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Succinate dehydrogenase (SDH) is a key respiratory enzyme that links Krebs cycle and
electron transport chain and is comprised of four subunits SDHA, SDHB, SDHC and
SDHD. All SDH-deficient tumors are caused by or secondary to loss of SDH activity. As
many as half of the familial cases of paragangliomas (PGLs) and pheochromocytomas
(PHEOs) are due to mutations of the SDHx subunits. Gastrointestinal stromal tumors
(GISTs) associated with SDH deficiency are negative for KIT/PDGFRA mutations and
present with distinctive clinical features such as early onset (usually childhood or
adolescence) and almost exclusively gastric location. SDH-deficient GISTs may be part
of distinct clinical syndromes, Carney-Stratakis syndrome (CSS) or dyad and Carney triad
(CT). CSS is also known as the dyad of GIST and PGL; it affects both genders equally and
is inherited in an autosomal dominant manner with incomplete penetrance. CT is a very
rare disease; PGL, GIST and pulmonary chondromas constitute CT which shows female
predilection and may be a mosaic disorder. Even though there is some overlap between
CT and CSS, as both are due to SDH deficiency, CSS is caused by inactivating germline
mutations in genes encoding for the SDH subunits, while CT is mostly caused by a specific
pattern of methylation of the SDHC gene and may be due to germline mosaicism of the
responsible genetic defect.

Keywords: Succinate dehydrogenase (SDH), GIST, paraganglioma, Carney triad, Carney-Stratakis
syndrome, SDHB
INTRODUCTION

Succinate dehydrogenase (SDH - also known as mitochondrial complex II or succinate-ubiquinone
oxydoreductase) is the only enzyme that is concurrently both a functional member of both the Krebs
cycle (or citric acid or tricarboxylic acid cycle) and the electron transport chain (ETC), where it
provides electrons for oxidative phosphorylation (1). It is comprised of four mitochondrial subunit
proteins: SDHA, SDHB, SDHC, SDHD encoded by nuclear genes, mapped to 5p15.22, 1p36.13,
1q23.3 and 11q23.1, respectively (Figure 1). SDHA is a flavoprotein and SDHB is an iron-sulfur
protein; together they make up the main catalytic component of the complex. The other two
n.org May 2021 | Volume 12 | Article 6806091
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subunits, SDHC and SDHD are two integral membrane proteins
that anchor the complex to the inner mitochondrial membrane
(3, 4). Additionally, the succinate dehydrogenase assembly factor
2 (SDHAF2) is required for the flavination and thus normal
function of SDHA (4).

Genetic alterations in any of the four SDHx genes (SDHA,
SDHB, SDHC, SDHD) or SDHAF2 lead to SDH complex
dysfunction and loss of SDHB expression (5). This loss of
SDHB can be detected rapidly by immunohistochemistry
(IHC) and thus, loss of immunohistochemical staining for
SDHB is used as the hallmark of SDH-deficient tumors (6–9).
HOW DO SDHX MUTATIONS LEAD
TO TUMORIGENESIS?

