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Abstract

Pneumolysin is a highly conserved, cholesterol-dependent cytolysin that is an important 

Streptococcus pneumoniae virulence factor and an attractive target for vaccine development. To 

attenuate pneumolysin toxicity, a genetic toxoid was constructed with two amino acid changes, 

G293S and L460D, termed PLY-D, that reduced cytolytic activity > 125,000-fold. In mice, PLY-D 

elicited high anti-PLY IgG antibody titers that neutralized the cytolytic activity of the wild-type 

toxin in vitro. To evaluate the protective efficacy of PLY-D, mice were immunized intramuscularly 

and then challenged intranasally with a lethal dose of 28 clinical isolates of S. pneumoniae 
originating from different geographical locations, disease states (i.e. bacteremia, pneumonia), or 

body sites (i.e. sputum, blood). PLY-D immunization conferred significant protection from 

challenge with 17 of 20 serotypes (85%) and 22 of 28 strains (79%). Further, we demonstrated that 

immunization with PLY-D provided statistically significant improvement in survival against 

challenge with serotype 4 and 18C strains compared to mice immunized with a pneumococcal 

conjugate vaccine Prevnar 13® (PCV13). Co-administration of PLY–D and PCV13 conferred 

greater protection against challenge with a serotype 6B strain than immunization with either 

vaccine alone. These data indicate that PLY-D is a broadly protective antigen with the potential to 

serve as a serotype-independent vaccine against invasive pneumococcal disease either alone or in 

combination with PCVs.
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1. Introduction

Streptococcus pneumoniae is an encapsulated Gram-positive human pathogen that is a 

significant cause of global morbidity and mortality[1]. S. pneumoniae is a leading cause of 

pneumonia, meningitis, and septicemia[2] especially in vulnerable populations, including 

children under 5 years of age and adults over 65 years of age[1,2]. There are three widely 

available commercial vaccines to combat S. pneumoniae disease, Synflorix® (GSK), Prevnar 

13® (Pfizer), and Pneumovax® (Merck), however, they target a limited subset (10-, 13- and 

23-valent, respectively) of the more than 90 S. pneumoniae polysaccharide capsular 

serotypes. The polysaccharide antigens in Synflorix® and Prevnar 13® are conjugated to a 

protein carrier to improve immunogenicity in infants and children, while the polysaccharide 

antigens in Pneumovax® are unconjugated and only approved for persons >2 years old.

While the introduction of pneumococcal conjugate vaccines (PCVs), like Synflorix® 

(PCV10) and Prevnar 13® (PCV13), have profoundly reduced the incidence of invasive 

pneumococcal disease (IPD), there are increasing concerns about sustaining this level of 

protection[3,4]. PCVs are inherently limited by their ability to only protect against the 

serotypes included in the formulation, and there has been a documented increase in 

incidence of disease caused by non-vaccine serotypes (NVTs)[4,5]. After the introduction of 

PCV13, the proportion of childhood IPD cases attributed to NVTs grew to 42% worldwide 

with a notably steeper increase of 72% in Europe[6]. This has prompted manufacturers to 

increase the valency of PCVs to cover these emerging serotypes, which adds to an already 

expensive and complex manufacturing process[7]. Toward this end, Merck and Pfizer have 

recently completed Phase 3 clinical trials with their 15 and 20-valent PCVs, respectively 

[8,9].

The rapid evolution of serotype prevalence in pneumococcal disease and inherent limitations 

and expense of PCVs warrants the development of a less expensive, serotype-independent 

pneumococcal vaccine. A promising target for S. pneumoniae vaccine development is 

pneumolysin (PLY), a cholesterol-dependent cytolysin (CDC) that plays crucial roles in the 

pathogenesis of S. pneumoniae [10]. The cytolytic and proinflammatory activities of PLY 

enable the disruption of the respiratory epithelium and subsequent pneumococcal 

invasion[11]. PLY has also been shown to facilitate myocardial invasion and lesion 

formation which likely contributes to the increased incidence of severe cardiac events 

following bacteremic pneumococcal pneumonia[12]. Furthermore, PLY has been shown to 

facilitate S. pneumoniae transmission by increasing bacterial shedding and promoting 

bacterial survival outside of the host [13]. A vaccine targeting PLY, therefore, may not only 

confer protection against acute pneumonia, but may also decrease the long-term sequelae 

associated with IPD as well as prevent spread of bacteria from host to host.
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To develop a serotype-independent vaccine candidate, Matrivax is utilizing a genetic PLY 

toxoid (PLY-D), that contains two highly attenuating amino acid changes (G239S and 

