þ �

IH
NH
� SV � PDRðTÞ þ mðTÞð Þ � EV ; ð2Þ

dIV
dt
¼ PDR Tð Þ � EV � m Tð Þ � IV ; ð3Þ
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dSH
dt
¼ � a Tð Þ � b Tð Þ �

IV
NH
� SH ; ð4Þ

dEH

dt
¼ a Tð Þ � b Tð Þ �

IV
NH
� SH � d � EH; ð5Þ

dIH
dt
¼ d � EH � Z � IH; ð6Þ

dRH

dt
¼ Z � IH ; ð7Þ

The SEI portion of the model describes the vector population, where SV represents the

number of susceptible mosquitoes, EV is the number of mosquitoes in the latency stage, and IV
is the number of infectious mosquitoes. We assumed that Aedes aegypti mosquitoes remain

infectious until they die. In Eqs 1–3, (T) indicates temperature-dependent functions, EFD(T) is

the number of eggs laid per female per day, pEA(T) is the probability of mosquito egg-to-adult

survival, MDR(T) is the mosquito egg-to-adult development rate, NV is the total mosquito pop-

ulation at time t (i.e., Sv + Ev + Iv), K(T) is the carrying capacity for the mosquito population,

a(T) is the per mosquito biting rate, pMI(T) is the probability of mosquito infection per bite on

Fig 1. Compartmental model of transmission. SH, EH, IH, and RH represent the susceptible, exposed (or latent), infectious, and recovered segments of the human

population, respectively. Likewise, SV, EV, and IV represent the susceptible, exposed (or latent), and infectious segments of the mosquito population. Solid arrows signify

the directionality of transition from one compartment to the next, and dashed arrows indicate the directionality of transmission.

https://doi.org/10.1371/journal.pntd.0006451.g001
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an infectious host, μ(T) is the adult mosquito mortality rate, and PDR(T) is the parasite devel-

opment rate. Each life history and pathogen transmission trait of the Aedes aegypti mosquito is

a unimodal, temperature-dependent function fit from experimental laboratory data in previ-

ous work [15–22,24] (Table 1; Appendix; “Functional Forms of Life History Traits”).

The SEIR portion of the model describes the human population, where SH represents the

number of susceptible individuals, EH the number of latent (or exposed) individuals, IH the

number of infectious individuals, and RH the number of recovered individuals. We assumed a

static population size, NH, that was neither subject to births nor deaths because the human life-

span far exceeds the duration of an epidemic. Further, we binned asymptomatic and symp-

tomatic individuals into a single infectious class since asymptomatic infections have been

shown to transmit DENV [35] and exhibit similar viremic profiles as symptomatic patients in

CHIKV [36]. Based on previous arboviral outbreaks [37,38], we assumed that an infection con-

ferred long-term immunity to an individual. Thus, a previously infectious individual entering

the recovered class is protected from subsequent re-infection for the remainder of the epi-

demic. In the case of dengue, where there are four unique serotypes, we consider single-season

epidemics of a single serotype. In Eqs 4–7, b(T) is the probability of human infection per bite

by an infectious mosquito (Table 1), δ-1 is the intrinsic incubation period, and η-1 is the

human infectivity period. Since human components of the transmission cycle are not seasonal,

we used constants of 5.9 days for the intrinsic incubation period, 1/δ, and 5.0 days for the

infectious period, 1/η [14]. All temperature-independent parameter values are given in

Table 2.

Since the lifespan of an adult mosquito is short relative to the timespan of an epidemic, we

allowed mosquito birth and death rates to drive population dynamics. Additionally, the birth

rate of susceptible mosquitoes was regulated by a temperature-dependent carrying capacity, K
(Eq 8), which we modeled as a modified Arrhenius equation that is a unimodal function of

Table 1. Fitted thermal responses for Aedes aegypti life history traits. Traits were fit to a Brière [cT T � T0ð ÞðTm � TÞ
1
2] or a quadratic [c(T − Tm)(T − T0)] function

where T represents temperature. T0 and Tm are the critical thermal minimum and maximum, respectively, and c is the rate constant. Thermal responses were fit by [24].

Trait Definition Function Fitted Parameters

a Biting rate (day-1) Brière c = 2.02e-04 Tmin = 13.35 Tmax = 40.08

EFD Eggs laid per female per day Brière c = 8.56e-03 Tmin = 14.58 Tmax = 34.61

pEA Probability of mosquito egg-to-adult survival Quadratic c = -5.99e-03 Tmin = 13.56 Tmax = 38.29

MDR Mosquito egg-to-adult development rate (day-1) Brière c = 7.86e-05 Tmin = 11.36 Tmax = 39.17

lf Adult mosquito lifespan (days) Quadratic c = -1.48e-01 Tmin = 9.16 Tmax = 37.73

b Probability of mosquito infectiousness Brière c = 8.49e-04 Tmin = 17.05 Tmax = 35.83

pMI Probability of mosquito infection Brière c = 4.91e-04 Tmin = 12.22 Tmax = 37.46

PDR Virus extrinsic incubation rate (day-1) Brière c = 6.65e-05 Tmin = 10.68 Tmax = 45.90

https://doi.org/10.1371/journal.pntd.0006451.t001

Table 2. Values of temperature-independent parameters used in the model, and their sources.

