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Abstract
Communication between the 5′ and 3′ ends of a eukaryotic messenger RNA
(mRNA) or viral genomic RNA is a ubiquitous and important strategy used to
regulate gene expression. Although the canonical interaction between initiation
factor proteins at the 5′ end of an mRNA and proteins bound to the
polyadenylate tail at the 3′ end is well known, in fact there are many other
strategies used in diverse ways. These strategies can involve “non-canonical”
proteins, RNA structures, and direct RNA-RNA base-pairing between distal
elements to achieve 5′-to-3′ communication. Likewise, the communication
induced by these interactions influences a variety of processes linked to the
use and fate of the RNA that contains them. Recent studies are revealing how
dynamic these interactions are, possibly changing in response to cellular
conditions or to link various phases of the mRNA’s life, from translation to
decay. Thus, 5′-to-3′ communication is about more than just making a closed
circle; the RNA elements and associated proteins are key players in controlling
gene expression at the post-transcriptional level.
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Introduction
Messenger RNAs (mRNAs) provide the template for synthesis of 
proteins; by definition, they contain an open reading frame (ORF) 
that encodes an amino acid sequence. However, encoding a protein 
is not enough: the use and fate of specific eukaryotic mRNAs must 
be controlled within the overall strategy used by cells to regulate 
gene expression. Much of the regulatory power is conferred by 
essential cis-acting sequences and structures in the mRNA’s untrans-
lated regions (UTRs), which reside both 5′ (upstream) and 3′ (down-
stream) of the ORF. Also important for regulation, the vast majority 
of mature eukaryotic mRNAs have a modified nucleotide (generally 
a 7-methylguanosine, or m7G) on their 5′ terminus and a polyade-
nylate (poly[A]) tail on their 3′ end (Figure 1a). These features con-
trol the fate of the mRNA, in part through long-range communication 
between the 5′ and 3′ ends. Often described as “mRNA circulariza-
tion”, this phenomenon is central in controlling a number of post-
transcriptional events. In addition to cellular mRNAs, many viral 
genomic RNAs use communication between their 5′ and 3′ ends, 
illustrating how useful, important, and ubiquitous this strategy is.

In this review, we discuss various strategies used by mRNAs and 
viral RNAs to enable communication between their 5′ and 3′ ends. 
We present these interactions in the context of the ways that they 
direct RNA function, including driving efficient translation, regu-
lating mRNA stability and turnover, and promoting viral replica-
tion. We do not attempt a comprehensive assessment of all related 
literature, but rather present some illustrative examples to show 
how evolution has crafted a variety of ways to confer 5′-to-3′ com-
munication, how useful this strategy is, and the dynamic nature 
of these interactions. We also highlight a few emerging ideas and  
areas that remain mysterious, encouraging further investigation.

5′-to-3′ communication used in translational control
Overview of eukaryotic translation initiation: canonical and 
non-canonical
Probably the most well-known use of 5′-to-3′ communication is to 
promote or regulate translation of eukaryotic mRNAs. Although 
some have urged caution in broadly accepting that the 3′ end of an 
mRNA affects initiation from the 5′ end1, continued experimenta-
tion supports the existence of this communication. To explain how 
5′-to-3′ communication can occur, we first outline the canonical  
initiation mechanism. The eukaryotic initiation factor (eIF) 4F 
complex, which contains the cap-binding protein eIF4E and scaf-
fold protein eIF4G, binds at the 5′ end2–4. Bound eIF4F recruits 
the 43S complex, which contains the 40S ribosomal subunit3. This 
complex then scans the 5′ UTR to find the appropriate start codon4, 
where GTP hydrolysis, release of eIFs, and 60S subunit joining cre-
ate a translationally competent 80S ribosome5–7 (reviewed in 8–10). 
As an alternative to this canonical cap- and scanning-dependent 
pathway, some mRNAs and viral RNAs contain an internal ribos-
ome entry site (IRES) that directs translation initiation using a  
5′ end-independent mechanism. IRES RNAs often use a subset of 
the canonical eIFs and RNA structures to drive translation initiation 
(reviewed in 11,12).