It is not completely clear how the dysfunction of SDH leads to
neoplasia; several mechanisms have been proposed. One of them
is the activation of pseudohypoxia pathway (10). This
mechanism implies that due to SDH deficiency, succinate is
accumulated; this inhibits propyl hydroxylases (PHDs) resulting
in induction of the hypoxic response despite normoxic
conditions (pseudohypoxia) (11, 12). At the cellular level, the
Frontiers in Endocrinology | www.frontiersin.org 2
three a subunits of the hypoxia inducible factor-1 (HIF-1a,
HIF2a, HIF3a), are hydroxylated by PHDs 1, 2 and 3 (also
known as Egln2, Egln1 and Egln3), which are oxygen-dependent
enzymes. The hydroxylated HIFas are then targeted by von
Hippel-Lindau (VHL) protein for degradation in the
proteasome. In order for the HIFs to be recognized by the
VHL, hydroxylation of two proline residues on HIFa is
required by PHDs. In the case that the SHDx genes are
mutated, propyl hydroxylases are inhibited by the accumulated
succinate, hydroxylation of HIF-1as is decreased and therefore
they escape degradation. As a result, they translocate to the
nucleus, they dimerize with HIFb and create a complex that
activates genes that induce angiogenesis, cell proliferation and
glycolysis (12, 13). This mechanism was further supported by
additional studies (12, 14–17). Additionally, besides succinate,
the accumulation of reactive oxygen species (ROS) in
mitochondria, leading to loss of function of the SDH enzyme,
has also been implicated in tumor pathogenesis. ROS are mainly
produced in complex I (NADH-ubiquinone oxidoreductase) and
complex III (ubiquinone-cytochrome c oxidoreductase) in ETC
(18). Recently, Xiao et al. demonstrate that SDHx knockdown
increases intracellular levels of succinate; subsequently, this acts
as an alpha-ketoglutarate competitor, inhibiting a-KG-
dependent dioxygenases, JIp1, which is involved in sulfur
FIGURE 1 | Succinate dehydrogenase (Complex II). Figure modified from Settas et al. (2).
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metabolism and Jhd1 which belongs to the JmjC-domain-
containing histone demethylase (JHDM) enzymes. That could
lead to tumor formation by causing epigenetic changes (11, 19).
The corresponding human JHDM, JMJD2D, was shown to be
inhibited by accumulation of succinate as well (20).

Mutations in the SDHx subunits have been implicated in
familial paragangliomas (PGLs) and pheochromocytomas
(PHEOs), gastric stromal tumors (GISTs), Carney-Stratakis
syndrome (CSS), and rarely in Carney triad (CT) and a few
other tumors (21–30). This review focuses on SDH-deficient
tumors, the two relevant genetic conditions, CSS and CT, and an
association (3PAS), and their clinical, pathological and
molecular characteristics.
SDH-DEFICIENT PARAGANGLIOMAS AND
PHEOCHROMOCYTOMAS

Pheochromocytomas and paragangliomas are rare neuroendocrine
neoplasms derived from chromaffin cells (31). Tumors arising from
the adrenal medulla, which is the largest paraganglion in the body,
are termed PHEOs, while those derived from the sympathetic and
parasympathetic paraganglia are known as PGLs (31). Extraadrenal
locations most commonly include the head and neck, mainly the
carotid body, jugular foramen, middle ear, but can also occur in the
thorax, abdomen and pelvis (32). PGLs/PHEOs can be either
sporadic or hereditary. As many as 35% of them are due to
genetic predisposition (33). To date, more than 20 susceptibility
genes have been identified (34). Germline mutations of SDHB,
SDHC, and SDHD genes are responsible for approximately
50% of hereditary paragangliomas (4, 24, 25, 35–38) and
pheochromocytomas (24, 36, 39). Recently, mutations in SDHA
(21) and SDHAF2 were also identified in hereditary PHEOs and
PGLs (40). In addition, multiple reports have shown that these
tumors have high incidence in patients with cyanotic congenital
heart disease (41–43).

