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NMDA receptors (NMDARs) and AMPA receptors (AMPARs) in amygdala nuclei and the dorsal hippocampus (dHipp)

are critical for fear conditioning. Enhancements in synaptic AMPAR expression in amygdala nuclei and the dHipp are crit-

ical for fear conditioning, with some studies observing changes in AMPAR expression across many neurons in these brain

regions. Whether similar changes occur in other nodes of the fear circuit (e.g., ventral hippocampus [vHipp]) or changes in

NMDAR expression in the fear circuit occur with fear conditioning have not been sufficiently examined. To address this we

used near-infrared immunohistochemistry (IHC) to measure AMPAR and NMDAR subunit expression in several nodes of

the fear circuit. Long-term changes in GluR1 and GluR2 expression in the ventral hippocampus (vHipp) and anterior cin-

gulate cortex (ACC), enhanced NR2A expression in amygdala nuclei, and changes in the ratio of GluR1/NR2A and GluR2/

NR2A in the dHipp was observed with fear conditioning. Most of these changes were dependent on protein synthesis

during fear conditioning and were not observed immediately after fear conditioning. The results of the study suggest

that global changes in AMPARs and NMDARs occur in multiple nodes within the fear circuit and raise the possibility

that these changes contribute to fear memory. Further research examining how global changes in AMPAR, NMDAR,

and AMPAR/NMDAR ratios within nodes of the fear circuit contribute to fear memory is needed.

[Supplemental material is available for this article.]

AMPA receptors (AMPARs) and NMDA receptors (NMDARs) have
been consistently implicated in learning and memory (Malinow
and Malenka 2002; Connor and Wang 2016; Diering and
Huganir 2018). The role of these receptors in learning andmemory
have been extensively examined using fear conditioning. Fear con-
ditioning involves presenting an innocuous conditioned stimulus
(CS) such as a tone, light, or context with an aversive uncondi-
tioned stimulus (UCS). The most commonly used UCS is foot-
shock. Prior to fear conditioning the CS does not elicit fear
behavior, but after pairing the CS with an aversive event, robust
fear behavior is observed (Davis 1992; Fanselow and LeDoux
1999; LeDoux 2000; Maren 2001; Pare et al. 2004; Orsini and
Maren 2012).

Amygdala nuclei such as the basolateral amygdala (BLA) and
central nucleus of the amygdala (CeA) are critical for fear memory
(Miserendino et al. 1990; LeDoux 2000; Schafe and LeDoux 2000;
Blair et al. 2001; Rodrigues et al. 2001; Bauer et al. 2002; Wilensky
et al. 2006). Both AMPARs and NMDARs in amygdala nuclei have
been implicated in fear conditioning. AMPAR and NMDAR antag-
onism in the BLA and CeA disrupt fear conditioning (Miserendino
et al. 1990; Maren et al. 1996; Rodrigues et al. 2001; Bauer et al.
2002; Walker and Davis 2002; Goosens and Maren 2003; Walker
et al. 2005; Zimmerman et al. 2007). Behavioral (Monfils et al.
2009), pharmacological (Joels and Lamprecht 2010), and genetic
(Maren 2005) manipulations that disrupt GluR1 containing
AMPAR expression or activation in the BLA disrupts fear memory.
After fear conditioning, there is increased AMPAR insertion into
sensory (cortical and thalamic) afferent and nonrelay thalamic
synaptic input in different amygdala nuclei (McKernan and
Shinnick-Gallagher 1997; Rogan et al. 1997; Rumpel et al. 2005;

Humeau et al. 2007; Migues et al. 2010; Nedelescu et al. 2010;
Thoeringer et al. 2012; Nabavi et al. 2014; Penzo et al. 2015).
Blocking protein synthesis in the BLA blocks consolidation of
fear memory (Schafe and LeDoux 2000; Wilensky et al. 2006).
Together these studies suggest that AMPARs and NMDARs within
amygdala nuclei are critical for fear memory, increases in AMPAR
conductance within synapses in amygdala nuclei underlie fear
memory, and increases in AMPARs are driven in part by novel pro-
tein synthesis during fear conditioning. Similar processes occur-
ring in the dorsal hippocampus (dHipp) are believed to be critical
for contextual representation (Maren et al. 1994; Goosens and
Maren 2002; Zhou et al. 2009; Mitsushima et al. 2011; Penn
et al. 2017).