5′-to-3′ communication in translation using canonical 
translation factors
A ubiquitous and important form of mRNA 5′-to-3′ communication 
depends on the 5′ cap and poly(A) tail (Figure 1). The presence 
of these two signals on opposite ends of an mRNA synergistically 
enhances the rate of translation of that mRNA13,14. The model is 
that eIF4F binds to the cap at the 5′ end while multiple poly(A)- 
binding proteins (PABPs) bind the poly(A) tail and eIF4G,  

Figure 1. Canonical 5′-to-3′ communication in eukaryotic messenger RNAs (mRNAs). (a) Diagram of a mature eukaryotic mRNA. The 
5′ modified nucleotide cap is shown in yellow, the open reading frame (ORF) in red, and the start codon AUG, translation termination codon 
(STOP), poly(A) tail, and untranslated regions (UTRs) are labeled. (b) Diagram of 5′-to-3′ communication in the context of translation initiation. 
Poly(A)-binding protein (PABP) is shown in green, the eukaryotic initiation factor (eIF) 4F complex is in shades of blue, and its components 
are labeled. The 43S complex is depicted in shades of gray. poly(A), polyadenylate.

a

b
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physically linking the 5′ and 3′ ends (Figure 1b)15,16. Functionally, 
the PABP-eIF4G interaction is associated with favorable subunit 
binding at the 5′ end17,18, and it increases the affinity of cap-binding 
protein eIF4E for the cap19. The PABP-eIF4G interaction can be  
regulated, supporting the importance of the 5′-to-3′ communi-
cation. For example, PABP-interacting proteins 1 and 2 (Paip1  
and 2) either up- or down-regulate translation of an mRNA  
message by modulating the 5′-to-3′ communication20–22.

The PABP-eIF4G interaction within a single mRNA is the “closed 
loop model”23, and it is proposed that the physical proximity 
between the 5′ and 3′ ends favors the transfer of terminating ribos-
omes from the 3′ end of the ORF to reinitiate at the 5′ end of the 
mRNA14,15,24. One piece of evidence in support of this model comes 
from the observation that ribosomes within mature polysomes 
have a rate of exchange with surrounding free ribosomes that is 
slow enough to suggest reinitiation on an mRNA25. In addition, the  
5′-to-3′ interaction may serve as a quality-control mechanism to 
favor translation of full-length, mature mRNAs26.

The canonical PABP-eIF4G circularization strategy appears to be 
a generally important mechanism, but care must be taken not to  
oversimplify its details or nuances. For example, the synergistic 
increase in translation efficiency conferred by the cap and poly(A) 
tail is not strictly contingent upon circularization. Specifically, addi-
tion of a poly(A) RNA to translationally competent extract in trans 
stimulates translation of a capped and non-polyadenylated mRNA 
to a similar degree as when the poly(A) tail is present in cis; this 
may be due to increased affinity of eIF4E for the cap27. Also, in a 
series of recent publications, it has been observed that mRNAs go 
through changes in their global architectures over time and as the 
number of loaded ribosomes increases—first forming circles, then 
“double-row” structures, then complex “helical” structures where 
the ends may no longer interact—and there is evidence of similarly 
dynamic mRNA “closed-loops” in living cells25,28–30. Even more 
interesting, when an mRNA is altered to prevent the PABP-eIF4G 
interaction, only initial rounds of translation initiation were slowed; 
the formation of higher-order polysome structures eventually 
occurred25,31. This suggests that the PABP-eIF4G interaction might 
be important for “kick-starting” the initial rounds of translation but 
is less important during steady-state translation on large polysomes, 
where other forces dictate higher-order architecture. This in turn 
suggests a dynamic model for 5′-to-3′ communication linked to the 
maturation of polysomes and perhaps other yet-to-be-determined 
signals. Clearly, there is much more to be learned even in regard 
to the canonical eIF4G-PABP interaction, especially surrounding 
events in live cells and how this relates to other events in the mRNA 
life, such as decay.

Non-canonical 5′-to-3′ communication strategies using 
proteins
Exploration of 5′-to-3′ communication starts with the canonical 
PABP-eIF4G interaction (Figure 2a) but does not end there (pun 
intended). Other strategies include those used by IRES RNA-
containing transcripts of viral origin that operate without a cap. 
For example, the viral RNA of poliovirus (and related viruses) is 
not capped, but translation of the viral genome is still enhanced 
by a 3′ poly(A) tail32. The poliovirus IRES RNA directly binds 
eIF4G, which could interact with PABP bound to the poly(A) tail  