Depending on the SDHx subunit that is mutated, PGL
syndromes have different characteristics (Table 1): SDHD (PGL1)
(OMIM#168000)-mutated PGLs are more common in the head
and neck and appear to have very high lifetime penetrance as 75%
of carriers will have manifestations by 40 years old (44). Mutations
in SDHB gene as the susceptibility gene for PGL4 (OMIM#115310)
are more likely to be in the abdomen and show very high metastatic
Frontiers in Endocrinology | www.frontiersin.org 3
risk, but lower penetrance compared to PGL1 (~40% of carriers
manifest the disease by age 40) (45). On the other hand, in SDHC
(PGL3) (OMIM#605373) gene mutations, much rarer than the
previous two, tumors are more commonly located in the carotid
body (35, 46, 47) and have a low malignant potential (45).
Mutations in SDHA and SDHAF2 are associated with PGL5
(OMIM#614165) and PGL2 (OMIM#601650) respectively and
are very rare. A patient with any type of PGL will present in any
of the following contexts: a) because of signs and/or symptoms of
excess catecholamine secretion (e.g. hypertension, headache,
palpitations, hyperhidrosis, tremor); b) because of an incidental
finding on an imaging study; c) because of signs and/or symptoms
due to a local mass (various signs and/or symptoms depending on
the location); and d) after a genetic testing was performed in the
case of familial disease. Histologically, SDH-deficient PHEOs/PGLs
have a nested architecture with round cells and prominent
vasculature (4).

PHEOs can occur as part of PGL1 and PGL4 and about 3% of
them are attributed to SDH deficiency (6). The rest of them are
either sporadic or they are associated with other familial
syndromes such as VHL, MEN2 and NF. What could
differentiate SDH-deficient PHEOs is the negative SDHB IHC
and the secretion solely of noradrenaline (and/or dopamine) in
contrast to the others that secret both adrenaline and
noradrenaline (47). In addition, PHEOs caused by SDHB
mutations show higher malignancy risk (47).

Family history is not always helpful in predicting hereditary
PHEOs/PGLs because of phenotypic heterogeneity, incomplete
penetrance and in the case of PGL1 and PGL2, maternal
imprinting (5, 25, 48). It is interesting that in PHEOs/PGLs
that appear to be sporadic based on family history, germline
mutations were found in up to 25% of cases (49–51). Therefore,
all patients with PHEOs/PGLs (sporadic and hereditary cases)
should undergo genetic testing and counseling after IHC is
performed (5, 6).
SDH-DEFICIENT GISTS

GISTs are the most common neoplasms of the gastrointestinal
tract of mesenchymal origin and more than 5000 cases are
diagnosed each year in the US alone (52). They originate from
the interstitial cells of Cajal (53), the pacemaker cells that
TABLE 1 | Characteristics of SDH-deficient pheochromocytoma and paraganglioma.

Syndrome Mutated gene Mode of
inheritance

Frequency Maternal
Imprinting

Affected gender Associated tumors

PGL1 SDHD (11q23) AD Common Yes Both equally Head and neck, intra-abdominal, adrenals, GIST
PGL2 SDHAF2 (11q13) AD Very rare Yes Both equally Head and neck
PGL3 SDHC (1q23) AD Rare No Both equally Head and neck (carotid body), RCC
PGL4 SDHB (1p36) AD Common No Both equally Intra-abdominal, head and neck, RCC
PGL5 SDHA (5p15) AD Rare No Both equally GIST
Carney triad Hypermethylation of SDHC promoter Unknown Very rare No Mainly females GIST,

abdomen, PCH
AD, autosomal dominant; GIST, gastrointestinal stromal tumor; PCH, pulmonary chondroma; PGL, paraganglioma; RCC, renal cell carcinoma.
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regulate peristalsis in the digestive tract (54). Most GISTs
occurring in adults are driven by activating mutations in KIT
proto-oncogene receptor tyrosine kinase (KIT) (75-80% of
cases) or platelet-derived growth factor receptor A (PDGFRA)
(5-15%) genes (55–58). The rest (10-15%), that lack KIT and
PDGFRA gene mutations, are described as ‘wild type GISTs’
(WT GISTs) and comprise most of pediatric GISTs (59, 60).
SDH-deficient GISTs are the majority of WT GISTs (50% of
these tumors are associated with hypermethylation of the SDHC
promoter locus (CT), 30% with germline SDHA mutations (4),
while 20% is associated with mutations in SDHB, SDHC, SDHD
(Table 2) (61). The rest harbor mutations in NF-1, BRAF,
ARID1A, ARID1B, CBL, NRAS, HRAS, KRAS, EGFR1, MAX,
MEN1, PIK3CA and ETV6-NTRK3 fusion genes; these patients
are usually older (same as KIT/PDGFRA + tumors) and they
have more aggressive disease (62–72) (Figure 2). It is important
to identify these mutations as it can be useful in the
treatment plan.

