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Abstract
Most emerging pathogens can infect multiple species, underlining the importance 
of understanding the ecological and evolutionary factors that allow some hosts 
to harbour greater infection prevalence and share pathogens with other species. 
However, our understanding of pathogen jumps is based primarily around viruses, 
despite bacteria accounting for the greatest proportion of zoonoses. Because bacte-
rial pathogens in bats (order Chiroptera) can have conservation and human health 
consequences, studies that examine the ecological and evolutionary drivers of bac-
terial prevalence and barriers to pathogen sharing are crucially needed. Here were 
studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a species-rich bat 
community in Belize over two years. Across 469 bats spanning 33 species, half of 
individuals and two-thirds of species were haemoplasma positive. Infection preva-
lence was higher for males and for species with larger body mass and colony sizes. 
Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host 
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1  | INTRODUC TION

Most pathogens that cause disease in humans, domestic animals and 
wildlife are capable of infecting multiple host species (Woolhouse, 
Taylor, & Haydon, 2001). However, predicting which hosts main-
tain pathogens and identifying their role in cross-species transmis-
sion can be challenging, as many hosts can be infected but not play 
key roles in the reservoir community (Fenton, Streicker, Petchey, & 
Pedersen, 2015). Pathogen jumps between species depend on in-
fection prevalence in the donor host, transmission opportunities 
between donor and recipient species, and suitability of the recip-
ient host for pathogen replication (Plowright et al., 2017). Each of 
these steps can be shaped by ecological and evolutionary factors 
(VanderWaal & Ezenwa, 2016). For example, small-bodied spe-
cies can have greater competence, the ability to transmit new in-
fections, than larger species (Downs, Schoenle, Han, Harrison, & 
Martin, 2019), and host switching is often constrained by phylogeny, 
owing to similarity in immunological barriers to pathogen replication 
between closely related species (Streicker et al., 2010). Identifying 
the ecological and evolutionary factors that allow some species 
to harbour greater prevalence and have facilitated pathogen shar-
ing can improve our general understanding of disease emergence 
(Fountain-Jones et al., 2018). Examining evolutionary associations 
between hosts and pathogens can further uncover factors favour-
ing host shifts versus codivergence and assess the frequency of 
cross-species transmission (Geoghegan, Duchêne, & Holmes, 2017).

Given the public health and agricultural burdens of many zoo-
notic pathogens such as avian influenza viruses, henipaviruses and 
lyssaviruses, many investigations of pathogen prevalence and emer-
gence focus on viruses (Geoghegan et al., 2017; Olival et al., 2017). 
However, more zoonoses are caused by bacteria than other patho-
gen taxa (Han, Kramer, & Drake, 2016), and bacterial pathogens can 
negatively impact newly infected host species (e.g., Mycoplasma gal-
liscepticum, a poultry pathogen, caused rapid population declines in 
wild house finches; Hochachka & Dhondt, 2000). More attention to 
bacteria and their propensity for host specificity versus generalism is 

accordingly important for understanding whether factors that gov-
ern cross-species transmission of viruses can be extended to other 
pathogens (Bonneaud, Weinert, & Kuijper, 2019). Bacterial patho-
gens have been especially understudied for bats (Mühldorfer, 2013), 
in contrast to intensive studies of zoonotic viruses across the 
Chiroptera (Luis et al., 2015). However, many bacterial pathogens 
are probably important to both bat conservation and human health 
due to pathogenic effects on bats themselves as well as their zoo-
notic potential (Becker et al., 2018; Evans, Bown, Timofte, Simpson, 
& Birtles, 2009).

To determine the ecological and evolutionary drivers of bacterial 
prevalence and barriers to pathogen sharing, we focused on hae-
motropic Mycoplasma spp. (i.e., hemoplasmas) in a species-rich bat 
community in Belize (Fenton et al., 2001; Herrera, Duncan, Clare, 
Fenton, & Simmons, 2018). The Neotropics have remarkable bat di-
versity owing to adaptive radiation in the Phyllostomidae (Gunnell 
& Simmons, 2012), producing a range of feeding strategies (e.g., 
frugivory, carnivory, sanguivory), body sizes and roost preferences 
(Monteiro & Nogueira, 2011). Haemoplasmas are facultative intra-
cellular erythrocytic bacteria transmitted through direct contact 
(Cohen et al., 2018; Museux et al., 2009) and also possibly via ar-
thropod vectors (Willi, Boretti, Meli, et al., 2007). Haemoplasmas 
can cause acute and chronic anaemia, especially for immunocom-
promised hosts; however, many animals develop inapparent infec-
tions and are asymptomatic (Messick, 2004). As Mycoplasma spp. 
lack many of the metabolic pathways associated with energy pro-
duction and synthesis of cell components found in other bacteria, 
they are fully dependent on host cells (Citti & Blanchard, 2013). 
Haemoplasmas have therefore been described as mostly host spe-
cialists (Pitcher & Nicholas, 2005), yet interspecies and potentially 
zoonotic transmission can occur (Maggi et al., 2013; Willi, Boretti, 
Tasker, et al., 2007). Haemoplasmas are common and genetically 
diverse in bats (Di Cataldo, Kamani, Cevidanes, Msheliza, & Millán, 
2020; Ikeda et al., 2017; Mascarelli et al., 2014; Volokhov, Becker, 
et al., 2017), which offers an ideal model system for identifying the 
ecological and evolutionary factors structuring bacterial infection 
risks within and between host species.
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specificity. Evolutionary patterns supported codivergence of bats and bacterial geno-
types alongside phylogenetically constrained host shifts. Bat species centrality to the 
network of shared haemoplasma genotypes was phylogenetically clustered and un-
related to prevalence, further suggesting rare—but detectable—bacterial sharing be-
tween species. Our study highlights the importance of using fine phylogenetic scales 
when assessing host specificity and suggests phylogenetic similarity may play a key 
role in host shifts not only for viruses but also for bacteria. Such work more broadly 
contributes to increasing efforts to understand cross-species transmission and the 
epidemiological consequences of bacterial pathogens.
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Many cross-species comparisons of pathogen infection risks 
and sharing have used less-diverse host communities (Johnson 
et al., 2012; VanderWaal, Atwill, Isbell, & McCowan, 2014) or 
global data sets of host–pathogen associations that can be lim-
ited by heterogeneous sampling effort and variation in pathogen 
detection methods (Dallas et al., 2019; Huang, Bininda-Emonds, 
Stephens, Gittleman, & Altizer, 2014). Our focus on a widespread 
pathogen group in a highly diverse host community allowed us to 
capitalize on strong host trait variation while controlling for sam-
pling effort and diagnostic methods (Becker, Crowley, Washburne, 
& Plowright, 2019; Han, Kramer, et al., 2016). Past work has also 
used host–pathogen networks to characterize contemporary or his-
torical transmission at often coarse taxonomic scales (e.g., pathogen 
species complexes or genera; Blyton, Banks, Peakall, Lindenmayer, & 
Gordon, 2014; VanderWaal et al., 2014). However, as bat species can 
be infected by multiple haemoplasma genotypes, and because gen-
otypes with ≥99% sequence identity of their 16S rRNA genes can 
represent different bacterial species (Volokhov, Hwang, Chizhikov, 
Danaceau, & Gottdenker, 2017; Volokhov, Simonyan, Davidson, & 
Chizhikov, 2012), focusing on genotypes provides finer-scale resolu-
tion to determine the ecological and evolutionary features of species 
that facilitate pathogen sharing and to identify likely maintenance 
hosts of bacterial infections (Fountain-Jones et al., 2018).