(Figure 2b)33–36. However, during infection, a viral protease cleaves 
eIF4G and while a fragment of the factor binds the IRES, it cannot 
bind PABP. Thus, an alternative mechanism includes 5′-to-3′ com-
munication between poly(rC)-binding protein (PCBP) bound to the 
5′ cloverleaf structure, upstream of the IRES, and PABP bound to 
the 3′ poly(A) tail (Figure 2b)37–39. In addition, it has been shown 
that sequences upstream of the poly(A) tail, within the 3′ UTR, can 
enhance translation in the absence of the poly(A) tail, perhaps by 
using other proteins40. Thus, even within this one IRES-containing 
virus, there may be multiple ways that 5′-to-3′ end communication 
can be achieved. In addition, viral RNAs with a 5′ viral protein 
of the genome (VPg) in place of a 5′ cap structure, such as mem-
bers of the Calciviridae family, might use VPg recruitment of the 
eIF4F complex (in particular, eIF4G, along with 4A and PABP) 
to mediate end-to-end communication41. These different strategies 
may be used during different stages of viral infection, suggesting  
temporally dynamic interactions that respond to changing cellular 
conditions and help coordinate different viral processes, such as 
replication (discussed in more depth later in this review).

Viral IRESs are not the only places where alternative methods of 
5′-to-3′ communication are found, as cellular mRNAs with IRESs 
also exhibit different strategies. An interesting example is found in 
the cellular c-myc mRNA, which contains an IRES that binds ini-
tiation factors, including eIF4G, and translation is enhanced by the 
poly(A) tail but without needing PABP42. In this case (and many 
others), the precise mechanism of 5′-to-3′ communication is myste-
rious. Another intriguing example is the cellular mRNA for serine 
hydroxymethyltransferase 1, which does not require eIF4G or PABP. 
Rather, proposed structures in the 5′ and 3′ UTRs bind to heteroge-
neous nuclear ribonucleoprotein H2 (hnRNP H2) and CUG-binding 
protein 1 (CUGBP1), respectively, which mediate IRES-driven 
translation initiation via direct protein-protein contact during states 
of decreased cap-driven translation initiation (Figure 2c)43.

Although IRESs are logical places to use alternative modes of  
5′-to-3′ communication, non-canonical mechanisms are also found 
in viral and cellular transcripts that do not contain IRESs. Rota-
viruses are capped but do not have a poly(A) tail; rather, viral 
non-structural protein 3 (NSP3) binds near the 3′ end and inter-
acts with eIF4G (Figure 2d)43–46. Whereas earlier studies con-
cluded that NSP3 was not involved in translation based on a partial  
knockdown47, another interpretation of these data is that NSP3 is 
a potent translation enhancer, such that a 10-fold decrease in the 
amount of NSP3 levels still supports viral protein synthesis48.  
Likewise, the cellular mRNAs that encode for histones have a 
highly conserved stem-loop structure at their 3′ ends rather than 
a poly(A) tail. This structure binds stem-loop-binding protein 
(also called hairpin-binding protein), which facilities interactions 
between initiation factors at the 5′ end49. Clearly, the advantageous 
effect of 5′-to-3′ communication can be achieved with a variety of 
combinations of mRNA intrinsic elements (5′ cap, poly(A), and 
RNA structure), used with canonical factors (eIF4G and PABP),  
or several “non-canonical” proteins, or both. These mRNAs and viral 
RNAs illustrate how, despite the existence of the general eIF4G-
PABP strategies, there are idiosyncratic methods of achieving  
5′-to-3′ communication that add layers of regulatory complexity, 
which may be linked to cell type, cell conditions, and so on. No doubt 
there are many more strategies to be discovered and understood.
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Binding initiation factors at one end for use at the other: 
RNA-RNA communication and other strategies
The above examples illustrate how 5′ and 3′ ends communi-
cate through various combinations of RNA-encoded signals and  
proteins. Interesting variations on this theme are RNA signals near 
the 3′ end of an RNA that bind translation-essential proteins to 
be used at the 5′ end (Figure 3). Examples of this phenomena are 
found in plant-infecting viruses, whose genomic RNAs are often 
not capped or poly(A)-tailed. Rather than evolving an IRES, these 
viruses have structured RNA elements in their 3′ UTRs called cap-
independent translation enhancers (CITEs) (reviewed in 50,51). 
CITEs are distinct from IRESs in that CITEs themselves do not 
bind ribosomes in the proper location or context for translation ini-
tiation. The structures of CITEs and the mechanisms by which they 
operate are diverse and fall into several classes. This has been well 
reviewed recently51; therefore, we present just a few examples.