SDH- deficient GISTs exhibit unique features which are
summarized in Table 2. Briefly, they manifest predominantly
in females, at a young age. They arise almost exclusively in the
stomach (61, 73–79) and they frequently have early
lymphovascular invasion and consequent involvement of the
lymph nodes (76), and less frequently of the liver (61), and do
not frequently respond to imatinib (80). However, even in the
setting of metastatic disease, they have an indolent clinical
course. Histologically, these tumors exhibit multinodular
growth pattern with epithelioid cells and they are multifocal.
In addition, it was found that SDH-deficient GISTs overexpress
insulin-like growth factor receptor (IGF1R) (81), and that this
upregulation is highly specific of SDH-deficient GISTs (61, 78,
82, 83). The underlying molecular mechanism is unknown, but it
could possibly be due to genetic amplification (61). Stratakis and
his group also showed that immunohistochemistry that is
negative for SDHB can be used to identify SDH-deficient
GISTs caused by SDHB, SDHC or SDHD mutations (75).
SDH-deficient GISTs can be sporadic or may present as part of
two syndromes, CT (84) and CSS (26, 85).
Frontiers in Endocrinology | www.frontiersin.org 4
Carney Triad (CT)
Going back, in 1977 Dr. J. Aidan Carney described the association
of three uncommon tumors- GISTs, PGLs and pulmonary
chondroma (PCH) (86). Among other characteristics, the young
age (median 18 years old), the female predilection, the
multifocality and the concurrence of rare tumors suggested a
genetic etiology (87). This association was later referred to as CT
(OMIM #604287). Afterwards, adrenocortical adenoma and
esophageal leiomyoma were added as components of the triad
(88). The etiology of CT is not yet clear but recent data have
implicated SDHC. In a cohort of 37 patients, comparative genomic
hybridization demonstrated no mutations of any of the SDHx
subunits. Instead, it revealed the most frequent and largest
genomic change to be the deletion of 1q12-q21, a region where
SDHC gene resides (84). Later, Haller et al. demonstrated that
aberrant DNA hypermethylation is present at specific sequences of
the SDHC gene (in the promoter and first exon) in patients with
CT; this methylation leads to reduced SDHC mRNA expression
(89). A genome-wide DNA study confirmed the SDHC gene
promoter hypermethylation in both CT and WT-GISTs (90).
Today, SDHC-specific methylation is considered the molecular
signature of CT and is used as simple diagnostic test to identify
lesions that may be part of CT in patients that are suspected to be
affected by the condition.

Carney-Stratakis Syndrome (CSS)
In 2002, Dr Carney and Dr Stratakis, described a new condition,
that is today known as Carney-Stratakis syndrome (CSS)
(OMIM #606864) (also reported as the “paraganglioma and
gastric stromal sarcoma syndrome” or Carney-Stratakis dyad)
(91). This newly described genetic disorder included only
two types of tumors, PGLs/PHEOs and GISTs and is
inherited in an autosomal dominant manner with incomplete
penetrance. It affects both males and females during childhood
and adolescence. Later, in 2007, Dr. Stratakis and his group
identified inactivating mutations in the SDHB, SDHC and SDHD
subunits as responsible for CSS (26, 92), with subunits B and D
being mutated in higher frequency. Pasini et al. studied patients
TABLE 2 | Comparison of SDH-deficient GISTs and SDH-competent GISTs.