We investigated three questions about the relative contribution 
of ecological traits and evolutionary history to structuring infection 
patterns and pathogen sharing. First, what are the individual and 
ecological predictors of haemoplasma infection in a Neotropical bat 
community? Second, does the distribution of haemoplasma geno-
types across the bat community map onto the bat phylogeny, as pre-
dicted by host–pathogen codivergence? Third, if genotype sharing 

among host species occurs, which host clades or traits best predict 
species ability to share pathogens? We predicted that ecological 
covariates such as ectoparasitism and large host colonies could in-
crease bacteria risk through vector-borne or density-dependent 
transmission (McCallum, Barlow, & Hone, 2001; Willi, Boretti, Meli, 
et al., 2007). We also expected haemoplasma genotypes would be 
specific to particular host species but that more closely related bats 
would share haemoplasma genotypes, indicating phylogenetically 
restricted host shifts (Pitcher & Nicholas, 2005). However, ecolog-
ical traits that increase the risk of pathogen exposure between spe-
cies, such as occupying a greater diversity of roosting habitats, could 
also facilitate pathogen genotype sharing among less closely related 
hosts (McKee et al., 2019).

2  | METHODS

2.1 | Bat capture and sampling

From April 24 to May 6, 2017 and from April 23 to May 5, 2018, 
we sampled 469 bats from 33 species captured in two adjacent 
areas in the Orange Walk District of Belize: Lamanai Archaeological 
Reserve (LAR) and Ka’Kabish (KK; Figure 1). The LAR is bordered by 
the New River Lagoon, forest and agriculture, while KK is a remnant 
patch of forest surrounded by agriculture located 10 km away. We 
consider these sites to be independent, as the small home ranges 
of many Neotropical bat species and lack of continuous forest be-
tween LAR and KK have probably restricted most individual bat 
intersite movement (Jones, Hämsch, Page, Kalko, & O’mara, 2017; 
Loayza & Loiselle, 2008); however, some species may have greater 

F I G U R E  1   Study sites in northern 
Belize. The shaded inset shows the 
location of Orange Walk District. 
Borders show the boundaries of the 
LAR (Lamanai Archaeological Reserve) 
and KK (Ka’Kabish). White and brown 
shading indicates agricultural and urban 
development, while dark green shading 
represents intact forest. Satellite imagery 
was derived from Google Maps. Stacked 
bar plots show the relative abundance 
of each sampled bat family per study 
site [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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connectivity (e.g., inter-roost movement of Desmodus rotundus oc-
curs rarely). At least 44 of the 70 bat species in Belize have been 
recorded in this region (Herrera et al., 2018; Reid, 1997). Bats were 
captured with mist nets primarily along flight paths and occasion-
ally at the exits of roosts from 7 p.m. until 10 p.m. Harp traps were 
also set from 6 p.m. to 5 a.m. In KK, D. rotundus, Trachops cirrhosus 
and Chrotopterus auritus were captured at their shared roost. In the 
LAR, D. rotundus, Saccopteryx bilineata and Glossophaga soricina were 
sampled from a shared roost, although individuals were also sampled 
along flight paths across the greater site. More broadly, patterns of 
roost sharing of bat species in northern Belize remain elusive.

Bats were placed in cloth bags until processing and were iden-
tified to species (and sex) based on morphology (Reid, 1997). 
Reproductive activity was indicated by the presence of scrotal tes-
tes in males and by evidence of pregnancy or lactation in females; 
across bat species, 69% of males and 42% of females were in repro-
ductive condition. We also visually screened bats for the presence 
of ectoparasites (i.e., bat flies, ticks, bat bugs, mites; Ter Hofstede, 
Fenton, & Whitaker, 2004). We collected 3–30 µl of blood (volumes 
were dependent on bat mass) by lancing the propatagial vein with a 
sterile needle. Blood was collected with heparinized capillary tubes 
and stored on Whatman FTA cards to preserve bacterial DNA. Field 
procedures followed guidelines for the safe and humane handling 
of bats published by of the American Society of Mammalogists 
(Sikes, The Animal Care and Use Committee of the American Society 
of Mammalogists, 2016) and were approved by the Institutional 
Animal Care and Use Committees of the University of Georgia 
(A2014 04-016-Y3-A5) and American Museum of Natural History 
(AMNHIACUC-20170403 and AMNHIACUC-20180123). Fieldwork 
was authorized by the Belize Forest Department under permits 
WL/2/1/17(16), WL/2/1/17(19) and WL/2/1/18(16). Sample size 
was similar between years (2017 = 202, 2018 = 267) but varied by 
site (LAR = 365, KK = 101). More species were sampled for blood at 
LAR (n = 33) than at KK (n = 17; Figure 1), reflecting site differences 
in species richness (Herrera et al., 2018). We sampled 1–139 individ-
uals per bat species (the maximum being D. rotundus), with a mean of 
14 individuals per bat species (Table S1).