CITEs generally eschew the use of proteins to achieve long-range 
communication, relying instead on direct RNA-RNA base-pairing 
between distal sequences. This streamlined approach often  
consists of a hairpin structure in the 3′ UTR that is complemen-
tary to four to eight bases in another short hairpin structure in the  
5′ UTR (reviewed in 52). One of the best-characterized examples is 
from the non-capped and non-polyadenylated Barley yellow dwarf 
virus (BYDV), whose 3′ UTR contains a proposed cruciform-like 

secondary structure referred to as a BYDV-like element (BTE). One 
stem-loop of the BTE can base-pair to five nucleotides in a short  
5′ UTR hairpin, creating a “kissing” interaction53. Because the BTE 
binds to eIF4G directly, this provides a way to deliver eIF4G to the 
5′ UTR54,55 and also possibly binds directly to the 18S rRNA through 
base-pairing to recruit the ribosome to the 5′ end (Figure 3)56. In 
fact, direct RNA-ribosome interaction is an emerging mechanism in 
viral and cellular mRNA translation57. Another class of CITEs are 
Panicum mosaic virus-like translational enhancers (PTEs), which 
functionally replace a cap structure by directly binding eIF4E58–60. 
Although the high-resolution structure of a PTE-eIF4E complex 
has not been solved, it has been proposed that these RNAs form a 
compact fold in which a conserved guanine base is extruded from 
the structure to be recognized by the initiation factor61. Consistent 
with the trend of many 3′ CITEs, there are sequences in the PTE 
that are complementary to sequences in the 5′ end, and these are 
likely part of the mechanism for bringing eIF4E to the 5′ end to be 
used in translation initiation.

The CITEs mentioned above have a fairly well-established strategy 
to link their 5′ and 3′ ends, but the mechanism for other CITEs 
is less straightforward. For example, the T-shaped structure (TSS) 
CITEs found in the genome of several viruses, including Turnip 
crinkle virus, are proposed to fold into a three-dimensional struc-
ture that resembles a tRNA62,63 which binds to 80S ribosomes and 

Figure 2. Diverse 5′-to-3′ communication strategies. (a) The canonical eIF4G-PABP interaction, shown as in Figure 1b. (b) Two potential 
strategies used by poliovirus. (c) Strategy used by the serine hydroxymethyltransferase 1 IRES-containing mRNA. (d) Strategy used by 
rotavirus. CL, cloverleaf; CUGBP1, CUG-binding protein 1; hnRNP H2, heterogeneous nuclear ribonucleoprotein H2; IRES, internal ribosome 
entry site; NS3, non-structural protein 3; ORF, open reading frame; PABP, polyadenylate-binding protein; PCBP, poly(rC)-binding protein.
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60S subunits64. Unlike the case in many other CITEs, there is no 
clear sequence complementarity between the TSS and sequence 
in the 5′ end; the current model is that 5′-to-3′ communication 
occurs through an unusual ribosome subunit-subunit interaction of 
the 3′ bound 60S subunit with a 40S subunit bound to the 5′ end65.  
Clearly, the details of these interactions deserve continued  
exploration.

End-to-end communication and messenger RNA 
turnover
Thus far, we have focused on the use of 5′-to-3′ communication 
in translation, but in fact the m7G cap structure and poly(A) tail 
serve more than one purpose: recruitment of translation machinery 
for protein synthesis and also protection against degradation of the 
RNA by exonucleases (reviewed in 66,67). Consistent with this, 
communication between cap-bound and poly(A)-bound proteins 
can regulate RNA turnover. In the dominant pathway for mRNA 
decay, an mRNA that is destined for decay first has its poly(A) tail 
progressively shortened by deadenylating enzymes (deadenylation-
dependent decay)68. This shortening is accompanied by the loss of 
bound PABP, disrupting the 5′-to-3′ communication, likely loss of 
eIF4E affinity for the cap, enzymatic decapping, and degradation 
by the 5′-to-3′ exonuclease Xrn169,70. In a less used deadenylation-
independent decay pathway, a stem-loop structure in the 3′ UTR of 
the mRNA binds a factor that enhances decapping (Edc3) at the 5′ 
end (and subsequent degradation)68. The fact that translation and 
mRNA decay are both influenced by 5′-to-3′ communication con-
nects and coordinates these processes within an overall regulatory 
strategy.