Increases in expression of GluR1 subunits of AMPARs are ob-
served after fear conditioning in the BLA and can be measured us-
ing immunohistochemistry (IHC) (Mei et al. 2005; Yeh et al. 2006).
Such large increases in total AMPAR expression suggest
up-regulation of AMPARs across many BLA neurons that is likely
driven by enhanced transcription (Mei et al. 2005). Whether sim-
ilar changes in AMPAR expression occur in other nodes of the
fear circuit that are critical for associative or contextual memory
has been insufficiently explored. The medial prefrontal cortex
(mPFC) and ventral hippocampus (vHipp) are critical for represent-
ing contextual information during fear conditioning (Maren and
Holt 2004; Rudy and Matus-Amat 2005; Maren et al. 2013;
Rozeske et al. 2015; Heroux et al. 2017), the vHipp has been consis-
tently implicated in CS–UCS associative fear memory (Bast et al.
2001; Maren and Holt 2004; Hunsaker and Kesner 2008; Staib
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et al. 2018), and the paraventricular nucleus of the thalamus (PVT)
is also critical for fear memory (Do-Monte et al. 2015; Penzo et al.
2015). Furthermore, connectivity among these nodes within the
fear circuit may also be critical for fear memory (Vetere et al.
2017). NMDAR activation in amygdala nuclei and the dHipp are
critical for learning during fear conditioning (see above), but
changes in expression of NMDARs in key nodes of the fear circuit
after fear conditioning have not been extensively investigated.

In this study, wemeasured changes in AMPARs and NMDARs
in several nodes of the fear circuit after fear conditioning using
near-infrared IHC. Near-infrared immunofluorescence (680- to
780-nm wavelength) is outside of the range of autofluorescence
in the brain and can be used to quantify protein expression in
brain tissue (Spitzer et al. 2011; Kimmelmann-Shultz et al. 2019).
With sufficiently high-resolution (e.g., 21 µm) expression of pro-
teins in relatively small brain regions can be characterized
(Kimmelmann-Shultz et al. 2019). In experiment 1 we examined
whether changes in AMPAR and NMDAR expression observed 1
d after fear conditioning (i.e., long-term changes) could be detected
using near-infrared IHC and whether these changes were depen-
dent on protein transcription. In experiment 2 we examined
whether any changes observed in experiment 1 were observed im-
mediately after fear conditioning.

Overall, the results suggest that long-term changes in AMPAR
andNMDAR expression in several nodes of the fear circuit occur af-
ter fear conditioning and most of these changes are dependent on
protein synthesis. Furthermore, changes in the ratio of AMPAR/
NMDAR expression in brain regions after fear conditioning could
not be explained by changes in individual AMPAR or NMDAR ex-
pression, which suggests that changes in the ratio of AMPAR/
NMDAR levels after fear conditioning may represent a unique mo-
lecular signature that could be relevant to fear learning and
memory.

Results

Experiment 1
The behavioral results for experiment 1 are illustrated in Figure 1.
All rats acquired fear conditioning, but administration of anisomy-
cin enhanced conditioned freezing during baseline and it is likely
this effect carried over during fear conditioning trials (drug× treat-
ment interaction: F(5,80) = 8.8, P<0.001) (Fig. 1A). To address this,
we normalized freezing during CS presentation relative to baseline
for all rats. Analysis of these normalized freezing scores revealed
that normalized freezing scores across fear conditioning trials
were lower in anisomycin-treated rats in comparison with vehicle-
treated rats (main effect of treatment: F(1,16) = 30.829, P<0.001)
(Fig. 1B; Supplemental Fig. S1).

Validation assays for GluR2/NR2A assays are in S1 and repre-
sentative images of near-infrared IHC for GluR1, GluR2, and NR2A
in all brain regions are presented in the Supplemental Figure S2,
A–E, as well as baseline values for all protein and protein ratios
(Tables 1, 2).