Parameter Definition Value Source

δ−1 Intrinsic incubation period (days) 5.9 [14]

η−1 Human infectivity period (days) 5.0 [14]

IH
0

�
N Proportion of initially infectious humans 0.0001

IV
0

�
M Proportion of initially infectious mosquitoes 0.015 [14]

M=N Ratio of mosquitoes-to-humans at 29˚C 2.0 [39]

https://doi.org/10.1371/journal.pntd.0006451.t002
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temperature [40]:

K Tð Þ ¼
EFDðT0Þ � pEAðT0Þ �MDRðT0Þ � mðT0Þ

� 1
� mðT0Þ

EFDðT0Þ � pEAðT0Þ �MDRðT0Þ � mðT0Þ
� 1

� Nm � e
� EA�ðT� T0Þ

2

kB�ðTþ273Þ�ðT0þ273Þ; ð8Þ

Here, T0 is defined as the reference temperature (i.e., the temperature at which the carrying

capacity is greatest) in Celsius, Nm is the maximum carrying capacity, and κB is Boltzmann

constant (8.617 x 10−5 eV/K). EFD is the number of eggs laid per female per day, pEA is the

probability of egg-to-adult mosquito survival, MDR is the mosquito egg-to-adult development

rate, and μ is the adult mosquito mortality rate. We calculated these values for the reference

temperature. EA is the activation energy, which we set to 0.5 and represents the temperature

dependence of the carrying capacity, a conservative estimate as we lacked sufficient data on

estimates of the carrying capacity of Aedes aegypti and its underlying temperature dependence.

To convert from Celsius to Kelvin, we incremented the temperature T and the reference tem-

perature T0 by 273. Eq (8) was adopted from [40] and modified to allow the distribution to be

unimodal. We set the reference temperature, T0, to 29˚C, which is consistent with optimal

temperatures for Aedes aegypti transmission [24,29].

We included a temperature-dependent carrying capacity in the model to constrain the

growth of the mosquito population. As described in the Appendix, all simulations begin with

the mosquito population at its (temperature-dependent) carrying capacity. As the temperature

changes seasonally, the mosquito population does not necessarily remain at carrying capacity

if one or more of the life history traits that determine the production of new mosquitoes in Eq

(1)—EFD, pEA, and MDR—is equal to zero. This occurs below 14.58˚C (the highest Tmin of

EFD, pEA, and MDR) or above 34.61˚C (the lowest Tmax of EFD, pEA, and MDR).

It should be noted that the transmission parameters are only related to the current tempera-

ture at each time point in the simulation. Time lags for each life history trait were not explicitly

built into the model.

Seasonal forcing. To address seasonality in the model, we allowed temperature to vary

over time. We modeled temperature as a sinusoidal curve with a period of 365 days of the

form:

T tð Þ ¼
Tmax � Tmin

2
� sin

2p

365
t

� �

þ Tmean; ð9Þ

Here, Tmax, Tmean, and Tmin represent the average monthly maximum, mean, and minimum

temperatures across a calendar year, respectively, and t is measured in days. By modeling tem-

perature as a function of time, we allowed the life history traits of the Aedes aegypti vector to

vary across time for the duration of the epidemic. In the absence of a specific focal location we

modeled seasonal temperature as a sinusoidal function for simplicity.

Data

Life history traits. To incorporate seasonal forcing into the compartmental modeling

framework, we used fitted mechanistic thermal response curves [24]. Mordecai et al. [24]

examined published data on thermal responses for life history traits of the Aedes aegypti vector

and DENV and adopted a Bayesian approach for fitting quadratic (Q(T); Eq 10) or Brière (B
(T); Eq 11) curves (see Appendix for details).

QðTÞ ¼ c � ðT � TminÞ � ðT � TmaxÞ; ð10Þ

BðTÞ ¼ c � T � ðT � TminÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax � T

p
; ð11Þ
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Here, c is a rate constant, Tmin is the critical temperature minimum, and Tmax is the critical

temperature maximum (Table 1). Following Mordecai et al. [24], we assumed values above the

critical thermal maxima and below the minima were equal to zero.

Mordecai et al. [24] fit the thermal response for adult mosquito lifespan (Table 1),

the inverse of the adult mosquito mortality rate (μ, in days-1), used in our model. We set the

mortality rate at temperatures outside the critical thermal minimum and maximum to 24

days-1 (i.e., mosquitoes survive for one hour at temperatures outside of the Tmin to Tmax

range).