2.2 | DNA extraction, PCR amplification and 
amplicon sequencing

Genomic DNA was extracted from blood on FTA cards using QIAamp 
DNA Investigator Kits (Qiagen). We tested DNA for haemoplasmas 
using PCR (polymerase chain reaction) with primers and procedures 
described in prior analyses (Volokhov, Becker, et al., 2017). We in-
cluded blank FTA punches as an extraction control, ultrapure water 
as a negative control and Candidatus Mycoplasma haemozalophi 
DNA as a positive control (Volokhov et al., 2011). Amplicons from 
PCR-positive samples were purified by electrophoresis and ex-
tracted using the QIAquick Gel Extraction Kit (Qiagen).

To determine haemoplasma infection status, all 16S rRNA am-
plicons were directly sequenced by Macrogen (https://www.macro 

genusa.com/). Amplicons were sequenced with the same primers 
used for PCR amplification and then with internal (walking) prim-
ers when needed (Volokhov, Becker, et al., 2017). Negative DNA 
samples were tested for amplification quality using the universal 
PCR primers targeting the mammal mitochondrial 16S rRNA gene 
(Volokhov, Kong, George, Anderson, & Chizhikov, 2008) or the mi-
tochondrial cytochrome c oxidase subunit 1 (COI) gene (Clare, Lim, 
Engstrom, Eger, & Hebert, 2007); all haemoplasma-negative DNA 
samples gave positive signal in the mitochondrial 16S rRNA gene- 
and/or the COI-specific PCR assays. All amplified sequences were 
subjected to chimeric sequence analysis using decipher (Wright, 
Yilmaz, & Noguera, 2012) and uchime (Edgar, Haas, Clemente, 
Quince, & Knight, 2011). All haemoplasma sequences have been 
deposited in GenBank under accession nos. MH245119–MH245194 
and MK353807–MK353892; four positive samples were identified 
as Bartonella spp. during sequencing and were considered haemo-
plasma negative in our analyses.

2.3 | Bat phylogenetic data

We used the rotl and ape packages in R to extract a bat phylogeny 
from the Open Tree of Life and to calculate branch lengths with 
Grafen's method (Michonneau, Brown, & Winter, 2016; Paradis, 
Claude, & Strimmer, 2004). To assess haemoplasma genotype shar-
ing as a function of host phylogenetic similarity, we derived pair-
wise phylogenetic distances between the 33 sampled bat species 
(Figure S1). Because more evolutionarily distant and distinct spe-
cies could display less frequent bacterial genotype sharing owing 
to ecological and immunological barriers to pathogen exposure and 
replication (Huang, Drake, Gittleman, & Altizer, 2015), we used the 
picante package and our bat phylogeny to derive evolutionary dis-
tinctiveness (Kembel et al., 2010).

2.4 | Host species trait data

We obtained species-level data on host traits relevant to patho-
gen transmission from previously published sources (Table S2). We 
obtained fecundity (litter size, litters per year), body mass and diet 
from the Amniote Life History and EltonTraits databases (Myhrvold 
et al., 2015; Wilman et al., 2014). For foraging ecology, which 
could affect bacterial exposure (e.g., trophic interactions; Kellner 
et al., 2018), we defined three dietary guilds: frugivory (including 
nectarivory; n = 11), insectivory (n = 18) and carnivory (including 
sanguivory and piscivory, n = 4; González-Salazar, Martínez-Meyer, 
& López-Santiago, 2014). We also considered the proportion of 
plant-based items in the diet. We simplified foraging strata into aerial 
(n = 14), arboreal (n = 16, including scansorial), and ground- or aquatic-
level foraging (n = 3). We also expanded prior compilations of wing 
aspect ratios and roost preferences to serve as proxies for ecologi-
cal overlap among species (Fenton et al., 2001; Herrera et al., 2018; 
Reid, 1997). Roost type was simplified to open (e.g., only foliage; 

https://www.macrogenusa.com/
https://www.macrogenusa.com/
info:ddbj-embl-genbank/MH245119
info:ddbj-embl-genbank/MH245194
info:ddbj-embl-genbank/MK353807
info:ddbj-embl-genbank/MK353892
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n = 6) or closed (e.g., hollows, caves; n = 27), and roost flexibility 
was simplified to using one (n = 16) or multiple roost types (n = 17). 
We classified maximum colony sizes as small-to-medium (e.g., <100 
individuals; n = 20) or large (e.g., hundreds to thousands; n = 13; 
Reid, 1997; Santana, Dial, Eiting, & Alfaro, 2011), as most values 
were reported in ranges. We did not record pairwise sympatry (e.g., 
Luis et al., 2015; McKee et al., 2019) given that all species occur in 
Belize (Figure S2). Yet because more widely distributed species could 
have more opportunities for pathogen sharing due to range over-
lap, we used the geosphere package and data from the International 
Union for Conservation of Nature to derive geographical range size 
(Baillie, Hilton-Taylor, & Stuart, 2004; Hijmans, Williams, Vennes, & 
Hijmans, 2019). Missing species-level traits were taken from other 
databases, primary literature or closely related species (Table S2).

2.5 | Individual-level analysis of bat infection status

We first used the prevalence package to estimate haemoplasma infec-
tion prevalence and its 95% confidence interval (CI; Wilson method). 
We then used phylogenetic generalized linear mixed models (GLMMs) 
to test if infection status varied by sex, reproductive status, year, site 
and ectoparasite presence while accounting for bat phylogenetic relat-
edness. We fit candidate GLMMs that considered all fixed effects as 
well as interactions between sex and reproduction and between site 
and year. We also considered a model that excluded site to account 
for possible nonindependence of LAR and KK alongside an intercept-
only model. As vampire bats were banded for a mark–recapture study 
(Volokhov, Becker, et al., 2017) and some were sampled between and 
within years (n = 14), we randomly selected one of each recapture. 
After removing recaptures and missing values (n = 323), we fit the phy-
logenetic GLMMs using the brms package, default priors, and infection 
status as a Bernoulli-distributed response. We included random effects 
for bat species and phylogeny, the latter of which used the phyloge-
netic covariance matrix (Bürkner, 2017). We ran four chains for 20,000 
iterations with a burn-in period of 10,000, thinned every 10 steps, 
for a total of 4,000 samples. We compared GLMMs using the leave-
one-out cross-validation (LOOIC) and assessed fit with a Bayesian 
R2, including the total modelled variance and that attributed to only 
the fixed effects (Gelman, Goodrich, Gabry, & Vehtari, 2019; Vehtari, 
Gelman, & Gabry, 2017). We then estimated fixed effects (means and 
95% highest density intervals [HDIs]) from the posterior distributions 
of each predictor from the top GLMM. Lastly, we assessed the sensi-
tivity of individual-level analyses to over-representation of D. rotundus 
by randomly subsampling this species by the maximum n for other bat 
species.