L460D). The amino acid changes were selected using a structure-based approach in the 

laboratory of Dr. Rodney Tweten (University of Oklahoma Health Sciences Center, 

Oklahoma City, OK). Since CDCs, like PLY, rapidly and non-stochastically assemble into a 

pre-pore complex following cholesterol binding, which may obscure neutralizing 

epitopes[14], locking the PLY toxoid in a soluble pre-oligomerization conformation through 

genetic mutation may severely attenuate cytolytic activity while still allowing for production 

of functional antibodies that neutralize PLY cytolytic activity [10]. The L460D mutation was 

engineered into PLY-D to prevent cholesterol binding [15] resulting in a soluble protein. 

This attenuation renders the epitopes involved in membrane interaction and oligomerization 

accessible to the immune system enabling the generation of antibodies that inhibit cytolytic 

activity. The ability of PLY to oligomerize was further minimized by the G293S mutation 

which ‘locks’ the mutant protein in a soluble, monomeric, pre-oligomerization conformation 

[16]. G293 is one of a conserved di-glycine pair in the CDCs, which is involved in 

monomer-monomer interaction to form a pre-pore complex [17].

Here, we describe the immunogenicity profile and protective capacity of PLY-D in a murine 

lethal intranasal (IN) infection model, both as a stand-alone vaccine antigen and in 

combination with PCV13. PLY-D elicited high titer antibody responses that provided 

significant protection against 17 of 20 different serotypes and improved the protective 

capacity of PCV13. Collectively, the data presented here indicate that PLY-D is an effective, 

serotype-independent vaccine candidate that broadens protection against pneumococcal 

disease.

2. Results

2.1. PLY-D is well-tolerated, highly immunogenic, and elicits neutralizing antibodies at a 
wide range of dose levels in mice

PLY-D used for immunization and challenge experiments was expressed and purified from 

recombinant Escherichia coli. The gene encoding PLY-D was cloned to contain an amino 

terminal 6-histidine tag and purified using a metal affinity resin. The resulting purified 

material, when separated by SDS-PAGE, contained a single protein band that migrated at a 

molecular weight consistent with PLY-D containing a 6-His tag (Supplemental Fig S1) that 

was detected by an antibody specific for PLYWT (data not shown). The endotoxin 

contamination of the purified PLY-D was 0.15 EU/mg of protein. When assessed in an in 

vitro hemolysis assay for residual cytolytic activity, a >125,000–fold reduction in the 

cytolytic activity of PLY-D relative to PLYWT was observed (data not shown).

Before determining the protective capacity of PLY-D in an murine lethal IN infection model, 

PLY-D was assessed in a series of dose-response murine studies to determine optimal 

immunogenicity. In these studies, PLY-D was shown to require an adjuvant to elicit high 

anti-PLY IgG antibody titers in mice immunized intramuscularly (IM) with PLY-D 

adjuvanted with aluminum hydroxide (Alhydrogel®) eliciting higher anti-PLY IgG titers 

than PLY-D adjuvanted with aluminum phosphate (data not shown). To determine the 

optimal dose level of PLY-D, groups of mice were immunized IM three times at a biweekly 
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interval with 2, 10, 25 and 100 μg of PLY-D doses adjuvanted with Alhydrogel®. No adverse 

effects (i.e. redness/edema at the injection site or overall poor body condition) were 

observed with any of the dosing regimens. All dose levels of PLY-D elicited robust anti-PLY 

IgG antibody responses that ranged from 685,935 to 1,341,600 reciprocal geometric mean 

titers (GMT) (Table 1). The PLY-specific IgG antibody response did not increase between 

the 2 μg to 10 ug dose regimens, but did significantly increase from 10 μg to 25 μg. At the 

100 μg dose, anti-PLY IgG titers were lower than that observed with the 2 and 10 μg dose 

regimens. The functionality of the antisera from the dose study was evaluated in an in vitro 

hemolytic assay to quantify neutralization of PLY cytolytic activity. All dose levels induced 

equivalent anti-hemolytic or neutralizing antibody titers (Table 1). Since all dose levels were 

highly immunogenic and generated equivalent functional antibody titers, subsequent murine 

studies used a 2 μg dose vaccination regimen.