Historical weather data. To identify areas of epidemic suitability across the globe, we

extracted monthly mean temperatures for 2016 from Weather Underground (wunderground.

com) for twenty different cities (Table 3). For each city, we calculated the mean, minimum,

and maximum from the average monthly mean temperatures, to estimate temperature season-

ality. This provided a range of the average monthly temperature over the span of a calendar

year. We chose this time period because it provided the most recent full calendar year to dem-

onstrate seasonal variation in temperature.

Variability in epidemic dynamics with constant temperature

We first examined how epidemic dynamics varied across different constant temperatures.

Here, we did not introduce seasonal forcing into the model but rather assumed static life his-

tory traits for Aedes aegypti for the simulation period. We simulated the model under default

starting conditions (see Appendix) at four different constant temperatures: 20˚C, 25˚C, 30˚C,

and 35˚C. These temperatures were chosen to span the range of temperatures at which arbovi-

rus transmission is likely to be possible [24].

Table 3. Temperature regimes for major cities during the 2016 calendar year. Monthly mean temperatures during

2016 were extracted from Weather Underground.

City Annual Mean Temperature (˚C) Annual Temperature Amplitude (˚C)

Buenos Aires, Argentina 16.5 8.0

Sao Paulo, Brazil 20.6 5.0

Rio de Janeiro, Brazil 24.3 4.0

Salvador, Brazil 26.3 2.0

Fortaleza, Brazil 27.8 0.50

Belo Horizonte, Brazil 21.9 3.0

Recife, Brazil 27.2 1.5

Shanghai, China 17.6 12.5

Beijing, China 12.8 16

Guangzhou, China 22.9 8.0

Bogotá, Colombia 14.7 1.0

Medellin, Colombia 17.9 1.0

Cali, Colombia 25.1 1.5

Barranquilla, Colombia 28.8 1.0

Cartagena, Colombia 28.6 1.0

Delhi, India 26.3 9.5

Tokyo, Japan 17.0 10.5

Kobe, Japan 17.4 11

Manila, Philippines 29.0 1.5

New York, USA 13.8 12

https://doi.org/10.1371/journal.pntd.0006451.t003
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Variability in epidemic dynamics with starting temperature

Using the model that included seasonal variation in temperature, we examined how the

dynamics of an epidemic varied due to the temperature at which the epidemic began, under

two temperature regimes. First, we set Tmax = 40.0˚C, Tmean = 25.0˚C, and Tmin = 10.0˚C in the

time-varying seasonal temperature model under default parameters (see Appendix) and varied

the temperature at the start of the epidemic from 10.0˚C to 40.0˚C in increments of 0.1˚C. We

examined the response of final epidemic size, epidemic length, and maximum instantaneous

number of infected individuals. We then repeated this process for a regime with a lower mag-

nitude of seasonal temperature variation: Tmax = 30.0˚C, Tmean = 25.0˚C, and Tmin = 20.0˚C.

By comparing these temperature regimes, we can examine how epidemics respond to starting

temperatures that are outside the range of plausible temperatures of arbovirus transmission

(regime 1) versus restricted to the plausible temperatures for transmission (regime 2) [24].

Seasonal variability of final epidemic size

Using the compartmental modeling framework with the default starting conditions, we exam-

ined the variation in final epidemic size as a result of seasonal forcing. To do so, we simulated

over a wide range of temperature mean and seasonal variance regimes. The mean annual tem-

perature varied from 10.0˚C to 38.0˚C in increments of 0.1˚C, while the seasonal variation

about the mean (i.e.,
Tmax � Tmin

2
) ranged from 0.0˚C to 17.0˚C in increments of 0.1˚C. Many of

these temperature regimes are unlikely to be observed empirically. However, the simulated

temperature regimes spanned the full range of feasible temperature conditions. We recorded

the final epidemic size, measured as the number of individuals in the recovered compartment

at the end of the simulation, for each unique combination of mean annual temperature and

seasonal variation. In addition, we examined the effect of epidemic starting temperature on

final epidemic size across the same seasonal temperature regimes. We ran the model under

default starting conditions, but allowed the starting temperature to equal Tmin, Tmean, or Tmax.

To observe the interaction of population immunity with the seasonal temperature regime,

we simulated the model assuming that 0, 20, 40, 60, or 80% of the population was initially

immune. Each simulation began with the introduction of the infected individual occurring at

the mean seasonal temperature.

We then compared simulated climate regimes with actual climates in major cities, to mea-

sure relative epidemic suitability of the following cities: São Paulo, Brazil; Rio de Janeiro, Bra-

zil; Salvador, Brazil; Fortaleza, Brazil; Belo Horizonte, Brazil; Recife, Brazil; Bogotá, Colombia;

Medellı́n, Colombia; Cali, Colombia; Barranquilla, Colombia; Cartagena, Colombia; Tokyo,

Japan; Delhi, India; Manila, Philippines; Shanghai, China; Beijing, China; New York City,

USA; Guangzhou, China; Kobe, Japan; and Buenos Aires, Argentina, given 0, 20, 40, 60, and

80% population immunity. These cities were chosen because they represent some of the most

populous urban areas across South America and throughout the world.

