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Abstract

Background

Understanding host-pathogen interaction mechanisms helps to elucidate the entire infection

process and focus on important events, and it is a promising approach for improvement of

disease control and selection of treatment strategy. Time-course host-pathogen transcrip-

tome analyses and network inference have been applied to unravel the direct or indirect

relationships of gene expression alterations. However, time series analyses can suffer from

absent time points due to technical problems such as RNA degradation, which limits the

application of algorithms that require strict sequential sampling. Here, we introduce an effi-

cient method using independence test to infer an independent network that is exclusively

concerned with the frequency of gene expression changes.

Results

Highly resistant NL895 poplar leaves and weakly resistant NL214 leaves were infected with

highly active and weakly activeMarssonina brunnea, respectively, and were harvested at

different time points. The independent network inference illustrated the top 1,000 vital fun-

gus-poplar relationships, which contained 768 fungal genes and 54 poplar genes. These

genes could be classified into three categories: a fungal gene surrounded by many poplar

genes; a poplar gene connected to many fungal genes; and other genes (possessing low

degrees of connectivity). Notably, the fungal gene M6_08342 (a metalloprotease) was con-

nected to 10 poplar genes, particularly including two disease-resistance genes. These core
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genes, which are surrounded by other genes, may be of particular importance in compli-

cated infection processes and worthy of further investigation.

Conclusions

We provide a clear framework of the interaction network and identify a number of candidate

key effectors in this process, which might assist in functional tests, resistant clone selection,

and disease control in the future.

Introduction
Host-pathogen interactions and co-evolution often involve complicated invasion and defense
mechanisms and may exhibit a sophisticated network at the molecular level [1,2]. Understand-
ing these underlying interaction networks helps to elucidate the entire infection process and
focus on certain vital events, which is a promising approach for improvement of disease control
and selection of treatment strategy [3].

In general, simultaneously investigating the transcriptional profiles of a host and a pathogen
in time course experiments is an efficient method of deciphering important changes and
correlating each change with the response of its counterpart. However, traditional microarray
technologies have the disadvantage of utilizing mixed RNA samples (host and pathogen) or
applying a compromised method that extracts RNA from separate parts using different proto-
cols, a process that inevitably increases noise [4,5]. The emergence of high-throughput parallel
sequencing technology (RNA-seq), a species-independent platform, provides us with an appro-
priate solution [6]. Based on the known genomes of hosts and pathogens, expression profiles
for the host and pathogen can be accurately constructed from a mixed RNA sample [7,8]. Tier-
ney et al. successfully quantified C. albicans andM.musculus gene expression dynamics using
simultaneous RNA-seq and predicted novel interactions [8].

Reverse engineering techniques are often used to predict unknown networks based on gene
expression data[9], and the functional identification of target genes is one of the major objec-
tives of network analyses using-omics data. A number of data-mining approaches, such as
Pearson’s correlation, principal component analysis (PCA), and independent component anal-
ysis (ICA), have been introduced or established to unravel the direct or indirect relationships
of genes by inferring a biological topology network composed of nodes and edges, where the
nodes represent interesting genes and the edges show the relationships[10,11]. Gene co-expres-
sion analysis (correlation analysis) based on the so-called ‘guilt-by-association’ principle is fre-
quently used in transcriptome data modeling to identify target genes[12]. The success of this
approach has been summarized in an article by Tohge and Fernie; however, it is important to
note that candidates obtained this way require a “fair trial” because assuming “guilt” is danger-
ous, as summarized by Usadel et al.[13]. Furthermore, whole-genome expression datasets
obtained from the visualization of complex, temporally, and/or spatially resolved experiments
help find “the meaning within the noise”[14]. Nevertheless, time series analyses can suffer
from missing data or bias at certain time points due to technical problems such as RNA degra-
dation, which limits the application of algorithms requiring strict sequential sampling.