2.2. PLY-D confers significant protection against 79% of all strains and 85% of S. 
pneumoniae serotypes evaluated in a murine lethal IN challenge model

To evaluate the protective capacity of PLY-D in a murine lethal IN challenge model, groups 

of mice were immunized using a biweekly dosing regimen (Days 0, 14, and 28) with 2 μg 

PLY-D adjuvanted with Alhydrogel® or PBS control. Two weeks following the third 

immunization, anti-PLY IgG antibody responses were determined and the mice challenged 

IN with an array of highly virulent S. pneumoniae clinical isolates (Table 2). Collectively, 28 

different S. pneumoniae strains were evaluated spanning 20 different serotypes (both PCV13 

and emerging serotypes). These strains originated from various geographical locations and 

were isolated from different body sites and different pneumococcal disease states (i.e. 

bacteremia, pneumonia, carriage). The challenge dose used for each serotype was 

determined from murine median lethal dose (LD50) studies (data not shown). A lethal 

infectious dose was achieved for all the strains except the serotype 23B strain 6362, which 

was not virulent in this model (Supplemental Fig S2). Most strains had an LD50 challenge 

dose level between 1 × 107 to 1 × 108 colony forming units (CFU) except for strains of 

serotypes 1, 3 and 8 which had LD50 values below 1 × 106 CFU. Two dose levels of bacteria 

were used to challenge groups of immunized mice, the lowest dose of bacteria that elicited 

100% lethality from the preliminary LD50 studies (1X dose) and a two-fold dilution of that 

amount of bacteria (0.5X).

The anti-PLY IgG GMT of PLY-D immunized mice in these studies ranged from 500,000 to 

3,200,000 (Table 3) and following IN challenge, PLY-D immunized mice were significantly 

protected against 17 of the 20 S. pneumoniae serotypes tested (85%) and 22 out of 28 

different strains (78.5%) (Table 3 and Fig. 2A). Table 3 shows the geometric mean time to 

death and percent survival of mice challenged with 19 of the serotypes. Representative 

survival curves of clinical isolates that showed statistically significant survival compared to 

controls are shown in Supplemental Fig S3. The immunogenicity and protection data from 

mice immunized with PLY-D and challenged with S. pneumoniae serotype 4 is excluded 

from Table 3 and is shown separately in Fig. 1A and B, due to the weekly, rather than 

biweekly, immunization schedule for that particular challenge study. PLY-D immunization 

did not confer significant protection against the serotype 1 strain and the majority of the 

serotype 3 strains. These strains, however, were highly virulent and even the 0.5X challenge 
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dose level resulted in 100% lethality (Supplemental Fig S4). The serotype 23B strain was 

also not included as a protected serotype although, as mentioned above, this strain was not 

virulent in this infection model even at the 1X dose level. Serotype 22F was scored as a 

protected serotype since PLY-D-immunized mice demonstrated significantly increased 

survival time following challenge with two out of three tested strains (Supplemental Fig S5). 

Collectively, these data show that PLY-D immunization conferred a broad breadth of 

protection against a variety of clinical isolates of pneumococcal serotypes and strains.

2.3. PLY-D immunization confers significantly improved protection against challenge with 
S. pneumoniae serotypes 4 and 18C compared to PCV13 immunization

To compare the protective capacity of PLY-D to that of a polysaccharide conjugate vaccine, 

mice were immunized three times at a weekly interval with PLY-D or PCV13 and then 

challenged IN with a lethal dose of serotypes 4 and 18C S. pneumoniae strains TIGR4 and 

ML-1, respectively. The weekly immunization regimen resulted in an ~ 32-fold lower anti-

PLY IgG antibody response than was observed with the biweekly immunization regimen 

with anti-PLY IgG antibody titers of 16,141 to 52,817 for groups challenged with serotype 4 

(Fig. 1B) and anti-PLY IgG antibody titers of 26,782 to 100,900 for groups challenged with 

serotype 18C (Fig. 1D).