2.6 | Species-level analysis of 
haemoplasma prevalence

We next calculated infection prevalence per species, using the meta-
for package to estimate logit-transformed proportions and sampling 

variances (Viechtbauer, 2010). We used the nlme package to estimate 
phylogenetic signal as Pagel's λ with a weighted phylogenetic general-
ized least squares (PGLS) model to account for within-species variance 
(Garamszegi, 2014). We next used a graph-partitioning algorithm, phy-
logenetic factorization, to flexibly identify clades with significantly dif-
ferent prevalence estimates at various taxonomic depths. We used the 
taxize package to obtain a bat taxonomy from the National Center for 
Biotechnology Information (Chamberlain & Szöcs, 2013) and used the 
phylofactor package to partition prevalence as a Bernoulli-distributed 
response in a GLM (Washburne et al., 2019). We determined the num-
ber of significant bat clades using Holm's sequentially rejective test 
with a 5% family-wise error rate.

To identify species trait correlates of prevalence, we fit 11 PGLS 
models (weighted by sampling variance) with body mass, annual fecun-
dity (litters per year × pups per litter), dietary guild, quantitative diet, 
foraging strata, aspect ratio, roost type, roost flexibility, colony size, 
geographical range size and evolutionary distinctiveness as predictors. 
We also fit PGLS models with only sample size or an intercept. We com-
pared models with Akaike's information criterion corrected for small 
sample sizes (AICc) and estimated R2 (Burnham & Anderson, 2002).

2.7 | Hemoplasma phylogenetic analyses and 
genotype assignment

We compared our 16S rRNA gene sequences to those in GenBank 
(Volokhov, Becker, et al., 2017; Volokhov et al., 2011). Briefly, we 
aligned sequences using clustal x, and inter- and intraspecies simi-
larity values were generated using bioedit. Genetic distances were 
calculated with the Kimura 2-parameter and Tamura–Nei models, 
and the phylogeny was constructed using mega x with the minimum 
evolution algorithm (Kumar, Stecher, Li, Knyaz, & Tamura, 2018).

We assigned haemoplasma genotypes to positive bats based 
on analysis of the 16S rRNA partial gene (860–1,000 bp) sequences 
in GenBank and their clustering on the phylogeny. Genotypes were 
designated as novel if (a) sequences differed from the closest haemo-
plasma sequences in GenBank by ≥1.5% and/or (b) if sequence similar-
ity was <1.5% but genotype-specific reproducible mutations (at least 
two per sequence) were observed between haemoplasma sequences 
from at least two independent bat samples and the nearest GenBank 
haemoplasma sequences. These genotype-specific mutations were 
further used to differentiate closely related haemoplasma genotypes 
from our sample. We caution that genotype is not synonymous with 
species, as analysis of the 16S rRNA gene alone is insufficient for accu-
rate species identification of Mycoplasma spp. (Volokhov et al., 2012). 
Future studies using genomics or housekeeping genes may identify in-
dependent but closely related haemoplasma species in our genotypes.

To assess if haemoplasma genotype assignments were associ-
ated with site and year, we used χ2 tests with p values generated 
through a Monte Carlo procedure. Prior to our phylogenetic and 
network analyses of genotype distributions across bat species (see 
below), we used another χ2 test to assess the association between 
haemoplasma genotype identify and bat host identity.
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2.8 | Evolutionary relationships between bats and 
haemoplasmas

To determine the degree to which bat haemoplasma genotypes 
display host specificity and to describe their evolutionary rela-
tionships with host species, we used our bat and haemoplasma 
phylogenies to construct a binary association matrix. To test the 
dependence of the haemoplasma phylogeny upon the bat phylog-
eny and thus assess evidence of evolutionary codivergence, we 
applied the Procrustes Approach to Cophylogeny (PACo) using 
distance matrices and the paco package (Hutchinson, Cagua, 
Balbuena, Stouffer, & Poisot, 2017). We used a jackknife pro-
cedure to estimate the degree to which each bat–genotype link 
supported a hypothesis of phylogenetic congruence; links were 
supported if their upper 95% confidence interval was below the 
mean of all squared jackknife residuals (Balbuena, Míguez-Lozano, 
& Blasco-Costa, 2013).

2.9 | Haemoplasma genotype sharing among 
bat species

We used haemoplasma genotype assignments to create a network, 
with each node representing a bat species and edges representing 
shared genotypes among bat species pairs. We built an adjacency 
matrix using the igraph package and used the Louvain method to 
assess the structure of bat–haemoplasma communities within this 
network (Csardi & Nepusz, 2006). To test whether the distribution 
of haemoplasma genotypes across our Neotropical bat species is 
shaped by host phylogeny, we used two GLMs to predict counts 
of shared genotypes (Poisson errors) and the presence of sharing 
(binomial errors) by phylogenetic distance between bat species. We 
assessed statistical significance with a quadratic assignment proce-
dure via the sna package (Butts, 2008).

We calculated two metrics of network centrality to quantify 
different aspects of how important a node (bat species) is to hae-
moplasma genotype sharing: degree and eigenvector centrality 

(Bell, Atkinson, & Carlson, 1999). Whereas degree indicates the 
number of other species with which a host shares bacterial geno-
types (i.e., links per node), eigenvector centrality indicates the ten-
dency for a host to share genotypes with species that also share 
more genotypes (i.e., connectivity). Eigenvector centrality is thus 
an extension of degree that can identify hubs of parasite sharing 
(Gómez, Nunn, & Verdú, 2013). These two metrics were moder-
ately correlated (ρ = 0.59), with many non-zero degree species 
displaying zero eigenvector centrality. To examine spatial and tem-
poral patterns in host centrality, we built separate adjacency net-
works per each site and year. We fit separate GLMs to determine 
how haemoplasma sharing centrality was predicted by site, year 
and the two-way interaction. Degree was modelled as a Poisson-
distributed response, while eigenvector centrality was logit-trans-
formed and used Gaussian errors. We next applied phylogenetic 
factorization to both metrics and weighted the algorithms by the 
square-root sample size per species (Garamszegi, 2014). We then 
fit the same PGLS models used in our prevalence analysis to iden-
tify the most competitive trait predictors of bat species central-
ity to haemoplasma sharing. Lastly, to assess whether network 
centrality is associated with haemoplasma prevalence, we fit two 
weighted PGLS models with each centrality metric as a univariate 
predictor.