In this study, we sought to perform a comprehensive analysis of the transcriptomes of a
host and a pathogen using RNA-seq data from a time-course infection experiment of poplar
leaf andMarssonina brunnea.M. brunnea, a filamentous fungus with a relatively narrow host
range, is a causal pathogen of Marssonina leaf spot, which devastates poplar plantations by
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defoliating susceptible trees and severely reducing the growth and productivity of hybrid pop-
lars[15,16]. To date, few fungicides have been available for controlling Marssonina leaf spot;
thus, the most promising counter-measure is to plant poplar varieties that are resistant or toler-
ant toM. brunnea [3]. In a preceding work, we completed anM. brunnea genome sequencing
project and simultaneously successfully investigated the host-pathogen transcriptome using
RNA-seq[17]. An expression profile was generated from a mixed RNA sample extracted from
an infected leaf of poplar (clone NL895) that is highly resistant toM. brunnea. Based on our
poplar-fungus infection model, in this study, we performed a comprehensive time series analy-
sis on host-pathogen transcriptomes to dissect the regulatory network underlying the tran-
scriptional response to the infection. Furthermore, a specific independent test strategy was
introduced to construct an interspecies topology network, which indirectly connected the tran-
scriptome of the host and pathogen and showed more details of the interaction.

Materials and Methods

Strains
Marssonina brunnea f. sp.multigermtubi, which infects Populus species from Sections Aigeiros
and Tacamahaca, was obtained from the eastern region of China. This pathogen has been stud-
ied in our laboratory for approximately 30 years[16]. The poplar clone NL895 is highly resis-
tant toM. brunnea f. sp.multigermtubi and is one of the most important commercial planting
clones in China. In contrast, poplar clone NL214 is highly susceptible (weakly resistant) to the
disease.

Infection
Cuttings of clones NL895 (P. euramericana CL “NL895”) and NL214 were cultured in a green-
house at 22°C with a 12-hour photoperiod until the cuttings were approximately 0.5–1 m high
and had 10 to 20 fully expanded leaves. Five or six fully expanded leaves were collected and
placed on 2% agar sterile culture plates with the abaxial surface of the leaf facing upward.
Conidia ofM. brunnea f. sp.multigermtubi were suspended in sterile water, and the suspension
was adjusted to 80,000 spores/ml and sprayed onto the abaxial surface of the poplar leaves. The
treated leaves were incubated in an illuminated incubator under 100% relative humidity (RH)
at 22°C with a 12-hour photoperiod and were then harvested at 6, 12, 24, 48, 72, and 96 h post-
inoculation. All leaves were immediately frozen in liquid nitrogen and stored at −70°C.

RNA-seq
All five or sixM. brunnea-infected leaves derived from the same condition (treatment, line and
time point) were homogenized using Bertin Precellys 24 (plus beads), and then the suspension
was mixed together as a sample. No biological replications were performed in subsequent
sequencing part. RNA was extracted using the TRIzol reagent according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA). Genomic DNA was removed by DNase I
(TaKaRa, Japan), and libraries were constructed using the Illumina standard kit (TruSeqTM
DNA Sample Prep Kit), as described in the manufacturer’s protocol. All sequencing was per-
formed using an Illumina HiSeq 2000 (Illumina Inc., San Diego, CA, USA). All the RNAseq
data (fastq format) were submitted to NCBI SRA database (SRP042102, http://www.ncbi.nlm.
nih.gov/sra/?term=SRP042102).

The RNA-seq reads were mapped onto the genomes ofM. brunnea and Populus trichocarpa
separately (v2.10, http://genome.jgi-psf.org/poplar/poplar.home.html) using TopHat (v2.0.8,
http://tophat.cbcb.umd.edu/, allowing 2 mismatches per read as the default). The Samtools
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rmdup function was used to eliminate the bias introduced by PCR amplification, and paired
reads that mapped to different chromosomes were discarded. Shared mapped reads (that could
be mapped to the fungus and poplar genomes) were excluded from our gene expression profile
analysis. The numerical measure of the mapped fragments (a fragment means a paired read)
was used to evaluate the relative expression level of a certain gene. The value for a multi-
mapped read, one that mapped to multiple positions, was divided by the number of positions.
For instance, each position of a read that mapped to 10 positions will count as 0.1. In an indi-
vidual library, the gene expression measure was normalized using the total number of mapped
fragments. The reads count normalization was performed on each organism separately. Differ-
entially expressed genes (DEGs) between two libraries were identified using Fisher’s exact test.
Principal component analysis (PCA) was used to explore the overall expression pattern (poplar
genes) of these samples during infection. All perl scripts and processed data can be downloaded
from the website (http://homepage.fudan.edu.cn/zhouyan/interactions/).