Model sensitivity and uncertainty analysis

To characterize uncertainty in the model, we sampled 50 joint posterior estimates for c, Tmin,

and Tmax for each life history trait provided by Mordecai et al. [24]. We examined the variabil-

ity in epidemic dynamics with starting temperatures under each parameterization and report

the 95% credible interval for the epidemiological indices. We similarly characterize uncertainty

in our estimates of the final epidemic size as a function of the seasonal temperature regime by

simulating under each parameterization and reporting the 95% credible interval.
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Results

Variability in epidemic dynamics with constant temperature

Holding temperature constant, we examined variability in epidemic dynamics across four temper-

atures: 20˚C, 25˚C, 30˚C, and 35˚C. As temperature increased from 20˚C to 30˚C, the number of

susceptible individuals depleted more rapidly (Fig 2, SH). At 20˚C and 35˚C, the epidemics were

small (1.33% and 5.92% of the population infected, respectively) and burned out rapidly. Although

simulations run at 25˚C and 30˚C produced final epidemic sizes of 94.73% and 99.98% of the pop-

ulation infected, respectively (Fig 2, RH), the epidemic peaked much faster at 30˚C.

Variability in epidemic dynamics with starting temperature

Next, we examined variability in epidemic dynamics due to the temperature at which the epi-

demic began, given two seasonal temperature regimes (25˚C mean and a seasonal range of

Fig 2. Variation in epidemic dynamics by temperature. The model was simulated under default parameters at four constant temperatures: 20˚C, 25˚C, 30˚C,

and 35˚C.

https://doi.org/10.1371/journal.pntd.0006451.g002

Seasonal climate affects vector transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006451 May 10, 2018 9 / 20

https://doi.org/10.1371/journal.pntd.0006451.g002
https://doi.org/10.1371/journal.pntd.0006451


10˚C to 40˚C or 20˚C to 30˚C, respectively). Given that an epidemic occurred, epidemic length

monotonically decreased as a function of starting temperature for the first temperature regime

(Fig 3A): warmer temperatures at the start of the epidemic produced shorter epidemics, and

vice versa. In the second temperature regime, epidemic length monotonically decreased as a

function of starting temperature until ~29˚C. When temperature varied from 10˚C to 40˚C,

the longest epidemic simulated was 137.8 days and occurred at starting temperatures of

11.2˚C, and the shortest epidemic lasted 16.82 days and occurred when the temperature at the

epidemic start was 35.7˚C. When the temperature was 35.8˚C or higher or 10.2˚C or lower, no

epidemic occurred. When temperature was constrained between 20˚C and 30˚C, the longest

epidemic simulated was 253.64 days at a starting temperature of 20˚C, and the shortest epi-

demic lasted 136.1 days at a starting temperature of 28.9˚C.

Fig 3. Epidemiological indices as a function of starting temperature, within a given seasonal temperature regime. The red curve represents the maximum

number of humans in the infected class (IH) at any given point during the simulation. The blue curve represents the final (or cumulative) epidemic size (RH at the

final time step). The green curve represents the length of the epidemic (i.e., the point at which the number of infected individuals was below one). Here,

simulations were run with the temperature conditions: Tmin = 10˚C, Tmean = 25˚C, and Tmax = 40˚C (A) and Tmin = 20˚C, Tmean = 25˚C, and Tmax = 30˚C (B).

https://doi.org/10.1371/journal.pntd.0006451.g003
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In contrast to epidemic length, the response of final epidemic size and maximum number of

infected individuals to the temperature at epidemic onset depended on the amount of seasonal

temperature variation. When temperature varied widely, from 10˚C to 40˚C, both final epi-

demic size and the maximum number of infected individuals responded unimodally to starting

temperature, with peaks at 23.9˚C and 24.1˚C, respectively (Fig 3A). By contrast, when tempera-

ture varied more narrowly from 20˚C to 30˚C, the final epidemic size and the maximum num-

ber of infected individuals were insensitive to starting temperature (Fig 3B). Taken together,

these results show that epidemics introduced at different times within identical seasonal tem-

perature regimes can produce very similar final epidemic sizes and maximum infection rates,

provided that the temperature range is sufficiently constrained. If temperature variation is large,

dramatically different final epidemic sizes and maximum infection rates may result.

Seasonal variability of final epidemic size

To address how mean temperature and seasonal variance combined to influence the final epi-

demic size, we simulated over a wide range of temperature regimes that accounted for varia-

tion in the mean and temperature range over a calendar year. We calculated relative epidemic

suitability, defined as the final epidemic size as a proportion of the human population, for

twenty major cities worldwide (Table 4).

In a low-variation thermal environment, a band of mean temperatures between approxi-

mately 25˚C and 35˚C supports the highest epidemic suitability (Fig 4). As the seasonal tem-

perature range increases, lower mean temperatures are capable of supporting large epidemics.