SDH-deficient GIST Non-SHD deficient GIST

Gender Female > male Equal
Age Children>young adult>older adult Older adult
Location Stomach Anywhere in GIT
KIT/PDGFRA mutation No Common (>90%)
SDHB IHC Positive Negative
Multifocality Rare Common
Predominant cell Spindled Epithelioid
Metastases to lymph node Common Rare
Response to imatinib No Yes
Associated syndromes/
mutations

50% SDHC epimutation (Carney triad)
30% germline SDHA mutation
20% SDHB, SDHC, SDHD mutation

Germline KIT/PDGFRA mutation,
Neurofibromatosis 1
BRAF, KRAS, NRAS, HRAS, ARID1A, ARID1B, CBL, FGFR1, MAX, MEN1, PIK3CA,
ETV6-NTRK3
GIST, gastrointestinal stromal tumor; GIT, gastrointestinal tract; IHC, immunohistochemistry; SDH, succinate dehydrogenase.
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with CSS who developed GIST and they identified germline
mutations in SDHB, SDHC and SDHD (26). Hemizygosity/
homozygosity for the mutant allele was found in the GISTs of
the affected individuals which is consistent with the tumor
suppressor activity of SDHx genes (26). SDHA loss-of-function
mutations have also been identified in patients with CSS (74).
Surprisingly, patients harboring SDHA mutations demonstrated
impressively long survival (93).
3PAS

Over the years, the co-existence of PHEOs/PGLs and pituitary
adenomas (PAs) was thought to be a coincidence due to the
rarity of those endocrine tumors (23). However, in some cases,
they may have a common pathogenic mechanism. The first case
of a patient with PHEO and acromegaly was described in 1952
(94). Since then, more than 80 such cases have been published
(95). In 2012, Xekouki et al. described an individual within a
family history with multiple PGLs and PHEOs caused by a
germline SDHD mutation; in addition, the individual had an
aggressive growth hormone (GH)-secreting PA, and loss of
heterozygosity at the SDHD locus in the pituitary tumor along
with increased levels of HIF-1a (96). Since then, the co-existence
of those tumors, not recognized as a distinct entity before, has
been known as 3PAs. More cases of PAs in patients with SDH
mutations have been described, supporting the evidence that
SDH deficiency plays a role in pituitary tumors (97–99).

SDH-deficient PAs that are part of 3PAs are more commonly
macroadenomas and they frequently exhibit different
phenotypes within the same family, such as prolactinomas,
Frontiers in Endocrinology | www.frontiersin.org 5
somatotropinomas and non-functional adenomas (95). Most of
the time they respond poorly to somatostatin analogues and they
require multiple treatments (95). In addition, PHEOs/PGLs in
patients with 3PAs are often bilateral and/or multiple and tend to
recur (95). In a cohort study of 19 patients with PHEO/PGL and
PA, 9 of them had SDHxmutations. In PAs caused by mutations
in any of the SDHx subunits intracytoplasmic vacuoles were
present, a histological characteristic specific to those kinds of
tumors (100). One could speculate that those vacuoles could
possibly be autophagic bodies, as it is known that activation of
autophagy is related to hypoxia-related pathways (101, 102);
moreover, autophagy has been found to contribute to chemo-
and radio-therapy resistance (103, 104).
SDH-DEFICIENT RENAL
CELL CARCINOMA

SDH-deficient renal carcinoma was first recognized in 2004 (22)
and later was accepted as a distinct type of renal cell carcinoma
(RCC) (4, 105). It is rare, as it is estimated to account for 0.05-
0.2% of all renal carcinomas (106). The mean age is 38 to 40 years
(107) and there is a slight male predisposition (106, 108). In most
of them, SDHB (83%) germline mutation is present (80), but few
cases with SDHC and SDHD mutations have been reported as
well (106–109). SDHA mutation in RCC was reported for the
first time recently by Yakirevich et al. (110), followed by other
reports (111, 112). In a cohort study, 36 SDH-deficient RCCs
from 27 patients were studied; all of them were negative for
SDHB and positive for SDHA by IHC. In addition, genetic
testing was performed in 17 of these patients and they all
FIGURE 2 | Classification of gastrointestinal stromal tumors (GISTs).
May 2021 | Volume 12 | Article 680609