Independent network inference
Various relevance measures have been used to infer relationships between two genes, from
simple correlation measures to biologically motivated relevance measures[14]. Here, we intro-
duce another efficient method using independence test to infer an independent network.

Briefly, given a set of n genes, G = {g1, g2,. . ., gn}, with D as a set of observations at different
time points (k) on the expression profiles of the total genes, the relevance between two genes,
gi and gj, could be evaluated using their profiles at different time points: [gi1, gi2,. . ., gik] and
[gj1, gj2, . . ., gjk]. For every two observations, we considered the differential expression
(P<0.01, ratio>2 or<0.5) and classified the varieties of gene expression into nine possible
conditions, which resulted from the combination of three trends (up-regulation ", down-regu-
lation #, and unchanged-) of the expression of the two genes (S1 Fig). The frequency for every
condition was calculated and assigned to the appropriate cells of a 3�3 grid. To decrease the
influence of inactive genes (e.g., stably expressed genes), we excluded the gi(-)gj(-) condition
and split the 3�3 grid into four fourfold tables; independence was assessed using these tables
(Fisher’s exact test) [18]. A smaller p value reflected a higher relevance (lower independence);
therefore, we defined the smallest p value of the four tables as the pij relevance [19]. All rele-
vance p-values were calculated for the genes. The paired genes were sorted by their relevance
p-value in ascending order, and the top 1,000 were imported into the Cytoscape software to
perform a visual network analysis. Independence tests were performed using perl script.

Effector prediction
The secretome was used to predict the candidate effectors of the fungus using domain analysis.
The secreted proteins were identified using the TargetP [20] and TMHMM [21] tools and the
criteria that proteins with extracellular signals had 0 or 1 transmembrane domains but no GPI
(glycosyl-phosphatidylinositol) anchor domains. The secreted proteins containing an effector-
specific domain significantly enriched in known effectors [22] were considered to be candidate
effectors.

Results

Overview of the host-pathogen infection transcriptomes
NL895 and NL214 poplar leaves were infected byM. brunnea and harvested over a series of
time points. Comprehensive gene expression profiles of the pathogen and host were generated
using RNA-seq technology. Depending on the proliferative and infectious capacities of the
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fungus, we classified the samples into two groups (Table 1): highly active (containing two sub-
groups, 214/highly active and 895/highly active) and weakly active (214/weakly active and 895/
weakly active). The leaves infected with highly active fungi showed many obvious Marssonina
leaf spot several days later (S2 Fig), whereas those infected with weakly active fungi did not (or
show sporadic spots occasionally). Increasing the initial inoculum of weakly active fungi did
not significantly increase the number of disease spots. In addition, the biomass of weakly active
fungi rapidly decreased during infection, which was different from gradual proliferation of
highly active fungi. The initial spores were adjusted to a level at which the number of leaf spot
reached the peak at later stage (NL 895 leaves infected with highly active fungi), and this inocu-
lum concentration was also used in other experiments. In this study, we did not set zero time
point, because it was hard to detect the expression of fungal genes in mixed samples using real-
time PCR, due to the small number of spores sprayed on the leaves. Additionally, the most of
fungi were still in the form of spore at zero time point, which was different from the free living
status on the leaves during infection. Thus, we chose “12h” as the first time point, “48h” as
intermediate, and “96h” as last for highly active fungi according to their infection period, and
harvested the infected leaves at these time point for RNAseq. Because the weakly active fungi
only survived a shorter time on the surfaces of the leaves, we bring forward the first time point
to 6h (followed by 24h and 72h). Certain samples were excluded for insufficient RNA quality
(Agilent 2100 quality control), and 126,869,991×2 paired-end reads were generated from the
nine libraries (Table 1). S1 Table showed the Statistics information for mapped reads and
detected genes. The 214 24-h library was sequenced at a higher depth (4.5 gigabasepairs,
Gbps), whereas the data size of the other libraries was greater than 2 Gbps.