Table 4. Estimates of epidemic suitability for major cities. Epidemic suitability was calculated as the proportion of the population that became infected in simulations

run with 0, 20, 40, 60, or 80% initial population immunity. Temperature at simulation onset was set to the mean of the temperature regime. Each city was simulated with

its respective temperature regime from the 2016 calendar year.

Epidemic Suitability

City 0% Immunity 20% Immunity 40% Immunity 60% Immunity 80% Immunity

Buenos Aires, Argentina 0.03656 0.02169 0.01203 0.005975 0.002295

Sao Paulo, Brazil 0.6056 0.3386 0.1518 0.05351 0.01385

Rio de Janeiro, Brazil 0.9984 0.7962 0.5891 0.3618 0.09862

Salvador, Brazil 0.9990 0.7976 0.5937 0.3804 0.1335

Fortaleza, Brazil 0.9993 0.7982 0.5953 0.3861 0.1535

Belo Horizonte, Brazil 0.5909 0.3344 0.1544 0.05771 0.01633

Recife, Brazil 0.9994 0.7985 0.5959 0.3871 0.1517

Shanghai, China 0.9966 0.7878 0.5507 0.2484 0.03456

Beijing, China 0.5268 0.2526 0.09058 0.02298 0.003587

Guangzhou, China 0.9996 0.7989 0.5965 0.3848 0.1254

Bogotá, Colombia 0.0001000 0.0001000 0.0001000 0.0001000 0.0001000

Medellin, Colombia 0.002544 0.002048 0.001556 0.001068 0.0005820

Cali, Colombia 0.9909 0.7822 0.5617 0.3122 0.07217

Barranquilla, Colombia 0.9997 0.7993 0.5979 0.3928 0.1703

Cartagena, Colombia 0.9997 0.7993 0.5978 0.3923 0.1688

Delhi, India 0.9537 0.7215 0.4759 0.2388 0.06803

Tokyo, Japan 0.7269 0.4149 0.1758 0.05159 0.009489

Kobe, Japan 0.9435 0.6669 0.3522 0.1090 0.01632

Manila, Philippines 0.9998 0.7994 0.5981 0.3933 0.1720

New York, USA 0.04088 0.02159 0.01041 0.004390 0.001425

https://doi.org/10.1371/journal.pntd.0006451.t004
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However, outside this narrow band of temperature regimes, epidemic suitability rapidly

diminishes, and most temperature regimes did not produce epidemics.

Of the focal 20 major cities, those with high mean temperature and small average tempera-

ture variation exhibited the highest epidemic suitability. For instance, Manila, Philippines,

which has a monthly mean temperature of 29˚C and average seasonal amplitude in mean tem-

perature of 1.50˚C, had an epidemic suitability of 0.9998. Cartagena and Barranquilla, Colom-

bia had epidemic suitability of 0.9997. On the other hand, areas with low average temperature

and greater temperature variation, such as Beijing and New York, exhibited lower—but still

non-zero—epidemic suitabilities of 0.5268 and 0.04088 respectively. Notably, Guangzhou and

Shanghai, China have high epidemic suitability (0.9996 and 0.9966, respectively) despite mod-

erate mean temperatures (22.9 and 17.6˚C, respectively) due to high seasonal variation in tem-

perature. By contrast, high seasonal variation reduced suitability to 0.9537 in Delhi, India,

which has a high mean temperature of 26.3˚C (Fig 4).

Fig 4. Variation in epidemic suitability across different seasonal temperature regimes. The heat map shows the epidemic suitability (represented as the

proportion of the total human population infected during an epidemic) as a function of mean annual temperature and temperature range. Here, temperature range is

defined as the seasonal variation about the annual mean temperature. Twenty large, globally important cities are plotted to illustrate their epidemic suitability.

https://doi.org/10.1371/journal.pntd.0006451.g004
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The relationship between epidemic suitability and seasonal temperature regime was consis-

tent across varying levels of population immunity. Locations with high mean temperatures

and small average temperature variation had higher epidemic suitability, regardless of the level

of population immunity (S8–S10 Figs). However, as the level of immunity increased from 20%

to 80%, the epidemic suitability at given seasonal temperature regime decreased (Table 4).

Epidemic suitability also varied by starting temperature, depending on the seasonal temper-

ature regime. The epidemic suitability of cities with high mean temperature and small average

temperature variation—such as Manila, Philippines and Cartagena and Barranquilla, Colom-

bia—did not depend on starting temperature (Table 5). However, areas with low to moderate

mean temperature and large average temperature variation (e.g., Kobe, Japan and Shanghai,

China) exhibited low epidemic suitability (both 0.0001000) at the minimum starting tempera-

ture and moderate-to-high epidemic suitability at the maximum starting temperature (0.6890

and 0.8905, respectively) (Fig 5). The opposite occurred in regimes with high mean tempera-

ture and large temperature variation, though these temperature regimes are rarer.