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Pitsava et al. SDH-Deficient Tumors
harbored a germline SDHx mutation (16 SDHB, 1 SDHC) (106).
In another study, 37 tumors exhibiting morphologic features of
SDH-deficient RCC were evaluated; of them 11 showed
immunohistochemical loss of SDHB and 1 out of 11 cases loss
of SDHA (in this case no SDHB gene mutation was detected by
sequencing and SDHA gene was not evaluated) (108).

Morphologically, SHD-deficient RCCs exhibit distinctive
features, being made of cuboidal cells with variable cysts and
‘bubbly’ eosinophilic cytoplasm with flocculent inclusions. They
also exhibit a solid, nested or tubular growth pattern (80, 106–108,
110, 113, 114). The hallmark of these tumors is loss of SDH
immunohistochemical expression. Therefore, in renal tumors
with morphology suggestive of SDH-deficient RCC or syndromic
disease (younger age, family history of RCC, personal or family
history of other SDH-deficient tumors) IHC for SDHB should be
performed (106, 112). It is possible that SDHA-deficient RCCs
may exhibit slightlydifferentmorphologic features suchaspapillary,
cribiform-like architecture, higher nuclear grade and areas of solid
growth pattern (110–112). However, very few cases have been
reported so far and it is difficult to make any definitive associations.

In addition, this distinct type of RCCs is negative for c-kit,
cytokeratin 7 (CK7), carbonic anhydrase IX (CAIX), CD117 and
vimentin, while it is immunoreactive for PAX8 and kidney-
specific cadherin. These markers can be useful in the case that
IHC is unavailable (106–108).

Although most SHD-deficient RCCs have a good prognosis,
and the risk of metastasis is estimated to be 11%, some of them-
those with high-grade nuclear atypia, tumor necrosis or
sarcomatoid differentiation- may behave aggressively reaching
metastatic rates as high as 70% (106, 108, 115).
OTHER SDH-DEFICIENT TUMORS

Apart from PGLs/PHEOs, GISTs, PAs and renal cell carcinomas
discussed above, there is not much evidence that SDHx deficiency
contributes significantly to other neoplasms. Thyroid carcinoma
associated with either SDHB or SDHD has been reported in a few
individuals (46, 51). Patients with PTEN-negative Cowden and
Cowden-like syndromes, have also been reported in association
with either SDHB or SDHD variants (27). Neuroblastoma (28) and
bilateral adrenal medullary hyperplasia (29) have been linked to
SDHB mutations. Moreover, a case of testicular seminoma has
been reported in association with SDHD mutation (30). While a
variety of tumors has been reported in association with SDH
mutations we cannot say for sure if there is a causal relationship
between them due to the very limited number of cases.

Loss of SDHB Immunohistochemistry
as an Important Tool of Validating
SDH Mutations
SDHx genes act as tumor suppressor genes (116). SDHx germline
heterozygous inactivating mutations affect the protein function
and predispose to hereditary neoplasms; subsequently, loss of
heterozygosity (LOH) in the tumor level results in complete loss
of SDH activity (14). Loss of immunohistochemical staining for
Frontiers in Endocrinology | www.frontiersin.org 6
SDHB has been proved to be a robust and reliable marker for
syndromic disease resulting from germline mutation of SDHA,
SDHB, SDHC or SDHD (6–9). In addition, in the case of double-
hit inactivation of SDHA, IHC for SDHA becomes negative as
well (9, 21). Thus, tumors associated with bi-allelic inactivation
of SDHA stain negative for SDHB and SDHA, while tumors
caused by inactivating mutations in SDHB, SDHC or SDHD
show negative staining only for SDHB. In every case, caution
should be taken when interpreting the results and further clinical
and genetic assessment should ensue.
SDH-DEFICIENT TUMORS: CLINICAL
CONSIDERATIONS AND
GENETIC COUNSELING