Following challenge with serotype 4 and serotype 18C strains, PLY-D-immunized mice 

showed increased percent survival and prolonged survival time compared to PCV13-

immunized mice (Fig. 1A and 1C). About 50% of PLY-D-immunized mice survived 

following IN challenge with serotype 4 compared to only 20% survival with PCV13-

immunized mice (Fig. 1A). The geometric mean time to death following serotype 4 

challenge was 138.8 hours post-infection (hpi) for PLY-D immunized mice, a 22-fold 

increase in time to death from naïve mice (6.0 hpi) or PCV13-immunized mice (5.7 hpi). 

Following challenge with serotype 18C, PLY-D immunized mice showed a prolonged 

survival time, but not a statistically significant increase in percent survival compared to 

PCV13-immunized mice or naïve mice (Fig. 1C). PLY-D immunized mice had a geometric 

mean time to death of 25.7 hpi, compared to 18.3 hpi and 16.5 hpi for PCV13 and naïve 

mice, respectively.

Although minimal protection was observed in PCV13 immunized mice, pneumococcal 

polysaccharide (PPS)-specfic antibody responses to pneumococcal polysaccharides PPS 4 

and 18C were observed (Supplemental Table S2). However, the antibody titers were low 

which may have contributed to the lack of protection seen with the PCV. Interestingly, mice 

immunized with PLY-D on a biweekly regimen and challenge with the serotype 18C strain 

showed higher anti-PLY IgG titers rates of survival (100%) and time to death (128 hpi) 

(Table 2), than the mice immunized on a weekly regimen indicating that a certain level of 

anti-PLY antibody must be achieved to provide significant protection.

2.4. Co-administration of PLY-D and PCV13 confers enhanced protection against 
challenge with S. pneumoniae serotype 6B

To determine if PLY-D could act synergistically with PCV13 to protect mice from lethal IN 

infection, groups of mice were immunized with PLY-D or PCV13 alone or in combination 
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and subsequently challenged with S. pneumoniae serotype 6B strain P084. Following a 

three-dose biweekly vaccine regimen, mice immunized with PLY-D alone had anti- PLY IgG 

antibody GMTs of 1,040,000 to 1,820,000, while mice co-immunized with PLY-D and 

PCV13 had slightly lower GMTs of 523,000 to 1,060,000. Not surprisingly, immunization 

with PCV13 alone resulted in no anti- PLY IgG titer (Fig. 2B) and immunization with PLY-

D alone did not generate an anti-6B IgG antibody titer (Fig. 2C). However, co-

administration of PLY-D and PCV13 resulted in a 4-fold increase in anti-6B IgG antibody 

titers compared to the anti-6B IgG antibody titer induced by immunization with PCV13 

alone (Fig. 2C).

When challenged IN with the serotype 6B strain, 40% of the mice immunized with PLY-D in 

combination with PCV13 survived compared to 0% with all other groups (Fig. 2A). 

Additionally, co-administration of PLY-D and PCV13 significantly prolonged the geometric 

mean time to death to 85 hpi compared to 32 and 31 hpi for the PCV13 and naive groups, 

respectively. Although immunization with PCV13 alone did not significantly prolong 

survival compared to naive mice, a significant increase in time to death was observed in 

mice immunized with PLY-D alone compared to naïve mice (Fig. 2).

3. Discussion

PLY is a major virulence factor of S. pneumoniae and a potential target for a non-serotype 

dependent vaccine to prevent pneumococcal disease. Unlike the current commercially 

available vaccines against S. pneumoniae that target the highly variable cell surface capsular 

polysaccharide, PLY is a highly conserved protein antigen that is produced by nearly all 

clinical isolates [18]. Although PLY has long been recognized as an important virulence 

determinant for S. pneumoniae, only recently has PLY been developed and clinically 

evaluated as a vaccine candidate. In an early study exploring the protective efficacy of a 

PLY-based vaccine, Alexander, et al. demonstrated that a genetic PLY toxoid was able to 

protect mice against 9 different serotypes of S. pneumoniae in murine IN and intraperitoneal 

(IP) challenge models [19]. This genetically engineered toxoid carried a W433F mutation 

affecting channel formation but still retained about 0.05% of wild-type toxin cytolytic 

activity [20]. More recently, both Sanofi and GlaxoSmithKline (GSK) have evaluated other 

genetically and chemically attenuated PLY toxoids, respectively, in clinical studies. Both 