Estimated epidemic suitability is close to one in the most suitable temperature regimes

because we assumed that: (i) the population was fully susceptible at the start of the epidemic;

(ii) mixing was homogeneous among humans and mosquitoes; (iii) all cases of infection are

included regardless of whether or not they are symptomatic; and (iv) no other environmental

or social drivers are limiting transmission. As a result, the epidemic suitability metric should

be considered an upper bound on the proportion of the population that could become infected

based on temperature alone.

Table 5. Estimates of epidemic suitability for major cities under different starting temperatures. Epidemic suitability was calculated as the proportion of the popula-

tion that became infected in simulations that began at the minimum, mean, or maximum temperature of the seasonal temperature regime. Each city was simulated with its

respective temperature regime from the 2016 calendar year with 0% population immunity.

Epidemic Suitability

City Minimum Starting Temperature Mean Starting Temperature Maximum Starting Temperature

Buenos Aires, Argentina 0.0001000 0.03656 0.1166

Sao Paulo, Brazil 0.02026 0.6056 0.3480

Rio de Janeiro, Brazil 0.9978 0.9984 0.9760

Salvador, Brazil 0.9965 0.9990 0.9963

Fortaleza, Brazil 0.9986 0.9993 0.9990

Belo Horizonte, Brazil 0.09404 0.5909 0.3273

Recife, Brazil 0.9973 0.9994 0.9987

Shanghai, China 0.0001000 0.9966 0.8905

Beijing, China 0.0001000 0.5268 0.5792

Guangzhou, China 0.9983 0.9996 0.9912

Bogotá, Colombia 0.0001000 0.0001000 0.0001000

Medellin, Colombia 0.0002177 0.002544 0.004472

Cali, Colombia 0.9858 0.9909 0.9623

Barranquilla, Colombia 0.9994 0.9997 0.9997

Cartagena, Colombia 0.9993 0.9997 0.9997

Delhi, India 0.5615 0.9537 0.6954

Tokyo, Japan 0.0001000 0.7269 0.5121

Kobe, Japan 0.0001000 0.9435 0.6890

Manila, Philippines 0.9994 0.9998 0.9998

New York, USA 0.0001000 0.04088 0.1863

https://doi.org/10.1371/journal.pntd.0006451.t005

Seasonal climate affects vector transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006451 May 10, 2018 13 / 20

https://doi.org/10.1371/journal.pntd.0006451.t005
https://doi.org/10.1371/journal.pntd.0006451


Model sensitivity and uncertainty analysis

Final epidemic size was not sensitive to life history trait parameterization (S8–S10 Figs), using

samples from the posterior distribution of thermal response fits for each temperature-depen-

dent trait.

There was uncertainty in the specific numerical values of the epidemiological indices across

starting temperatures (S1 Fig). However, the overall functional response of the final epidemic

size, maximum number of infected individuals, and the epidemic length to starting tempera-

ture was consistent across the samples from the joint posterior distribution.

Discussion

Recent outbreaks of DENV, CHIKV, and ZIKV in Latin America and across the globe have

captured the attention of the public health community and underscore the importance of

Fig 5. Variation in epidemic suitability across different seasonal temperature regimes averaged across starting temperatures. The heat map shows the epidemic

suitability (represented as the proportion of the total human population infected during an epidemic) as a function of mean annual temperature and temperature

range averaged across simulations where the initial temperature was set to the seasonal temperature regime’s minimum, mean, or maximum temperature. Here,

temperature range is defined as the seasonal variation about the annual mean temperature. Twenty large, globally important cities are plotted to illustrate their

epidemic suitability.

https://doi.org/10.1371/journal.pntd.0006451.g005

Seasonal climate affects vector transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006451 May 10, 2018 14 / 20

https://doi.org/10.1371/journal.pntd.0006451.g005
https://doi.org/10.1371/journal.pntd.0006451


preparation for future outbreaks. As temperatures rise, the global landscape suitable for such

outbreaks will expand and shift geographically, potentially placing a larger proportion of the

world’s population at risk [24,29,31]. Understanding how local temperature regimes govern

epidemic dynamics is increasingly important for determining resource allocation and control

interventions [41]. While previous work has investigated the effects of temperature on DENV,

CHIKV, and/or ZIKV transmission, until now we have lacked comprehensive, mechanistic,

and dynamic understanding of the effects of seasonally varying temperature on transmission

via its (nonlinear) effects on mosquito and parasite traits [27–34]. With our model, which

expands on [24] and [25], we show that seasonal temperature mean and amplitude interact

with the temperature at epidemic onset to shape the speed and magnitude of epidemics.

At constant temperature, epidemics varied substantially in the rate at which susceptible

individuals were depleted. Epidemics simulated at 25˚C and 30˚C reached similar sizes but the

epidemic at 25˚C proceeded at a much slower rate (Fig 2). This “slow burn” phenomenon

occurs because slower depletion of susceptible individuals can produce epidemics of similar

size to epidemics that infect people very rapidly. This phenomenon also occurs in more realis-

tic, seasonally varying temperature regimes.