Clinical features of the tumors discussed above should be taken
into careful consideration. It is very important, in the case of
PGLs/PHEOs, to be aware of any catecholamine excess
symptoms (such as hypertension, hyperhidrosis, palpitations,
headache) as well as signs and/or symptoms of a local mass.
Depending on the tumor location they may vary. Tumors located
in the carotid body may present with voice hoarseness, neck
fullness, cough, dysphagia or clinically palpable mass in the
lateral upper neck. When located in the middle ear (glomus
tympanicum) patients may present with palsies of the cranial
nerves VII, IX, X, XI and/or XII (117). It is recommended that
these patients undergo imaging in order to detect metastatic
disease or new tumors (118–120). In the case of SDHA, SDHC
and SDHDmutations, because of the slow-growing tumors, MRI
screening is suggested every three to five years (120). In
individuals with SDHB mutations, due to the rapidly growing
nature of these tumors, it should be performed every two years
(120). A recent study demonstrated that the most optimal
diagnostic imaging included MRI/CT and 111In-octreotide
scintigraphy (121). Other studies showed higher sensitivity and
more detailed imaging (regardless of genetic mutation and
familial or sporadic cases) using 68Ga-DOTA-peptides PET/
CT, which targets the abundantly expressed somatostatin
receptors in those tumors, compared to conventional CT or
MRI (122–128); in addition, more lesions were identified in the
case of head and neck paragangliomas (HNPGLs) using that
compared to all other imaging techniques (126) (including [18F]-
fluorohydroyphenylalanine ([18F]-FDOPA) PET/CT, currently
the gold standard for head and neck paragangliomas) (119, 129,
130). Patients with PA should be carefully examined for any
symptoms of prolactin (PRL) or GH hypersecretion or visual
disturbances, as most PAs that occur in the context of 3PAs are
PRL- or GH- secreting macroadenomas or non-functional PAs.
Complete pituitary hormone evaluation should also be
performed to rule out other pituitary tumors. Hormonal
testing should also be performed in the case of concurrent
PGLs/PHEOs either in the index case or any family member. If
there are no abnormal findings, based on the most recent
recommendations, biochemical tests, including testing for
PGLs/PHEOs, should be performed annually (118, 119).
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Pituitary MRI is indicated in the case of abnormal biochemistry
or clinical findings. SDH-deficient PAs are treated the same as
sporadic (131–134). In the case of renal cancer, patients may
complain about flank pain and/or hematuria, whereas in GISTs
abdominal pain or fullness may be the main issue.

Genetic Counseling and Genetic Testing
It could be suggested that in the presence of SDH deficiency a
careful and detailed medical and family history should be obtained
even in patients with apparently ‘sporadic’ PGLs/PHEOs, GISTs
or PAs due to the variable expression and decreased penetrance of
those conditions. Patients and family members should be referred
for genetic counseling. Genetic testing for SDHxmutations in any
of the above patients, particularly if there are other family
members with any of those tumors (do not only include first-
degree relatives) should be performed. Doctors should be aware of
CT or CSS especially in the case of a KIT or PDFGRA negative
GIST. In the case that genetic testing is unavailable or cannot be
performed, SDHB IHC could be performed.
SUMMARY

SDH-deficient tumors are often an indicator of a genetic, tumor-
predisposition syndrome, associated with germline mutations in
Frontiers in Endocrinology | www.frontiersin.org 7
any of the SDHx subunits: SDHA, SDHB, SDHC, SDHD or rarely
SDHAF2. In the case of CT, epimutation of SDHC promoter
locus is the cause. Identifying the genetic basis of SDH-deficient
tumors has helped in identifying individuals in high risk and
introduce screening to them and their families. Thus, better
clinical care can be provided as early detection and treatment
have become more feasible.
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