In PCA analysis, PC1 and PC2 explained 95% of the variations in gene expression and rep-
resented the differences between these libraries (Fig 1). Notably, the samples infected with
weakly active fungi were clustered, whereas the distribution of the highly active group was rela-
tively scattered, which suggested large changes at the gene expression level during infection by
highly active fungi.

The mapped fragments and detected genes exhibited obvious
differences among the time-course samples
By examining the proportion of the mapped fragments of poplar leaves to those ofM. brunnea
(defined as the P:M proportion), we found that the leaves infected with highly active fungi
often had a higher proportion of fungal-related fragments than their counterparts that were
infected with weakly active fungi (S3 Fig). The time point selection had little influence on the
P:M proportion in the weakly active group; however, in the highly active group, the proportion
of fungal-related fragments increased in the NL895 96 h samples compared with the 12 h and

Table 1. Summary of the available infected samples in the time-course experiment.

Highly active fungi Weakly active fungi

NL214 (Weakly resistant)
48 h (2.8 Ga) 24 h (4.5 G)

96 h (3.0 G)

NL895 (Highly resistant)

12 h (2.9 G) 6 h (2.6 G)

48 h (3.0 G) 24 h (2.3 G)

96 h (3.6 G) 72 h (2.6 G)

a1 G = 5 million paired-end reads×100 bp.

doi:10.1371/journal.pone.0134246.t001
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48 h samples. This finding might reflect the faster proliferation of the highly active fungi during
infection.

We investigated the number of detected genes for poplar andM. brunnea using a criterion
that the mapped fragments were not less than 2 (S1 Table). Of the 10,040 predicted genes in
M. brunnea and the 41,335 predicted genes in Populus, 6,898 (69%) and 30,977 (75%) were
identified in the nine samples, respectively, suggesting a relatively high coverage of the tran-
scriptomes. The sequencing depth varied from 2.3 Gbps to 4.5 Gbps among these samples.
Although higher depth was always suggested, now that the leaves took a high proportion in
the mixed sample, it was limited to improve the coverage of transcriptomes of fungi by increas-
ing depth. A higher sequencing depth (NL214 24 h library) did not significantly increase the
number of detected genes. When focusing on the NL 895 clones, we found that the number of
detected poplar genes was similar between the highly active (12, 48, and 96 h) and weakly active
groups (6, 24, and 72 h), sharing 27,345 expressed genes (S4 Fig). However, more fungal genes
were detected in the highly active group than the weakly active group, with 2,123 overlapping
genes. This might be also a result of a more abundant RNA level in the highly activeM. brun-
nea sample due to the higher fungus proliferation.

M. brunnea gene expression profile analysis and the characteristics of
highly and weakly active fungi
To study the infection-associated differentially expressed genes (DEGs), the transcriptomes
were analyzed and compared to the reference transcriptome at the early stage of infection
(time point 6 h for weakly active fungi and 12 h for highly active fungi).

In the 895/highly active group, 238M. brunnea genes displayed different levels of expression
from 12 to 48 h (P<0.01, ratio>2 or<0.5), and 326 genes did so from 12 to 96 h (Fig 2A).
However, the number of DEGs in the 895/weakly active group decreased to 23 (from 6 to 24 h)
and 32 (from 6 to 72 h). Furthermore, the 214/highly active group had only two samples and
28 DEGs (48 vs. 96 h), which was far less than the comparison between 48 and 96 h for the
895/highly active group. Lastly, in the dynamic transcriptome analysis, we obtained 584 fungal
DEGs, most of which originated from the 895/highly active group, which might suggest an
intense rivalry between highly resistant poplar leaves and highly active fungi.

Fig 1. Principal component analysis (PCA) of poplar genes during infection. The graph illustrates the
distribution of each sample in the space of the first two principal components (PCs). The samples infected
with weakly active fungi are clustered together, whereas the distribution of the highly active group is relatively
scattered.