3  | RESULTS

3.1 | Haemoplasma infection status

We detected sequence-confirmed haemoplasma infection in 239 of 
469 individuals (51%; 95% CI: 46%–55%), with positive individuals in 
23 of the 33 sampled bat species (Table S3). The most parsimonious 
phylogenetic GLMM explained 22% of the modelled variance in in-
fection status and included only sex, reproductive status, ectopara-
sites and year (ΔLOOIC = 0.16, wi = .27; Table S4), suggesting site to 
be uninformative. Males had higher odds of infection than females 
(odds ratio [OR] = 2.35, 95% HDI: 1.36–4.03), but risk was unrelated 

F I G U R E  2   Predictors of individual 
bat haemoplasma infection status. (a) 
Odds ratios and 95% HDIs from the 
most parsimonious phylogenetic GLMM 
(Table S4). Estimates that do not overlap 
with 1 (dashed line) are displayed in 
black. Reference levels for the odds 
ratios include bats sampled at LAR, 
females, reproductive bats, absence 
of ectoparasites and bats sampled in 
2017. (b) Infection prevalence and 95% 
confidence intervals (Wilson method) 
stratified by sex. Results are shown 
for the full data set and after randomly 
subsampling Desmodus rotundus
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to ectoparasitism, reproduction or year (Figure 2a). This result was 
weakly sensitive to over-representation by Desmodus rotundus, as 
effect size and the prevalence sex difference was weaker when we 
randomly subsampled this species (Figure 2). Across all models, fixed 
effects only explained up to 7% of the modelled variance, suggest-
ing more variation explained by the species and phylogeny random 
effects.

3.2 | Interspecies variation in 
haemoplasma prevalence

Across bat species, haemoplasma prevalence ranged from 0% to 
100% (mean = 37%). We estimated Pagel's λ in logit-transformed 
prevalence to be .39, indicating moderate phylogenetic signal. 
Similarly, phylogenetic factorization identified one bat clade with sig-
nificantly lower prevalence compared to the paraphyletic remainder: 
the Emballonuridae (12% infected; Figure 3a). Our trait-based analysis 
showed that relatively larger species (β = 1.48, p = .01, R2 = .24) and 
those with larger colonies (β = 0.67, p = .06, R2 = .20) had higher preva-
lence (Figure 3b; Table 1). Relatively heavier (≥20 g) and larger colony 
species included D. rotundus, Molossus nigricans and Pteronotus mes-
oamericanus, for which prevalence was greater than 58%. Although 
these three species were also heavily sampled, other well-sampled 

species such as Sturnira parvidens and Carollia sowelli had lower preva-
lence, and sample size did not predict prevalence (Table 1).

3.3 | Hemoplasma genotype diversity

Our phylogenetic analysis identified 29 Mycoplasma genotypes in 
the Belize bat community (Table 2), including three previously iden-
tified from vampire bats (VBG1–3; Volokhov, Becker, et al., 2017). 
All genotypes demonstrated minor levels of sequence variability 
(99.5%–100%; Table 2). Based on comparisons with sequences from 
GenBank, 21 of these genotypes represent novel haemoplasmas, 
five are closely related to nonhaemoplasma mycoplasmas, and many 
are phylogenetically related to previously identified Mycoplasma spp. 
and haemoplasmas identified from other bat species (e.g., Di Cataldo 
et al., 2020; Millán et al., 2019; Millán, López-Roig, Delicado, Serra-
Cobo, & Esperón, 2015), bat ticks (e.g., Hornok et al., 2019), primates 
including humans (e.g., Alcorn et al., 2020; Bonato, Figueiredo, 
Gonçalves, Machado, & André, 2015; Hattori et al., 2020) and ro-
dents (e.g., Gonçalves et al., 2015; Goto, Yasuda, Hayashimoto, & 
Ebukuro, 2010; Vieira et al., 2009). A more detailed description of 
these 29 bacterial genotypes is provided in the Figure S3.

After controlling for multiple comparisons, our 29 bacterial 
genotypes were associated with site (χ2 = 47.11, p < .01) and year 

F I G U R E  3   Predictors of species-
level haemoplasma prevalence across 
the Belize bat community. (a) Clades 
with significantly different prevalence 
are highlighted. (b) Results from the top 
PGLS models predicting prevalence as a 
function of mass and colony size. Model fit 
and 95% confidence intervals are shown 
overlaid with data scaled by sample size; 
species from the clade identified through 
phylogenetic factorization are coloured as 
in (a). Species identified by phylogenetic 
factorization (Saccopteryx bilineata and 
Rhynchonycteris naso) and with larger 
body mass, colony size and haemoplasma 
prevalence (Desmodus rotundus, Molossus 
nigricans and Pteronotus mesoamericanus) 
are shown to the right (photographs 
by Sherri and Brock Fenton) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(χ2 = 40.40, p < .01). Genotype composition was more diverse at LAR 
(Figure S4), and KK haemoplasmas were dominated by vampire bat 
genotypes (VBG1–3). Genotype composition was more idiosyncratic 
by study year. However, these 29 bacterial genotypes were most 
strongly associated with bat species (χ2 = 3,532, p < .01; Figure S4).

3.4 | Bat–haemoplasma evolutionary relationships

Although some haemoplasma genotypes were shared between bat 
species (i.e., VBG1, CS2, PPM, EF1, AH1–2, MYE, PLU, SP; n = 9), 
most showed strong host specificity (n = 20; Table 2). Our coevolu-
tionary analysis (PACo) supported congruence between the bat and 
haemoplasma phylogenies (m2

XY
 = 36.21, p = .02, n = 1,000; Figure 4), 

suggesting that haemoplasma evolution has mostly tracked bat spe-
ciation. However, PACo also demonstrated that only 56% of the 41 
unique bat–haemoplasma links displayed significant evidence of 
coevolution (Figure S5), and these patterns were almost exclusively 
found within the Phyllostomidae (with the exception of Saccopteryx 
bilineata and its Mycoplasma muris-like bacterial genotype). The 
other 18 bat–haemoplasma links therefore displayed evidence of 
phylogenetic incongruence and thus probable host shifts.