End-to-end communication promotes viral replication
Unlike mRNAs, the genomic RNAs of positive-sense single-
stranded viruses must be replicated to make a negative-sense 
RNA intermediate that serves as a template for many copies of the  
positive-sense RNA. Communication between the 5′ and 3′ ends 
is essential for this, and several strategies exist to achieve it. 
Again with poliovirus as an example, the RNA-dependent RNA  
polymerase (RNAP) must initiate minus-strand synthesis from the 
poly(A) tail. To do this, the cloverleaf RNA structure within the 5′ 
end of the viral RNA binds to PCBP and also to RNAP; both inter-
act with poly(A)-binding protein 1, which binds the poly(A) tail71,72. 
These interactions support a model in which the protein-protein 
bridge helps specifically deliver RNAP recruited via unique struc-
tures in the 5′ end, to the 3′ end. This helps to distinguish poliovirus 
RNA from other poly(A) RNAs and ensures that only full-length 
poliovirus RNAs are replicated72. A different mechanism with a 
similar outcome is found in Dengue virus (a flavivirus). In Dengue, 
direct base-pairing that forms between sequences in the 5′ and 3′ 
UTRs of the viral RNA do not appear to have a role in directing 
translation but are important for viral replication73,74. Specifically, 
a 5′ stem-loop functions as a promotor to bind the RNAP and the 
base-pairing then is thought to deliver the RNAP to the 3′ UTR to 
commence minus-strand synthesis75,76.

A general theme in many viral RNAs is that 5′-to-3′ communi-
cation plays a role in both translation and replication. Dynamic 
changes of the interactions between the 5′ and 3′ ends (either dif-
ferent RNA-RNA interactions or differentially bound bridging  
protein interactions) have been proposed as mechanisms to  

Figure 3. A strategy used by some CITE RNAs. (Top) The CITE element (green) is located in the 3′ untranslated region where it can bind a 
eukaryotic initiation factor (eIF) (in this case, eIF4G associated with eIF4E, both in blue). (Bottom) Base-pairing between a hairpin (HP) in the 
CITE and a HP near the 5′ end (orange) results in delivery of the factor to the 5′ end, where it can serve in translation initiation along with the 
43S complex (shown in dashed gray). Other CITEs use diverse strategies. CITE, cap-independent translation enhancer.
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organize these processes77,78. This is important because the trans-
lation and replication machinery would clash should they both 
simultaneously use the same copy of viral RNA. This again  
underscores a common theme: that 5′ and 3′ communication  
strategies are dynamic and diverse players in regulating the use  
and fate of the associated RNA.

Summary and final thoughts
In the preceding text, we have illustrated the diverse interaction 
strategies in which eukaryotic cellular mRNAs and some viral 
RNAs can promote communication between the 5′ and 3′ ends and 
how this relates to a number of different processes. Although there 
are common mechanisms by which communication is achieved, 
there are no “hard and fast” rules; examples of RNA-RNA, 
RNA-protein, and protein-protein interactions abound, and these  
examples use canonical factors as well as more specialized proteins. 
In some cases, the strategy appears to be idiosyncratic to a particu-
lar mRNA or virus, consistent with hundreds of millions of years 
of evolutionary tinkering and fine-tuning. Although many strategies 
have been described, it is clear that there are many others remaining 
to be discovered. Very recently, Weingarten-Gabbey et al. used a 
high-throughput approach to identify thousands of non-canoncial 
translation initiation signals in both viral and human RNAs located 

throughout the RNA; although interactions between these and the  
5′ end have not been shown, these discoveries suggest that many 
more examples of long-range communication are still to be  
discovered57. Also, there is much to be learned about how these 
interactions may be affected by changing cellular conditions,  
concentration of factors or RNA, cell type, time of viral infection, 
and so on. Even in the case of the canonical PABP-eIF4G inter-
action, quantitative assessment of the affinities, conformational 
changes and binding dynamics, and how these relate to the matura-
tion of polysomes and transitions between different phases of the 
mRNA’s life cycle remain areas ripe for more exploration. Overall, 
there is much to learn about roles of higher-order architecture and 
the dynamics of these architectures. Happily, this suggests that 
many more exciting discoveries are on the horizon.
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