doi:10.1371/journal.pone.0134246.g001
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Of the 513 895/highly group-specific DEGs, 301 were up-regulated, 188 were down-regu-
lated, and 24 exhibited fluctuating trends during the infection. According to the annotation,
several transporter genes, in particular, 10 sugar transporter genes that might play important
roles in host-pathogen sugar intake competition, were overexpressed in the later stage of infec-
tion (Fig 2B). Moreover, 19 glycosyl hydrolases, which are related to host cell wall degradation,
were significantly differentially expressed. The expression levels of two metalloproteases and
four pectate lyases were also altered during the infection. These enzymes are critical for patho-
gen invasion and cause damage by digesting structural components of the host cell [23]. Three
DEGs were from the LysM family, which functions as effectors to suppress plant basal immu-
nity during plant colonization. In addition, the gene expression of a chitin-associated enzyme
and ABC transporter genes was also significantly altered. In contrast, no sugar transporter, gly-
cosyl hydrolase, metalloprotease, chitin, or LysM domain genes were found in the 895/weakly
group-specific DEGs, except for two ABC transporter genes. In particular, this group contained
two Hsp proteins (Hsp 70 and Hsp 90) and a senescence-associated protein. Interestingly,
none of the preceding types of genes were found in the 214/highly active group. The character-
istics of these group-specific DEGs implied varied mechanisms and strategies in the fungus-
poplar interactions of highly and weakly active fungi when fighting against a powerful or weak
rival.

Fig 2. The characteristics of 584 DEGs in dynamic transcriptome analysis suggested intense rivalry in the highly resistant 895/highly active
fungus group. (A) The differentially expressed fungal genes between different time points in three groups. (B) The overlapping and specific DEGs among
the three groups. The numbers in the brackets represent the number of DEGs belonging to the annotation.

doi:10.1371/journal.pone.0134246.g002
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Populus transcriptomes revealed specific expression patterns of
disease-resistance genes during infection
We adopted the same comparison patterns for the poplar transcriptome analysis as we did for
the fungal analysis. In the 895/highly active group, 2,946 poplar genes displayed different levels
of expression from 12 to 48 h (P<0.001 and ratio>2 or<0.5), and 4,712 genes did so from 12
to 96 h (Fig 3A). Unexpectedly, more genes were significantly differentially expressed in the
895/weakly active group (4,371 DEGs from 6 to 24 h; 8,064 DEGs from 6 to 72 h), and most
were down-regulated. However, compared with the 895/weakly active group, more poplar
genes were up-regulated in the 895/highly active group at the early stage (from 12 to 48 h),
which reflects the host’s powerful response to pathogenic invasion. The overlapping genes
(3,846) only constituted a small portion of these two groups, which might also suggest that dif-
ferent interaction mechanisms were triggered when a highly active or weakly active pathogen
infected the plant (Fig 3B). The 214/highly active group only had two samples and 1,654 DEGs
(48 vs. 96 h), most of which overlapped with the two other groups.

We concentrated on the expression changes in disease-resistance (DR) genes, which include
a variety of intracellular receptors that could induce effector-triggered immunity (ETI)[24]. Of
the 41,335 predicted genes in Populus, 761 were defined as DR genes. Fig 4 demonstrates the
alterations in DR gene expression of all three groups. The number of significantly differentially
expressed disease-resistance genes (DE-DR genes) was greater in the 895/weakly active group

Fig 3. More poplar genes were up-regulated in the highly resistant 895/highly active fungus group at the early stage. (A) The differentially expressed
poplar genes between different time points in three groups. (B) The overlapping DEGs among the three groups.

doi:10.1371/journal.pone.0134246.g003
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than that in the 895/highly active and 214/highly active groups, but most of these DR genes
(95%) were down-regulated in the 895/weakly active group. Conversely, in the 895/highly
active group, the gene expression levels of half of the DE-DR genes increased from the early to
late stage. In particular, from 12 to 48 h, the up-regulated DE-DR genes far exceeded the
down-regulated genes (Fig 4A). When suffering from infection caused by highly active fungi,
more DR genes might be activated (up-regulated) to induce the immune response in highly
resistant 895 clones. However, weakly active fungi might be unable to trigger many immune
responses due to their different influence on the host. The 214/highly active group only had 15
DE-DR genes (48 vs. 96 h), and most overlapped with other two groups. Otherwise, the 895/
weakly active group only shared 34% of DE-DR genes with the 895/highly active group (Fig
4B). Of the 761 DR genes, only 214 showed significant expression changes during the entire
infection. We found that, of the DR genes, the DE-DR genes mainly originated from NB-ARC
domain-containing disease-resistance proteins and TIR-NBS-LRR class family disease-resis-
tance proteins (S2 Table).