3.5 | Hemoplasma genotype sharing networks

Within our bat–haemoplasma network, genotype sharing was re-
stricted to five host communities, whereas six genotypes were each 
restricted to a single bat species (Figure 5a). GLMs showed that 

both the frequency and the presence of genotype sharing declined 
with phylogenetic distance between bat species (Poisson: p < .001, 
R2 = .08; binomial: p < .001, R2 = .51; Figure 5b).

Bats shared haemoplasma genotypes with zero to five other 
species (i.e., degree), and most hosts had eigenvector centrality of 
zero (Figure S6). Six bat species had nonzero eigenvector centrality 
(37%–100%), indicating that they shared more haemoplasma gen-
otypes with other highly connected host species. Stratifying our 
haemoplasma network across sites and years showed that central-
ity measures varied by space but not time (Figure S7; Table S5). We 
observed no haemoplasma sharing at KK, which probably reflects 
lower host diversity (Herrera et al., 2018).

Phylogenetic factorization identified similar bat clades with sig-
nificantly different centrality compared to the paraphyletic remain-
der (Figure 6a, b). For degree, the algorithm only identified Artibeus 
lituratus as being more central (x = 5) than other bats (x = 1.14). 
However, phylogenetic factorization identified three taxa in the sub-
family Stenodermatinae that had significantly elevated eigenvector 
centrality: the genera Artibeus and Dermanura (x = .67 compared to 
x = .02 in all other bats), the species A. lituratus (x = 1 compared to 
x = .12), and the species S. parvidens (x = .37 compared to x = .15). 
Mirroring these results, phylogenetic signal was absent for degree 
(λ = 0) but high for eigenvector centrality (λ = .93).

Trait-based analyses showed that degree centrality was best 
predicted by diet (Table S6); bat species feeding more heavily on 
fruit and nectar shared more bacterial genotypes with other species 
(β = 0.004, p < .001, R2 = .20; Figure 6c). Similarly, eigenvector cen-
trality was best predicted by bat colony size and diet (Table S7); highly 
central species had small colonies (βlarge = –1.93, p = .05, R2 = .13) and 
fed more on plants (β = 0.03, p < .01, R2 = .10; Figure 6d).

As a final analysis, we assessed whether network centrality (i.e., 
a bat species’ role in haemoplasma genotype sharing) predicted con-
temporary infection prevalence (Figure S8). However, we found no 
associations between species-level infection prevalence and cen-
trality as measured by degree (β = –0.13, R2 = .03, p = .42) or eigen-
vector centrality (β = –0.20, R2 < .01, p = .79).

4  | DISCUSSION

By examining the prevalence and distribution of a common bacte-
rial pathogen (haemoplasmas) in a diverse bat community, we ex-
panded analysis of the ecological and evolutionary predictors of 
bat infection and pathogen sharing beyond viruses. Across the bat 
community, haemoplasma infection risk was weakly higher for males 
but was better predicted by phylogeny, with large-bodied and large-
colony bat species showing greater prevalence. Haemoplasmas 
showed high diversity and mostly strict host associations, with 
strong congruence between the bat and haemoplasma phylogenies. 
Although codivergence was supported by our analyses, we also ob-
served haemoplasma genotype sharing and evidence of historical 
host shifts between closely related bats. Species most central to 
this haemoplasma sharing network displayed taxonomic clustering 

TA B L E  1   Competing weighted phylogenetic generalized least 
squares models predicting haemoplasma infection prevalence (logit-
transformed) across the Belize bat community

Model structure k ΔAICc wi R2

Log body mass 2 0.00 .40 .24

Maximum colony size 2 1.71 .17 .20

Roost type 2 2.82 .10 .18

Foraging strata 3 2.88 .09 .24

Roost flexibility 2 3.56 .07 .16

Per cent plants in diet 2 4.30 .05 .14

Dietary guild 3 5.46 .03 .17

Log evolutionary 
distinctiveness

2 5.50 .02 .11

Log aspect ratio 2 5.61 .02 .10

Log annual fecundity 2 6.13 .02 .09

Square-root 
geographical range 
size

2 6.27 .02 .08

1 (intercept only) 1 6.77 .01 .00

Sample size 2 8.38 .01 .02

Note: Models are ranked by ΔAICc with the number of coefficients (k), 
Akaike weights (wi) and a likelihood ratio test pseudo-R2.
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and were disproportionately frugivores and nectarivores. Yet these 
highly central bat species did not also have the highest haemoplasma 
prevalence, reinforcing mostly infrequent bacterial sharing between 
species. Our work reveals phylogenetic patterns in haemoplasma 
infection in a diverse bat community while contributing to broader 
efforts to understand the host specificity of bacterial pathogens and 
their cross-species transmission patterns in wildlife.

Whereas many bacterial pathogens, including haemoplasmas, 
are common in bats (Bai et al., 2011; Becker et al., 2018; Ikeda 
et al., 2017; Mascarelli et al., 2014; Millán et al., 2015; Volokhov, 
Becker, et al., 2017), the factors that confer high infection 

probability are poorly understood. In the Belize bat community, the 
odds of haemoplasma infection tended to be higher in males, sug-
gesting male-biased transmission as detected in feline and canine 
systems (Soto et al., 2017; Walker Vergara et al., 2016). Such pat-
terns could stem from males mounting weaker immune responses 
than females (Kelly, Stoehr, Nunn, Smyth, & Prokop, 2018) or to 
male defence of multifemale roosts in many Neotropical bat species 
(Voigt, von Helversen, Michener, & Kunz, 2001). Direct transmis-
sion of haemoplasmas has been demonstrated in feline and rodent 
systems (Cohen et al., 2018; Museux et al., 2009) but only inferred 
in bats from metagenomic studies detecting these bacteria in saliva 

TA B L E  2   Haemoplasma genotypes identified from the Belize bat community. Genotypes are given with their bat host species, 
representative GenBank numbers and intragenotype variability

Genotype Host species
Representative GenBank 
number

Mean intragenotype 
sequence similarity (%)