Validation of GluR1/NR2A IHC has been previously pub-
lished (Kimmelmann-Shultz et al. 2019). Figure 2 shows results
for changes in protein expression in brain regions with experimen-
tal treatments. In animals in the vehicle treatment, there were de-
creases in GluR1 expression in the ACC (t(9) = 2.799, P=0.021) and
increases in the vCA3 (t(7) = 2.82, P=0.026) and vCA1 (t(7) = 2.748,
P= 0.029) vHipp regions. All effects were absent with anisomycin
treatment (ACC: t(10) = 1.607, P=0.139; vCA3: t(9) = 0.236, P=
0.819; vCA1: t(9) = 0.035, P=0.973), though it should be noted
that the ACC statistic may have been driven by an increase in var-
iability as opposed to an increase in GluR1 levels. These results are
illustrated in Figure 2A. There was an increase in GluR2 expression
in the ACC (t(6) = 2.634, P=0.039) and this effect was absent with
anisomycin treatment (t(7) = 1.982, P=0.088). However, this effect
of anisomycin may have been driven by increases in variability as
opposed to an increase in GluR2 expression. These results are illus-
trated in Figure 2B. NR2A levels were increased in all amygdala re-
gions (LA: t(9) = 3.255, P=0.01; BA: t(9) = 2.826, P= 0.02; CeA: t(9) =
3.357, P=0.008), and this increase was absent with anisomycin
treatment in all amygdala regions (LA: t(10) = 0.996, P=0.343; BA:
t(10) = 0.56, P=0.567; CeA: t(9) = 1.953, P=0.083). However, de-
creases in NR2A levels with anisomycin treatment were observed
in the dCA1 (t(11) = 2.438, P=0.033), dDG (t(11) = 3.437, P=
0.006), and PVT (t(10) = 3.391, P=0.007), while no effects were ob-
served in the vehicle-treated animals (Ps > 0.05). However, the non-
significant effect in vehicle-treated animals with dDG NR2A levels
may have been driven by increased variance in this measure. These
results are illustrated in Figure 2C.

Decreases in GluR1/NR2A ratios were observed in the ACC
(t(8) = 3.786, P=0.004), LA (t(8) = 2.618, P=0.031), BA (t(8) = 2.38,
P= 0.045), CeA (t(8) = 2.434, P=0.041), and dCA3 (t(9) = 3.105, P
=0.013). These effects were absent in rats treated with anisomy-
cin in the ACC (t(10) = 1.511, P=0.162), CeA (t(10) = 0.391, P=
0.708), and dCA3 (t(11) = 0.686, P=0.507), but not the LA (t(10) =
3.583, P=0.005) or BA (t(10) = 3.702, P=0.004). GluR1/NR2A

BA

Figure 1. Effects of anisomycin treatment on freezing during fear condi-
tioning. (A) Experimental design for experiment 1 and behavioral results.
All rats (vehicle [Veh] = 9, anisomycin [Ani] = 9) showed increased freezing
responses with repeated CS–UCS association (i.e., acquisition of fear
memory), but subcutaneous administration of anisomycin prior to fear
conditioning increased baseline freezing levels. (B) Freezing during
CS-trials were then normalized to baseline freezing. These normalized
freezing scores were lower in Ani-treated rats in comparison with
Veh-treated rats. (*) P-value < 0.05, (* with bar) statistically significant com-
parisons across all trials.

Table 1. Baseline values for proteins and protein ratios used in experiment 1

ACC PL IL BA LA CeA

GluR1 155.88 ±23.66 124.6 ± 4.27 128.05 ±5.47 182.28 ±31.69 165 ±22.91 196.75 ±2.32
GluR2 121.5 ±5.8 120.43 ± 5.57 124.08 ±6.56 145.02 ±21.3 114.91 ± 12.43 121.65 ±15.37
NR2A 152.07 ±12.68 128.66 ±9.34 132.14 ±11.22 138.02 ±12.43 126.88 ±12.12 130.34 ±11.04
GluR1/NR2A 105.02 ±5.26 104.41 ±2.22 105.28 ±2.77 130.96 ±8.58 127.42 ±6.8 155.53 ±10.27
GluR2/NR2A 86.63 ±9.04 92.67 ± 7.78 94.18 ± 8.47 85.98 ± 15.37 84.18 ± 11.08 93.8 ± 17.22

Baseline values (in signal value [percentage]) for protein and protein ratios in the mPFC and amygdala nuclei in experiment 1.
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ratios were enhanced in the PVT of anisomycin-treated rats (t(8) =
2.841, P=0.022), but not vehicle treated rats (t(6) = 1.143, P=
0.207). These results are illustrated in Figure 3A. GluR2/NR2A ra-
tios were enhanced in the dDG (t(7) = 3.493, P=0.01) and this ef-

fect was absent in rats treated with anisomycin (t(7) = 1.884, P=
0.102), though this noneffect may have been driven by enhanced
variability in rats treated with anisomycin. These results are illus-
trated in Figure 3B.