Independent network analysis shows vital relationships between host
and pathogen
To elucidate gene-gene interactions between the pathogen and host, independent network
inference was performed between the fungal and poplar genes. To increase the sample size, the

Fig 4. More poplar DR genes were up-regulated in the highly resistant 895/highly active fungus group during infection (especially during the early
stage). (A) The differentially expressed poplar disease-resistant genes between different time points in three groups. (B) The overlapping DE-DR genes
among the three groups.

doi:10.1371/journal.pone.0134246.g004
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RNA-seq data of 895 poplar leaves that were infected with highly active fungi in our previous
work were also included in this analysis. Infected samples were selected, and the time of com-
parison between these samples was C2

10 = 10�9/2 = 45. The assessment criteria of differential
expression was P<0.05, a ratio>2 or<0.5 for fungi and P<0.01, ratio>2 or<0.5 for poplar.
The relevance for fungus-poplar (F-P) combinations (6,898 detected fungal genes � 30,977
detected poplar genes = 27,433,346 relationships in total) was evaluated.

All F-P relationships were sorted based on relevance p-value in ascending order, and the top
1,000 (all Prelevance values were smaller than 10−7) were selected for network construction (Fig
5). The top 1,000 relationships contained 768 fungal genes and 54 poplar genes, of which 111
fungal genes and 36 poplar genes were shared with the preceding DEGs (S5 Fig). In the net-
work, five poplar genes, one of which was a DR gene that related to 16 fungal genes (Fig 5,
marker 2), were simultaneously connected to many fungal genes. In addition, of the 111 over-
lapping fungal DEGs, 64 genes related to the poplar gene Potri.008G120200 (Fig 5, marker 5),
and most were up-regulated at the late stage in the 895/highly active group. Notably, only one
fungal gene, a metalloprotease, was linked to many poplar genes (10 genes), which included
2 other DR genes. This fungal gene and 9 poplar genes around it also existed in the DEG list.
The independent network highlighted the pivotal roles of DEG analysis and provided more
information linking the host with the pathogen, thus displaying the critical events during the
interaction.

Fig 5. The independent network inferred from the top 1000 fungus-poplar relationships. Individual
genes simultaneously connected with many other genes were sequentially marked as 1, 2, 3, 4, 5, and 6.
Mark 1 represents a fungal metalloprotease gene that was surrounded by 10 poplar genes, including 2 DR
genes; mark 2 is a poplar DR gene that is connected to 16 fungal genes. Marks 3 and 5 are the poplar genes
secretory carrier 3 and NAD(P)-binding Rossmann-fold superfamily protein, respectively; marks 4 and 6 are
poplar genes with unknown functions. The three arrows denote the position of 3 DR genes. The fungal genes
are shown in red, and the poplar genes are shown in blue.

doi:10.1371/journal.pone.0134246.g005
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Effector prediction highlights a secreted metalloprotease
The effectors were often proteins secreted by the pathogen into host cells to enhance infection.
Of the 10,040 fungal genes, 700 genes were predicted to produce secreted proteins, and 85
genes were DEGs. In the 895/highly active group, 16 genes were up-regulated at the early stage
(12–48 h), including 1 metalloprotease, 1 Lys M domain gene, 2 pectate lyases, and 3 glycosyl
hydrolases. In contrast, only 4 genes were up-regulated from 24–72 h in the 895/weakly active
group. Of the 85 genes, 17 also existed in the 768 fungal gene list of top 1000 relationships.
Intriguingly, only the metalloprotease gene was overexpressed at the early stage, whereas the
three other genes, including D-isomer-specific 2-hydroxyacid dehydrogenase, copper-fist
DNA-binding domain protein, and FAD-binding domain protein, were overexpressed at the
late stage (48–96 h). Based on an effector-specific domain analysis, 12 genes were identified as
candidate effectors. One hypothetical protein containing a DUF3129 domain (M6_09300) was
significantly up-regulated at the early stage in the 895/weakly active and 895/highly active
groups. In addition, in the top 1000 network, the M6_05038 gene was connected to 6 poplar
genes, including plant L-ascorbate oxidase, which is a multifunctional molecule that supports
plant growth and development [25]. Another two predicted effector genes were related to three
poplar genes that included a galactosyltransferase family protein.