VBG1 Desmodus rotundus, Pteronotus fulvusc  KY932701 99.8

VBG2 Desmodus rotundus KY932678 99.9

VBG3 Desmodus rotundus KY932722 99.6

CS1b  Carollia sowelli MK353833 100

CS2b  Carollia sowelli, C. perspicillata MH245134 99.7

MR1b  Molossus nigricans MH245174 99.7

MR2b  Molossus nigricans MH245151 NAa 

PPMb  Pteronotus mesoamericanus, P. fulvusc  MH245159 99.9

EF1b  Eptesicus furinalis, Saccopteryx bilineatac , 
Glossophaga soricinac 

MH245147 99.6

EF2b  Eptesicus furinalis MH245131 99.9

NMb  Natalus mexicanusc  MK353818 NAa 

LEb  Lophostoma evotis MK353892 99.9

TC1b  Trachops cirrhosus MH245145 99.8

TC2b  Trachops cirrhosus MK353860 99.8

APH1b  Dermanura phaeotis, D. watsoni, A. lituratusc  MH245132 100

APH2b  Artibeus jamaicensis, A. lituratus, A. intermedius MH245187 99.9

APH3b  Artibeus intermedius MH245186 99.8

GLSb  Glossophaga soricina MK353874 99.5

MYEb  Myotis elegans, Myotis pilosatibialisc  MK353840 100

MYKb  Myotis pilosatibialisc  MH245153 NAa 

UBb  Uroderma convexum MK353869 99.8

PLUb  Platyrrhinus helleric , Uroderma convexumc  MK353883 99.6

SPb  Sturnira parvidens; A. lituratusc  MH245168 99.4

RHNb  Rhynchonycteris nasoc  MK353871 NAa 

M. moatsii-like 1d  Pteronotus mesoamericanusc  MK353864 NAa 

M. moatsii-like 2d  Myotis pilosatibialisc  MK353862 NAa 

M. moatsii-like 3d  Rhynchonycteris nasoc  MH245146 NAa 

M. lagogenitalium-liked  Glossophaga soricinac  MH245140 NAa 

M. muris-liked  Saccopteryx bilineatac  MH245138 NAa 

aIntragenotype sequence variability could not be assessed, as only one sequence was identified. 
bNovel haemoplasma genotypes. 
cGenotypes were detected in only one individual of these bat species. 
dNon-haemoplasma Mycoplasma genotypes. 
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(Volokhov, Becker, et al., 2017). We found weak support for the 
hypothesis that ectoparasites play a role in infection risks (Hornok 
et al., 2019; Willi, Boretti, Meli, et al., 2007). The weak male bias in 
infection could cast further doubt on vector-borne transmission, as 
females in some bat species have elevated ectoparasitism (Frank, 
Mendenhall, Judson, Daily, & Hadly, 2016); however, a secondary 
GLMM testing this hypothesis found generally weak support for a 
female bias in ectoparasitism in our system (Figure S9). Future work 
assessing ectoparasite burdens could better elucidate the roles of 
vectors in haemoplasma risk.

Across Neotropical bats sampled in Belize, we found phylogeny 
to be a better predictor of haemoplasma risk than individual traits, 
site or year. Phylogenetic factorization identified one clade, the 
Emballonuridae, with significantly lower prevalence than all other 
bats in the community. This moderate phylogenetic signal mirrors 
comparable effects of phylogeny for bat viruses (Guy, Thiagavel, 
Mideo, & Ratcliffe, 2019), similarly suggesting potential for innate 
differences in species susceptibility or pathogen exposure. Trait-
based analyses revealed that this taxonomic pattern was driven 
by heavier and large-colony species having greater haemoplasma 

F I G U R E  4   Evolutionary relationships 
between Belize bats and haemoplasma 
genotypes. The cophylogeny plot shows 
the bat phylogeny on the left and the 
haemoplasma genotype phylogeny on 
the right. We used the treespace package 
to collapse our complete haemoplasma 
phylogeny (Figure S3) to only the 29 
bacterial genotypes (Jombart, Kendall, 
Almagro-Garcia, & Colijn, 2017). Lines 
display bat–haemoplasma associations 
and are shaded by the inverse of the 
squared residuals from PACo (i.e., dark 
lines show small residuals more indicative 
of coevolution)

F I G U R E  5   Patterns of haemoplasma genotype sharing across the Belize bat community. (a) Nodes in the genotype network represent 
bat species (abbreviated by Latin binomials), and edges represent a shared genotype. Nodes are coloured by communities identified with 
the Louvain method and are scaled by the number of individuals per species. (b) Matrix showing pairwise haemoplasma genotype sharing, 
coloured by the number of genotypes shared between bat species [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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prevalence. Small-bodied species could have low prevalence 
due to small blood volumes and low bacterial titres (Volokhov, 
Becker, et al., 2017). Alternatively, the positive, saturating rela-
tionship between body mass and bacterial prevalence could be 
driven by allometric patterns in competence (Downs et al., 2019), 
in contrast to weak or opposite relationships between mass and 
viral richness across bats (Guy et al., 2019; Han, Schmidt, et al., 
2016). As larger-bodied bat species can also be more abundant in 
Neotropical habitat fragments (Herrera et al., 2018), these results 
suggest land conversion could increase the frequency of bat spe-
cies most capable of maintaining haemoplasma infection. Similarly, 
positive relationships between colony size and prevalence could 
support density-dependent transmission of bacteria (McCallum 
et al., 2001), whereas mixed support has been found for bat vi-
ruses (Streicker et al., 2012; Webber, Fletcher, & Willis, 2017). 
Future work could test how community-wide infection patterns 
vary across broader habitat gradients and use multiple bacteria to 
assess the generality of these trends.

Approximately two-thirds of the Neotropical bat species sampled 
in Belize were infected by haemoplasmas, for which we observed 
high genetic diversity consistent with other studies of this pathogen 
in bats (Mascarelli et al., 2014; Millán et al., 2015; Volokhov, Becker, 
et al., 2017). However, these bacterial genotypes were mostly novel 
and only weakly related to haemoplasmas described elsewhere in 

Latin America (Ikeda et al., 2017; Millán et al., 2019), with the ex-
ception of those previously identified from vampire bats (Volokhov, 
Becker, et al., 2017). When considering the phylogenetic scale of 
genotypes, most haemoplasmas were host-specific. Over half of 
our haemoplasma communities consisted of a single bat–genotype 
association, matching the degree of host specificity observed more 
generally for Mycoplasma spp. (Citti & Blanchard, 2013; Pitcher & 
Nicholas, 2005). When we did detect genotype sharing between 
species, this occurred mostly between closely related hosts (e.g., 
genotype PPM was detected in Pteronotus mesoamericanus and 
P. fulvus), indicating bat phylogenetic distance decreased the proba-
bility of bacterial transfer.