The temperature at which an epidemic started affected dynamics only under large ranges of

temperature variation. When temperature ranged from 10˚C to 40˚C, the final epidemic size

peaked at intermediate starting temperatures (24˚C; Fig 3A). However, in highly suitable seasonal

environments, final epidemic size was large regardless of the starting temperature (Fig 3B).

At mean starting temperatures, epidemic suitability was sensitive to the interaction between

annual temperature mean and seasonal variation. Under low seasonal temperature variation, a

narrow band of annual mean temperatures (approximately 25–35˚C) had the highest epidemic

suitability (Figs 4 & S2–S5). Outside this band of temperature regimes, suitability diminishes

rapidly. Larger seasonal variation in temperature lowers the range of optimal annual mean

temperatures (i.e., suitability is high in cooler places with larger seasonal variation in tempera-

ture; Fig 4).

The relationship between epidemic suitability and the seasonal temperature regime also

depended on the temperature at the epidemic onset. Three distinct relationships emerged

(Figs 5 & S6 and S7). At intermediate annual mean temperatures of ~25–35˚C and low sea-

sonal temperature variation (~0–10˚C), epidemic suitability is insensitive to starting tempera-

ture because temperature is suitable for transmission year-round. At lower annual mean

temperatures (~10–25˚C) and higher seasonal temperature variation (~10–15˚C), epidemic

suitability is highest when epidemics start in moderate to warm seasons, and lower when epi-

demics start during cooler seasons. Finally, at high annual mean temperatures (> 35˚C) and

low seasonal temperature variation (~0–10˚C), epidemic suitability is high only when epidem-

ics start at the coldest period of the year, because otherwise the temperature is too warm for

efficient transmission. The interaction between temperature mean, annual variation, and start-

ing point sharply illustrates the unimodal effect of temperature on transmission. Models that

do not include unimodal effects of temperature (e.g., those with sinusoidal forcing on a trans-

mission parameter) may fail to capture the limits on transmission in warm environments.

With rising mean annual temperatures and increasing seasonal temperature variation due

to climate change, the landscape of epidemic suitability is likely to shift. Importantly, areas

with previously low epidemic suitability may have increasing potential for transmission year-

round. By contrast, warming temperatures may drive epidemics in cities with high current

suitability (e.g., Manila, Philippines, Barranquilla, Colombia, and Fortaleza, Brazil) to shift

toward cooler months. Thus, climate change may alter not only epidemic size and duration

but also seasonal timing globally, as it interacts with other important drivers like rainfall and

human behavior.
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It is important to note that model-estimated epidemic suitability should be treated as an

upper bound on the potential for large epidemics because within highly suitable climate

regimes, epidemics can vary in magnitude due to human population size and movement

dynamics [28], effective vector control, and other mitigating factors. Likewise, our estimates

are conditioned on Aedes aegypti presence and virus introduction to support an outbreak.

Although seasonal temperature dynamics provide insight into vector-borne transmission

dynamics, other factors like mosquito abundance, vector control, and rainfall also determine

transmission dynamics. Thus, temperature must be considered jointly with these factors.

Moreover, accurately describing epidemic dynamics of emerging and established vector-borne

pathogens will ultimately require integrating realistic models of environmental suitability, as

presented here, with demographic, social, and economic factors that promote or limit disease

transmission [42,43]. Conversely, we show that the interaction between temperature and the

availability of susceptible hosts alone can drive epidemic burnout even in the absence of other

limiting factors like vector control and seasonal precipitation. This suggests that correctly rep-

resenting the nonlinear relationship between temperature and epidemic dynamics is critical

for accurately inferring mechanistic drivers of epidemics and, in turn, predicting the efficacy

of control interventions.

Supporting information

S1 Fig. Sensitivity of epidemiological indices as a function of starting temperature to the

parameterization of life history traits. The red curve represents the median maximum num-

ber of humans in the infected class (IH) at any given point during the simulation. The blue

curve represents the median final (or cumulative) epidemic size (RH at the final time step). The

green curve represents the median length of the epidemic (i.e., the point at which the number

of infected individuals was below one). Each shaded area represents the 95% credible interval

for the epidemiological indices ran under 50 different parameterizations of the life history

traits. Here, simulations were run with the temperature conditions: Tmin = 10˚C, Tmean = 25˚C,

and Tmax = 40˚C (A) and Tmin = 20˚C, Tmean = 25˚C, and Tmax = 30˚C (B).

(TIF)

S2 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with 20% population immunity. The heat map shows the epidemic suitability (represented as

the proportion of the total human population infected during an epidemic) as a function of

mean annual temperature and temperature range assuming 20% population immunity. Here,

temperature range is defined as the seasonal variation about the annual mean temperature.

Twenty large, globally important cities are plotted to illustrate their epidemic suitability.

(TIF)

S3 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with 40% population immunity. The heat map shows the epidemic suitability (represented as

the proportion of the total human population infected during an epidemic) as a function of

mean annual temperature and temperature range assuming 40% population immunity. Here,

temperature range is defined as the seasonal variation about the annual mean temperature.