Discussion
In this study, we performed a comprehensive expression profile analysis based on a time-
course assay on the poplar-M. brunnea interaction using mixed samples, which provided for
the accumulation of a large amount of data (42.6 Gbps).

Based on the profile analysis, we identified a number of infection-associated genes. The dif-
ferent appearances of highly and weakly active fungi provided another opportunity to inspect
the mechanisms of the intrusion at the level of gene expression. Highly active fungi possess a
powerful proliferation potential. During infection, they regulate glycosyl hydrolases and metal-
loproteases to degrade the host’s cell wall. Glycosyl hydrolases are extremely common enzymes
with roles in nature that include the degradation of cellulose and hemicellulose, which are
important components of the cell wall of a leaf[26]. Moreover, cellulose was degraded into glu-
cose, providing sufficient nutrients to support the growth of the invader. In the 895/highly
active group in our study, 10 sugar transporter genes were overexpressed, which suggested that
the pathogen might utilize and compete for host nutrition.

Our preceding observations had demonstrated that many genes from the Lys M domain
family were up-regulated in infected samples compared with uninfected leaves[17]. Chitin is
widely present in fungal cell walls and can be recognized by the Lys M receptor in plants[27];
this recognition can trigger the PAMP-triggered immunity (PTI) response in host cells[1]. The
LysM family of proteins function as effectors to suppress plant basal immunity during plant
colonization, possibly through competitive combination with fungal chitin. In the 895/highly
active group, the expression levels of the 4 Lys M family genes, as well as certain chitin-associ-
ated enzymes, were significantly altered (2 up-regulated, 2 down-regulated). These results
again accentuate the importance of chitin in the pathogen-host interaction. Moreover, we did
not find any sugar transporter, glycosyl hydrolases, metalloprotease, chitin, or LysM domain
genes in the specific DEGs of the 895/weakly active group; however, certain Hsp proteins and
senescence-associated proteins were found, which could explain the “weak” activity of these
fungi. Intriguingly, the highly susceptible clone NL214 expressed none of these specific DEGs
when infected with highly active fungi. These genes might be up-regulated at an early stage but
show no significant changes from 48–96 h because the NL214 clone leaves lacked an efficient
counterattack.
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This dynamic transcriptome analysis revealed an intense rivalry at the pathogen and host
gene expression levels in the 895/highly active group. Many critical fungal genes, especially cer-
tain well-known, infection-associated genes such as glycosyl hydrolases were found to be sig-
nificantly regulated during infection. More poplar genes were up-regulated in the 895/highly
active group at the early stage (from 12 to 48 h), and the number of up-regulated DE-DR genes
was far greater than in the other two groups. Therefore, if the opponent is weak, the interaction
between the pathogen and host would also show a low frequency.

The interaction between a host and pathogen is a complicated process. The DEG analysis
only demonstrated the varied events during the infection, whereas network inference could
determine the relationships between the changes in expression in the fungi and poplar and
accurately framed the details of these interplays. That might be the reason why the overlapping
gene between them only took a small proportion (S5 Fig). However, these “elites” would be
good candidates in further functional research. In the top 1000 relationship network, the fungal
DEGM6_08342 (metalloprotease) was connected to 10 poplar genes, including 2 DR genes. In
fact, the pathological actions of metalloproteases have been widely investigated in human path-
ogenic microorganisms but scarcely investigated in plant pathogenic fungi [23,28]. However,
in our study, the accumulated findings (DEGs analysis, network inference, and effector predic-
tion) demonstrated that this metalloprotease gene might be a pivotal effector during infection
and could be recognized by these two intracellular receptors (DR proteins). The most exciting
findings were the five core poplar genes that were surrounded by many fungal genes. One of
them was a disease-resistance gene, and none of the other four genes, including secretory car-
rier 3, NAD(P)-binding Rossmann-fold superfamily protein, and two hypothetical proteins,
has been reported as associated with host defense. Despite their unknown functions, genes
with high degrees (linked to many other genes) are also worthy of further investigation. More-
over, the well-known elicitor-activated gene ELI3 [29], which was down-regulated during the
late stage, was linked to five fungal genes, especially the protein farnesyltransferase/geranylger-
anyltransferase type I alpha subunit, which suggests an influence on signal transduction in the
host-pathogen interaction. These relationships provide more reliable candidate genes for future
functional validation.