Analyses to characterize species centrality to the haemoplasma 
genotype sharing network showed that one species (Artibeus litu-
ratus) and the subfamily Stenodermatinae played key roles. This 
clade, and especially the genera Artibeus and Dermanura (formerly 
all classified in Artibeus), was the only taxon with nonzero con-
nectivity, and this pattern was reflected in fruit- and nectar-based 
diets and small colonies being the primary predictors of centrality. 
The strictly frugivorous Stenodermatinae represents a recent di-
vergence in the Phyllostomidae (Botero-Castro et al., 2013), and 
high centrality of these species may indicate weaker phylogenetic 
barriers for bacterial transmission between hosts in this clade. Two 
other analyses reinforced infrequent and conserved haemoplasma 

F I G U R E  6   Phylogenetic patterns 
in haemoplasma genotype networks 
for Belize bat species (a) degree and (b) 
eigenvector centrality. Clades showing 
significantly different centrality metrics 
are highlighted, and points are scaled by 
observed values. Results from the top 
PGLS models predicting both centrality 
metrics as a function of bat species traits 
(c and d). Model fit and 95% confidence 
intervals are shown overlaid with data 
scaled by sample size; species from the 
clades identified through phylogenetic 
factorization are coloured as in (a) and 
(b) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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sharing between species. First, phylogenetic patterns in preva-
lence were distinct from those in genotype sharing centrality (e.g., 
large-colony species had higher prevalence but lower connectiv-
ity), and prevalence accordingly did not predict centrality. Second, 
we found general congruence between bat and haemoplasma 
phylogenies. Although this shows codivergence is a strong evolu-
tionary force, congruence can also stem from preferential jumps 
to closely related hosts (De Vienne et al., 2013). Although we can-
not rule out that some host shifts may be artefacts of the limited 
resolution of both the phylogenies, our evolutionary analyses and 
genotype sharing results imply that haemoplasma host shifts are 
possible yet rare.

By sampling a diverse assemblage of bacterial genotypes in 
an ecologically and evolutionary rich host community, our work 
has broader implications for our understanding of disease emer-
gence. Many bacterial pathogens are thought to be generalists 
and relatively unlikely to specialize in a novel host (Pedersen, 
Altizer, Poss, Cunningham, & Nunn, 2005; Woolhouse & Gowtage-
Sequeria, 2005), in contrast to many viruses in which host shifts 
are more common owing to high mutation rates and short in-
fectious periods (Geoghegan et al., 2017; Longdon, Brockhurst, 
Russell, Welch, & Jiggins, 2014). Recent theoretical work suggests 
host shift speciation may be less common for bacteria because of 
higher phenotypic plasticity (e.g., the ability to reside in diverse 
habitats) and a slower tempo of evolution (Bonneaud et al., 2019). 
Obligate reliance of Mycoplasma spp. on host cells and more 
chronic infections probably explains their propensity to special-
ize (Citti & Blanchard, 2013; Cohen et al., 2018). More broadly, 
however, using genetics to infer pathogen sharing, rather than 
coarser phylogenetic scales (e.g., species complexes or genera), 
is increasingly showing that many bacterial strains may be more 
host-specific (Withenshaw, Devevey, Pedersen, & Fenton, 2016). 
The high specialism of bat haemoplasma genotypes thus under-
lines the importance of using finer phylogenetic scales in the study 
of infectious disease (Fountain-Jones et al., 2018; Graham, Storch, 
& Machac, 2018).

Comparative analyses of viruses have suggested that phylo-
genetically conserved pathogen jumps between species may be 
a broader generality in the study of disease emergence (Albery, 
Eskew, Ross, & Olival, 2019; Luis et al., 2015; Streicker et al., 2010). 
With few exceptions, our results on haemoplasma genotype shar-
ing between Neotropical bat species are generally consistent with 
this pattern for a bacterial pathogen. Two cases in which haemo-
plasmas were shared between more distantly related species in-
cluded the VBG1 genotype in Desmodus rotundus and Pteronotus 
fulvus (Phyllostomidae and Mormoopidae) and the EF1 genotype 
in Glossophaga soricina and Saccopteryx bilineata (Phyllostomidae 
and Emballonuridae). For the latter, both bat species co-roost in 
the LAR, which suggests an ecological context for pathogen ex-
posure over current timescales. However, other genetic markers 
(e.g., rpoB, rpoC, gyrB) would be necessary to infer contemporary 
cross-species transmission (Kämpfer & Glaeser, 2012; Volokhov 

et al., 2012), as analysis of the 16S rRNA gene alone is insufficient 
for haemoplasma species identification (Volokhov et al., 2012). If 
haemoplasmas are more likely to specialize rather than expand 
their range into new and unrelated species, genotype sharing be-
tween unrelated bats could represent more transient spillovers 
(Bonneaud et al., 2019). As specialized pathogens could be more 
transmissible than generalists (Garamszegi, 2006), species with 
high infection prevalence of specialist genotypes could be priori-
tized for bacterial surveillance.

In conclusion, our analysis of a diverse community of bats and 
their pathogen genotypes identifies several key ecological and 
evolutionary factors structuring bacterial infection within and be-
tween species and provides a starting point for contrasts with such 
patterns for viruses. Similar to bat viruses, we found moderate 
phylogenetic signal in haemoplasma prevalence. However, these 
phylogenetic patterns in prevalence were decoupled from those de-
scribing bat species centrality in sharing haemoplasmas, such that 
genotype sharing was generally restricted by bat phylogeny. These 
findings imply codivergence of bats and their bacterial pathogens 
alongside rare and phylogenetically constrained host shifts. Future 
work more broadly characterizing the ecological and evolutionary 
determinants of bacterial infections in diverse host communities will 
improve our understanding of cross-species transmission beyond vi-
ruses and contribute to efforts to understand the epidemiological 
consequences of bacterial pathogens.
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