Twenty large, globally important cities are plotted to illustrate their epidemic suitability.

(TIF)

S4 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with 60% population immunity. The heat map shows the epidemic suitability (represented as

the proportion of the total human population infected during an epidemic) as a function of

mean annual temperature and temperature range assuming 60% population immunity. Here,
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temperature range is defined as the seasonal variation about the annual mean temperature.

Twenty large, globally important cities are plotted to illustrate their epidemic suitability.

(TIF)

S5 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with 80% population immunity. The heat map shows the epidemic suitability (represented as

the proportion of the total human population infected during an epidemic) as a function of

mean annual temperature and temperature range assuming 80% population immunity. Here,

temperature range is defined as the seasonal variation about the annual mean temperature.

Twenty large, globally important cities are plotted to illustrate their epidemic suitability.

(TIF)

S6 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with minimum starting temperature. The heat map shows the epidemic suitability (repre-

sented as the proportion of the total human population infected during an epidemic) as a func-

tion of mean annual temperature and temperature range. Here, temperature range is defined

as the seasonal variation about the annual mean temperature, and the simulation began at the

minimum temperature of the regime. Twenty large, globally important cities are plotted to

illustrate their epidemic suitability.

(TIF)

S7 Fig. Variation in epidemic suitability across different seasonal temperature regimes

with maximum starting temperature. The heat map shows the epidemic suitability (repre-

sented as the proportion of the total human population infected during an epidemic) as a func-

tion of mean annual temperature and temperature range. Here, temperature range is defined

as the seasonal variation about the annual mean temperature, and the simulation began at the

maximum temperature of the regime. Twenty large, globally important cities are plotted to

illustrate their epidemic suitability.

(TIF)

S8 Fig. The 2.5% quantile of epidemic suitability to the parameterization of life history

traits. Epidemic suitability (represented as the proportion of the total human population

infected during an epidemic) as a function of mean annual temperature and the temperature

range. Temperature varied according to a seasonal temperature regime, and 50 samples of c,

Tmin, and Tmax were taken from the joint posterior distribution of each trait thermal response

from Mordecai et al. [24].

(TIF)

S9 Fig. The 50% quantile of epidemic suitability to the parameterization of life history

traits. Epidemic suitability (represented as the proportion of the total human population

infected during an epidemic) as mean annual temperature and the temperature range. Tem-

perature varied according to a seasonal temperature regime, and 50 samples of c, Tmin, and

Tmax were taken from the joint posterior distribution of each trait thermal response from Mor-

decai et al. [24].

(TIF)

S10 Fig. The 97.5% quantile of epidemic suitability to the parameterization of life history

traits. Epidemic suitability (represented as the proportion of the total human population

infected during an epidemic) as mean annual temperature and the temperature range. Tem-

perature varied according to a seasonal temperature regime, and 50 samples of c, Tmin, and

Tmax were taken from the joint posterior distribution of each trait thermal response from
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Mordecai et al. [24].

(TIF)

S1 Appendix. Supplementary methods and references.

(PDF)
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ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Dip-

tera, Culicidae). Iheringia Sér Zool. 2009; 99: 142–148. https://doi.org/10.1590/S0073-

47212009000200004

20. Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate

and survival of Aedes aegypti (Diptera: Culicidae). PloS One. 2014; 9: e87468. https://doi.org/10.1371/

journal.pone.0087468 PMID: 24498328

21. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector effi-

ciency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987; 36: 143–152. PMID: 3812879

22. McLean DM, Clarke AM, Coleman JC, Montalbetti CA, Skidmore AG, Walters TE, et al. Vector capabil-

ity of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures.

Can J Microbiol. 1974; 20: 255–262. PMID: 4132612

23. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. Seasonality and the dynamics of

infectious diseases. Ecol Lett. 2006; 9: 467–484. https://doi.org/10.1111/j.1461-0248.2005.00879.x

PMID: 16623732

24. Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al. Detecting the impact of

temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl

Trop Dis. 2017; 11: e0005568. https://doi.org/10.1371/journal.pntd.0005568 PMID: 28448507

25. Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV. Assessing the effects of tem-

perature on dengue transmission. Epidemiol Infect. 2009; 137: 1179–1187. https://doi.org/10.1017/

S0950268809002052 PMID: 19192323

26. Yang HM, Boldrini JL, Fassoni AC, Freitas LFS, Gomez MC, de Lima KKB, et al. Fitting the Incidence

Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-

Dependent Entomological Parameters. PloS One. 2016; 11: e0152186. https://doi.org/10.1371/journal.

pone.0152186 PMID: 27010654

27. Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting the spread of chikungunya

virus in the Americas. PloS One. 2014; 9: e104915. https://doi.org/10.1371/journal.pone.0104915

PMID: 25111394

28. Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, et al. Impact of human

mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci U S A. 2015; 112:

11887–11892. https://doi.org/10.1073/pnas.1504964112 PMID: 26351662

29. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: effects
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