The independent network implemented was suitable to join the fungal and poplar profiles
because it exclusively considered the frequency of significant changes. Unlike the traditional
relevance network[30,31], which often uses a correlation measure such as Pearson’s correlation
coefficient, the independent network introduces ‘independence’ to reflect the association. This
simple and non-parametric method will not be affected by the number of largely varied gene
expressions, but their tendency, which may show better the core essence of the gene relation-
ship. In addition, this strategy does not require strict time point sampling but works well with a
flexible time course experiment, which is similar to the true environment and easier to apply.
In our study, considering the shorter infection period of lowly active fungi and inappropriate
T0, we tentatively chose three time points for each condition. The sample size is an important
element in network analysis, and larger sample sizes typically yield better estimates [32]. More
time points sampling in our assay would give a better performance. We are eager to assess the
robustness of this network inference in future work, when more infected samples have been
collected. It is not very rational to prove the relationship by just detecting the gene expression
levels between different samples using realtime PCR. In addition, biological replicates of RNA-
Seq are planned to ensure the reliability of our data and findings. It is recommended that the
vital genes suggested in our findings should be given further validation, e.g. qPCR, before fur-
ther study. Experiments such as gene knockout or knockdown (RNA silencing) will be per-
formed to validate the confirmed candidate genes [33–35], which will also provide feedbacks
for refinement of the network analysis algorithm.
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In our independent network analysis, we excluded the gi(-)gj(-) condition to decrease the
influence of inactive genes (e.g., stably expressed genes). In general, if the expression levels of
genes A and B are not significantly altered in any of the observations, the relevance of the two
genes should be high in the correlation analysis (e.g., Pearson’s correlation coefficient), which
interferes with the assessment of the relevance between active genes. Consequently, we pro-
duced a corresponding test and improvements to address this problem. The limitation of this
independent strategy is that the fourfold table does not have direction. For example, the 70/1/
2/3 arrangement is completely equal to 3/1/2/70 and to 70/2/1/3. If the fourfold table was
designed as A"B"/A-B"/A"B-/A-B-, we might expect a significant result, such as 70/1/2/3
(P<0.001), which means that A" is often accompanied by B". However, the 3/1/2/70 arrange-
ment, which means that, in most cases, A and B show no significant alternation, also leads to a
conclusion that the expression of gene A is highly correlated with that of gene B. Thus, in our
study, we neglected the—cell and split the 3�3 grid into 4 fourfold tables (S1 Fig).

We compared our independent network with the widely used Pearson’s correlation analysis
by inputting the same gene sets and expression values. All of the correlation coefficients
between the fungal and poplar genes were calculated and sorted in descending order. The top
1000 relationships (R>0.9975) contained 102 fungal and 266 poplar genes and included 5
DR genes. However, all of these 5 DR genes showed low expression values in all samples, and
the visualized network was quite scattered (data not shown). In contrast, the 3 DR genes in
our network displayed higher expression values and were significantly regulated during infec-
tion. Furthermore, the web tool PlaNet (http://aranet.mpimp-golm.mpg.de/) was used to
identify the co-expression of the 3 DR genes in our network [36]. However, only one DR gene
(Potri.008G220200) could be found in this database, and its node vicinity network contained
55 co-expression genes that were significantly enriched in lipid and amino acid metabolism,
signaling receptor kinases, and protein degradation.

Conclusions
Our study provides a new host-pathogen profile investigation technology that has higher
expression accuracy (RNA-seq, high-throughput) and higher time point accordance (simulta-
neous sequencing). A corresponding, large time course RNAseq dataset (42.6 Gbps) for pop-
lar-fungi interactions is provided for further network inference and functional analyses. The
simple and useful independent network strategy determined the relationships between fungus
and poplar expression changes and accurately framed the details of these interplays. Taken
together, we provide a clear framework of the interaction network and identify a number of
candidate key effectors in this process, which might assist in functional tests, resistant clone
selection, and disease control in the future.
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