Table 2. Baseline values for proteins and protein ratios used in experiment 1

dCA1 dCA3 dDG vCA1 vCA3 vDG PVT

GluR1 252.17 ±26.04 201.21 ±27.47 198.77 ±26.25 159.63 ±21.16 152.77 ±24.38 151.34 ±20.75 133.05 ±14.85
GluR2 156 ±2.94 140.77 ±2.18 140.42 ±3.3 155.8 ± 14.4 161.73 ± 17.56 143.88 ±10.88 115.07 ±2.16
NR2A 146.95 ±16.22 132.21 ±12.88 141.99 ±14.94 123.49 ±7.9 120.62 ± 7.45 129.1 ± 7.73 133.93 ±15.9
GluR1/NR2A 175.8 ± 6.97 133.56 ±4.29 144.16 ±5.11 131.33 ±7.78 132.38 ±10.12 123.99 ±8.33 107.14 ±3.87
GluR2/NR2A 105.89 ±8.05 113.48 ±5.56 99.2 ± 8.37 119.33 ±2.39 108.9 ± 5.3 107.26 ± 1.55 86.75 ± 8.7

Baseline values (in signal value [percentage]) for protein and protein ratios in the hippocampus and PVT in experiment 1.

B

C

A

Figure 2. Long-term changes in AMPAR and NMDAR subunit expression with fear conditioning. Graphs show changes in receptor subunits and pie
charts show the percentage of brain areas sampled that show changes in subunits with fear conditioning in anisomycin-treated and vehicle-treated
animals. (A) GluR1 levels were decreased in the ACC and increased in the vCA1 and vDG. These changes were blocked with administration of anisomycin
prior to fear conditioning, though effects on ACC GluR1 levels with anisomycin may have been driven by enhanced variance. (B) There was an increase in
GluR2 expression in the ACC that was not observed in rats treated with anisomycin. This effect may have been due to increased variance in the anisomycin-
treated animals. (C) In all amygdala nuclei, NR2A expression increased with fear conditioning and was blockedwith anisomycin treatment. Anisomycin also
decreased NR2A expression in dCA1, dDG, and the PVT. Effects with anisomycin on dDG NR2A levels may have been due to enhanced variability in these
group of animals. (*) Significant one-sample t-test.
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Experiment 2
The behavioral results for experiment 2 are illustrated in Figure 4.
Animals in the CS-Fear group showed significant increases in freez-
ing behavior during CS presentation (trial × treatment interaction:
F(5,45) = 105.825, P<0.001).

Representative images of near-infrared IHC for GluR1, GluR2,
and NR2A in all brain regions for experiment 2 are presented in
Supplemental Figure S3, A–E, as well as baseline values for all pro-
tein and protein ratios (Tables 3, 4).

Figure 5 shows results for changes in protein expression in
brain regions with treatment. In animals in the CS-Fear treatment,
there were decreases in GluR1 expression in all amygdala nuclei
(LA: t(12) = 2.799, P=0.021; BA: t(12) = 3.21, P=0.007; CeA: t(12) =
3.09, P=0.009), dCA1 (t(14) = 2.959, P= 0.01), and dDG (t(14) =
2.734, P=0.016). An increase in GluR1 expression was observed
in the IL (t(10) = 2.904, P=0.016). For animals in the CS-Fear treat-
ment there was an increase in GluR2 expression in the mPFC

(ACC: t(11) = 2.554, P=0.027; PL: t(11) = 2.749, P=0.019; IL: t(10) =
2.793, P=0.013) and a decrease in the PVT (t(13) = 2.301, P=
0.039). NR2A expression was decreased in the BA (t(11) = 2.697, P
=0.021) and dCA3 (t(13) = 4.093, P=0.001) in animals in the
CS-Fear treated animals. These results are illustrated in Figure 5.

Therewere increases inGluR2/NR2A ratios in the dCA3 (t(13) =
2.374, P=0.034) and PVT (t(13) = 4.632, P<0.001). ForGluR2/NR2A
ratios there were decreases in the amygdala (LA: t(9) = 3.338, P=
0.02; BA: t(9) = 2.834, P=0, P=0.02; CeA: t(9) = 4.699, P=0.001),
dCA1 (t(13) = 3.544, P=0.004), and PVT (t(13) = 6.639, P<0.001).
There were increases in GluR2/NR2A ratios in the dCA3 (t(13) =
2.984, P= 0.01) and vCA1 (t(10) = 2.955, P=0.01) for the CS-Fear
treatment. These results are illustrated in Figure 6.

Discussion

The results of experiments 1 and 2 are summarized in Tables 5 and
6. Using near-infrared IHC, we were able to detect a number of
changes in AMPAR and NMDAR expression (relative to baseline)
throughout critical nodes in the fear circuit. Within amygdala nu-
clei and dHipp, we did not observe changes in AMPAR expression
with fear conditioning. While some studies have observed an in-
crease inGluR1 expression in amygdala nuclei with fear condition-
ing (Mei et al. 2005), other studies have not (Yeh et al. 2006).
However, there were increases in GluR1 expression in the vCA3
and vCA1 and an increase in GluR2 in the ACC with fear condi-
tioning. Furthermore, AMPAR changes in the vHippwere eliminat-
ed with protein synthesis inhibition.

The vHipp has been consistently implicated in CS–UCS asso-
ciative fear memory (Bast et al. 2001; Maren and Holt 2004;
Hunsaker andKesner 2008; Staib et al. 2018) and the ACC is critical
for facilitating weak fear memory (Bissiere et al. 2008), remote

B

A

Figure 3. Long-term changes in AMPAR/NMDAR ratio expression with fear conditioning. Pie charts show the percentage of brain areas sampled that
show changes in ratios with fear conditioning in anisomycin-treated and vehicle-treated animals. (A) GluR1/NR2A ratios were decreased in the ACC, amyg-
dala nuclei, and dCA3. Only changes in the ACC, CeA, and dCA3 were blockedwith anisomycin. Anisomycin treatment enhanced GluR1/NR2A ratios in the
PVT. (B) There was an increase in GluR2/NR2A ratios in the dDG and this was blocked with anisomycin treatment, though this effect may have been driven
by enhanced variance in the anisomycin-treated group. (*) Significant one-sample t-test.

Figure 4. Experimental design and behavioral results for experiment
2. All animals (n=10) acquired fear memory. (* with bar) P-value <0.05
for statistical tests across trials.
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contextual fear memory (Einarsson and Nader 2012), and condi-
tioned avoidance (Gabriel et al. 1991; Kang and Gabriel 1998).
Changes in synaptic AMPAR conductance that facilitate neural
plasticity critical for fear memory are believed to occur via in-
creased synaptic AMPAR insertion via surface diffusion (Penn
et al. 2017), changes in AMPAR trafficking (Rumpel et al. 2005;
Migues et al. 2010; Mitsushima et al. 2011), and modification of
the intracellular tail of AMPARs (Malinow and Malenka 2002).
Thus, up-regulation of total AMPAR expression within a brain re-
gion (e.g., amygdala and dHipp) is not needed for enhancing syn-
aptic AMPAR conductance. However, up-regulation of AMPAR
subunits in the ACC and vHipp were observed and the
up-regulation in the vHipp was dependent on protein synthesis.
The meaning of this up-regulated response in these brain regions
requires further research.

We observed increases in NR2A expression in all amygdala
nuclei with fear conditioning and these increases were blocked
with protein synthesis. NMDARs in BLA and CeA are critical for
consolidation of fear memory, but synaptic plasticity that facili-
tates fear memory does not involve increases in synaptic
NMDARs (Malinow and Malenka 2002; Nabavi et al. 2014;
Connor and Wang 2016; Diering and Huganir 2018). What facili-
tating effect might enhanced NR2A expression in amygdala nuclei
have after fear conditioning? There could be an overall increase in
NMDARs that contain NR2A subunits without any overall change
in NMDARs or fear conditioning could lead to an enhancement in
extrasynaptic expression of NMDARs. Further research is needed to
explore what role up-regulation in NR2A subunits in amygdala nu-
clei play in fear memory.

With the exception of increases in GluR2 expression in the
ACC all changes in AMPARs and NMDARs observed 1 d after
fear conditioning (i.e., long-term memory) were not observed im-
mediately after fear conditioning. In the amygdala there were de-
creases in GluR1 (all amygdala nuclei) and NR2A (BA). Because
these changes were not observed 1 d after fear conditioning it is
likely that these changes represent a change in the configuration
of receptors that occur immediately after fear conditioning and
could be driven by acquisition of fear memory (Jarome et al.
2011) or an adapted response to enhanced excitation after fear
conditioning (Zinebi et al. 2003). In the mPFC there was an
up-regulation of GluR2 in all subregions examined and an in-
crease in GluR1 in the IL. The mPFC has been implicated in con-
textual representation during fear learning (Maren et al. 2013;

Rozeske et al. 2015; Heroux et al. 2017) and expression of fear
behavior (Corcoran and Quirk 2007), but is also critical for stress
reactivity (McKlveen et al. 2016; McKlveen et al. 2019; Page and
Coutellier 2019). Further research is needed to examine how
changes in mPFC AMPAR and NMDAR levels immediately after
fear conditioning are linked to changes in memory or stress dur-
ing fear conditioning.

Even though systemic administration of anisomycin blocked
increases in protein expression in several brain regions and de-
creased CS-induced freezing relative to baseline, this drug treat-
ment also significantly enhanced baseline freezing prior to fear
conditioning and induced effects on protein expression (see
Results). In agreement with previous research (Davis and Squire
1984), thesefindings suggest that systemic anisomycin administra-
tionmay produce unwanted side effects andmay be less preferable
to localized protein synthesis inhibition when examining the role
of protein synthesis within specific nodes of the fear circuit in
learning and memory.

Using the Li-Cor scanner we were able to detect GluR1 and
NR2A or GluR2 and NR2A subunits in the same brain region,
which allowed us to construct GluR1/NR2A and GluR2/NR2A ra-
tios in different nodes of the fear circuit. In some cases these ratios
simply reflected changes in individual proteins. For example, in ex-
periment 1, in the CeA there was an increase in NR2A levels, a cor-
responding decrease in GluR2/NR2A ratios, and both effects were
sensitive to protein synthesis inhibition. However, in other in-
stances, these ratios did not reflect changes in the individual pro-
teins. In the ACC GluR2 levels were increased with fear
conditioning, but there was no corresponding decrease in GluR2/
NR2A levels. In the dCA3 and dDG there were increases in
GluR1/NR2A and GluR2/NR2A ratios, respectively. However, fear
conditioning did not change individual subunits of AMPARs or
NMDARs. Instances where changes in GluR1/NR2A and GluR2/
NR2A ratios did not correspond to changes in individual AMPAR
or NMDAR subunit expression are italicized in Tables 5 and 6. An
increase in the conductance of synaptic AMPARs relative to
NMDARs drive the expression of neural plasticity (e.g., LTP) critical
to formation and expression of fear memory and is an electrophys-
iological signature of memory (Malinow and Malenka 2002;
Diering and Huganir 2018). Changes in the ratio of AMPAR/
NMDAR expression could represent a unique molecular signature
that is relevant to learning and memory, but further research ex-
ploring this possibility is needed.

Table 3. Baseline values for proteins and protein ratios used in experiment 2

ACC PL IL BA LA CeA

GluR1 161.9 ± 12.82 121.58 ±5.85 126.73 ±8.19 224 ±35.41 188.61 ±19.78 223.28 ±20.6
GluR2 154.47 ±12.91 145.12 ±10.71 161.28 ±3.72 191.13 ±20.1 170.62 ± 70.39 163 ±31
NR2A 193.13 ±14.27 158.02 ±6.76 172.31 ±8.53 176.19 ±15.26 158.72 ±13.73 155.07 ±13.35
GluR1/NR2A 78.08 ±6.05 76.92 ±5.29 72.22 ± 6.33 121.79 ±6.11 116.22 ±5.02 142.53 ±5.23
GluR2/NR2A 96.26 ±2.05 106.53 ±3.24 104.99 ±3.7 118.53 ± 7.78 111.9 ± 8.6 111.56 ± 26.58

Baseline values (in signal value [percentage]) for protein and protein ratios in the mPFC and amygdala nuclei in experiment 2.

Table 4. Baseline values for proteins and protein ratios used in experiment 2

dCA1 dCA3 dDG vCA1 vCA3 vDG PVT

GluR1 259.29 ±11.76 199.44 ±13.77 198.02 ±11.51 272.19 ±50.28 227.41 ±31.19 253.13 ±51.36 122.77 ±9.15
GluR2 179.73 ±10.01 164.72 ±7.67 162.85 ±8.71 104.24 ±5 104.37 ±9.63 96.65 ± 4.52 139.08 ±7.23
NR2A 142.94 ±6.04 134.42 ±8.52 132.57 ±6.09 110.1 ± 3.45 107.49 ±4.55 116.32 ±3.6 128.38 ± 7.8
GluR1/NR2A 176.45 ±4.59 146.68 ±5.54 147.6 ± 5.09 169.68 ±11.05 161.79 ±9.89 147.4 ± 7.89 96.61 ± 6.21
GluR2/NR2A 132.89 ±7.62 124.43 ±10.78 124.69 ±7.37 118.79 ±3.33 106.95 ±5.02 104.89 ±2.02 120.78 ±3.29

Baseline values (in signal value [percentage]) for protein and protein ratios in the hippocampus and PVT in experiment 2.
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Conclusions
The results of this study shows that near-infrared IHC can be used
to detect long-term and short-term changes in protein levels that
occur after fear conditioning. The use of IHC likely resulted in
the detection of AMPARs andNMDARs in themembrane and cyto-
plasm (i.e., total) of many neurons within a specific brain region.
What these changes represent can only be determined with more
research. However, the finding that AMPARs are up-regulated in
the vHipp and ACC after fear conditioning, and up-regulation of
AMPARs in the vHipp were disrupted with protein synthesis prior
to fear conditioning, do point to changes in AMPAR dynamics in
these brain regions contributing to fear learning and memory.
Also, the increase in NMDARs in amygdala nuclei with fear condi-
tioning suggests a dynamic role (either up-regulation or a change
in the makeup of NMDARs) for amygdala NMDARs in fear memo-
ry. Verification of these possibilities will require further research.

Materials and Methods

Animals
Adult male Sprague Dawley rats (n=52) were purchased from
Charles River, Inc., for use in this study. Upon arrival, rats
were pair housed for 3–5 d with ad libitum access to food dur-
ing this time period, but were then kept on a diet of 23 g of rat
chow per day, which is the manufacturer’s recommended diet
(LabDiet). Throughout the study, rats had ad libitum access to
water. Experimental manipulations commenced at a minimum
of 5 d after rats had been in the housing colony. Rats were
on a 12-h light–dark cycle. All experimental procedures were
performed in the animals’ light cycle between 9:00 a.m. and
4:00 p.m. All experiments were approved by the University
of Delaware Institutional Animal Care and Use Committee
following guidelines established by the National Institutes of
Health.

B

C

A

Figure 5. Short-term changes in AMPAR and NMDAR subunit expression with fear conditioning. Graphs show changes in receptor subunits and pie
charts show the percentage of brain areas sampled that show changes in subunits with fear conditioning in anisomycin-treated and vehicle treated
animals. (A) GluR1 levels were increased in the IL and decreased in amygdala nuclei, dCA1, and dDG. (B) There was an increase in GluR2 expression in
the mPFC and a decrease in the PVT. (C) In BA and dCA3 there was a decrease in NR2A. (*) Significant one-sample t-test, (* with bar) significant one-sample
t-test for all groups.
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Experimental procedures

Behavior
Fear conditioning was performed in MedAssociates, Inc., operant
boxes as previously described (Knox et al. 2012a). Fear condition-
ing was conducted by presenting an auditory CS (10 sec, 80 dB,
2 kHz) that coterminated with a 1-sec, 1-mA footshock five times.
The interstimulus interval was 60 sec. We conducted two experi-
ments in this study. In experiment 1 rats were administered aniso-
mycin (30mg/kg in 1mL/kg) in vehicle (1 NHCl adjusted to afinal
pH of 7.2 using NaOH) subcutaneously 35 min prior to fear condi-
tioning. A previous report has shown this dose of anisomycin is
sufficient to block protein synthesis in several brain regions
(Davis et al. 1980). Another group of animals was administered ve-
hicle prior to fear conditioning and another group of animals was
administered vehicle, but left in the housing colony to establish
baseline levels of proteins in different brain regions. The design
for experiment 2 was similar to experiment 1, except all rats were
euthanized immediately after fear conditioning and there was no
drug treatment.

Near-infrared IHC
Rats were euthanized via rapid decapitation at the relative times
listed above. Brains were then extracted and flash frozen in chilled
isopentane and stored in a −80°C freezer until further processing.
Brains were then thawed to −13°C in a cryostat (Leica CM1350)
and 30 µm sections through the vmPFC (AP: 3.72–2.52 mm),
dHipp, PVT, and BLA (AP: −2.4 mm to −4.2 mm), and vHipp
(AP:−4.92mm to−5.88mm)were taken andmounted onto super-
frost slides. All coordinates were based on the atlas of Paxinos and
Watson (1998). Brain sections were then stored in a −80°C freezer
until time of assay.

Double labeling IHC procedures
were performed as previously described
(Kimmelmann-Shultz et al. 2019). Either
GluR1/NR2A or GluR2/NR2A double la-
beling procedures were performed in all
brain regions. Sections were fixed in 4%
paraformaldehyde in. 0.1 M phosphate-
buffered saline (PBS). Sections were then
incubated in Triton X-100, rinsed in 1 M
tris buffered saline (TBS) and incubated
in 3% goat serum. Sections were rinsed
again in TBS and incubated with a rabbit
polyclonal GluR1 (Millipore ABN241)
and mouse monoclonal NR2A (Millipore
MAB5216) primary antibodies at a con-
centration of 1:500 in PBS overnight at
4°C. Sections were then rinsed in TBS
containing 0.01% Tween-20 (TBS-T).
After this, sections were incubated in a
solution consisting of TBS, 1.5% goat se-
rum, 0.1% Triton X-100, and a 1:2000
dilution of goat antirabbit 800CW sec-
ondary antibody (Li-Cor Biotechnology,
Inc.) and goat antimouse 680RD second-
ary antibody (Li-Cor Biotechnology,
Inc.) for 2 h at room temperature.
Sections were rinsed in TBS-T and TBS,
and then deionized water. Sections were
then left to air-dry overnight. A similar
procedure was used to visualize GluR2
(Millipore MABN71) and NR2A in the
fear circuit.

Data analysis and statistical analysis
Freezing behavior was scored using
Any-maze (Stotelting Inc.) as previously
described (Knox et al. 2012b). For experi-
ment 1, freezing was subjected to a drug

B

A

Figure 6. Short-term changes in AMPAR to NMDAR ratio expression with fear conditioning. Pie charts
show the percentage of brain areas sampled that show changes in ratios with fear conditioning in
animals. (A) GluR1/NR2A ratios were increased in the dCA3 and the PVT. (B) There were decreases in
GluR2/NR2A ratios in amygdala nuclei, dCA1, and PVT; and increases in the dCA3 and vCA1. (*)
Significant one-sample t-test, (* with bar) significant one-sample t-test for all groups.

Table 5. Summary of effects for experiment 1

GluR1 GluR2 NR2A
GluR1/
NR2A

GluR2/
NR2A

ACC ↓Learning ↑Learning X ↓Learning
√Ani

X

PL X X X X X
IL X X X X X
LA X X ↑Learning

√Ani
↓Learning X

BA X X ↑Learning
√Ani

↓Learning X

CeA X X ↑Learning
√Ani

↓Learning
√Ani

X

dCA1 X X ↓Ani X X
dCA3 X X X ↓Learning

√Ani
X

dDG X X X X ↑Learning
vCA1 ↑Learning

√Ani
X X X X

vCA3 ↑Learning
√Ani

X X X X

vDG X X X X X
PVT X X ↓Ani ↑Ani X

Changes in AMPAR and NMDAR subunit expression with fear conditioning
and sensitivity to protein synthesis inhibition with anisomycin (Ani) from ex-
periment 1. (X) No effect, (↑) an increase, (↓) a decrease. Check mark (√) fol-
lowed by drug means anisomycin blocked the observed effect. Terms in
italics in the last two columns mean that changes in protein ratios did not
reflect changes in individual protein levels. Effects that may have been driven
by enhanced variability have been left out of the table.

AMPAR, NMDAR, and fear conditioning

www.learnmem.org 89 Learning & Memory



(vehicle vs. anisomycin) x trial (baseline, 1–5) factor design. For ex-
periment 2, freezing was subjected to a single factor (i.e., trial) re-
peated measures factor design. For all factor designs main and
simple effects were analyzed using analysis of variance (ANOVA)
while main and simple comparisons were analyzed using t-test
with Bonferroni corrections applied where necessary.

Dried brain sections, treated for GluR1, GluR2, and NR2A
IHC, were scanned at 21 µm, highest resolution, and an offset of
0 in the Odyssey scanner (Li-Cor Biotechnology, Inc.). Fluorescent
activity measured in the Li-Cor scanner from acquired images re-
main constant irrespective of how an image is manipulated for
viewing/presentation purposes in this system. Fluorescent activity
in a particular brain region was then expressed as a percent change
from activity in the corpus callosum. We referred to this as signal
activity. As we have done in previous studies (Eagle et al. 2013;
Knox et al. 2016, 2018; Della Valle et al. 2019), signal activity
fromprotein in all brain regionswas normalizedwith respect to an-
imals in the baseline treatment (i.e., normalized activity). For ex-
periments 1 and 2 the baseline condition consisted of 12 rats.
Normalized activity was constructed so that if signal activity was
equal to baseline signal activity a normalized score of 100% [i.e.,
(signal activity/averaged baseline activity) × 100] would be
obtained.

For experiments 1 and 2, normalized activity in the fear circuit
(i.e., IL, PL, dHipp [dCA1, dCA3, and dDG], BLA [lateral {LA} and
basal {BA} regions separately], CeA, PVT, and vHipp [vCA1, vDG,
and vCA3]) was subjected to separate one-sample t-tests with the
test value being set to 100. For experiment 1 this procedure was
adopted separately for the vehicle and drug treated animals. All
statistical tests were performed in IBM SPSS statistic 23. Any addi-
tional post-hoc t-tests were subject to Bonferroni corrections.
P-value< 0.05 was taken as statistical significance for all tests.
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