PLY toxoids were proven safe and immunogenic in healthy adults [21–23], However, GSK 

demonstrated in two Phase 2 clinical trials in healthy infants that the addition of formalin-

inactivated PLY toxoid (dPly) and pneumococcal histidine triad protein D (PhtD) to PCV10 

and PCV13 did not significantly impact nasal colonization, acute otitis media [24], and more 

recently acute lower respiratory tract infections in infants [25]. These results are inconsistent 

with what has been observed in animals where PLY has been shown to play a more 

substantial role in these disease models [11,26–30]. Another potential reason for lack of 

efficacy in the GSK studies was that the dPLY was formalin inactivated, which is non-

specific, and therefore epitopes that are critical for eliciting PLY neutralizing antibodies may 

have been modified rendering them conformationally altered or inaccessible to B-cells. 

Although dPly elicited high anti-PLY IgG titers in adults and infants, no data were presented 

on the ability of the antibodies to neutralize PLY activities [22,24,31]. Regardless for the 

reason for lack of efficacy of dPLY in clinical studies, these data suggest that the animal 

Thanawastien et al. Page 6

Vaccine. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models for pneumococcal disease may not accurately reflect the role of specific virulence 

factors played in human disease and further research is necessary to improve our 

understanding.

The genetic inactivation of cytolytic activity in PLY-D was devised using a structure-based, 

protein modeling approach, changing amino acids that inhibit cholesterol binding (L460D) 

and prevent oligomerization (G293S). These mutations reduced cytolytic activity >125,000-

fold while locking the protein in a soluble pre-pore conformation and preserving protein 

structure. When used to immunize mice, PLY-D elicited high titer anti-PLY IgG antibodies 

that inhibited cytolytic activity of wild-type PLY in an in vitro hemolytic assay. Although 

higher anti-PLY IgG antibody titers were observed with a 25 μg dose regimen than 2 and 10 

μg dose regimens, a corresponding increase in the anti-hemolytic titers was not observed. 

This indicates that increases in antibody titers does not directly correlate with generation of 

higher levels of functional antibodies. A similar observation was made by Sanofi in the 

Phase 1 clinical testing of their genetic toxoid [21].

In addition to eliciting antibodies that inhibit PLY cytolytic activity in vitro, PLY-D also 

conferred broad protective efficacy in a murine IN infection model. When challenged with 

28 different S. pneumoniae clinical isolates that encompassed 20 serotypes, PLY-D 

immunized mice were significantly protected from 22 of the strains and 17 serotypes 

including both PCV13 and emerging serotypes. PLY-D did not confer protection against the 

serotype 1, 3, and 23B strains. While the serotype 23B strain was not virulent in this mouse 

model, the inability of PLY-D to confer protect against challenge with serotype 1 and 3 

strains could be due to the high level of virulence of these serotypes in this model. For these 

strains, even infectious dose levels that were 10 to 100-fold lower than the other serotypes 

resulted in 100% lethality. Thus it is possible that PLY-D would confer protection against 

serotype 1 and 3 strains if the mice were challenged with a lower dose of bacteria. 

Furthermore, the serotype 1 strain was subsequently shown to produce a non-hemolytic 

variant of PLY (data not shown) and thus PLY may not play as important of a role in 

infection with this strain. While we scored PLY-D as not protective against the serotype 23B 

strain due to its lack of virulence in this model, it is possible that immunization with PLY-D 

would protect mice against a more invasive serotype 23B strain.

When the protective capacity of PLY-D was compared directly to the current polysaccharide 

based vaccine PCV13, immunization with PLY-D conferred statistically significant 

improved survival following challenge of mice with serotype 4 and 18C strains. In these 

studies, the mice were immunized weekly rather than biweekly which resulting in a ~32-fold 

reduction in anti-PLY IgG titers. With the serotype 18C strain challenge, this reduction in 

antibody titer resulted in less survival and a earlier time-to-death than mice immunized on a 

biweekly regimen indicating that a threshold level of anti-PLY antibodies needs to be 

achieved to confer protection. Although anti-PLY IgG titers from the efficacy studies varied 

from 500,000 to 3,200,000, there did not seem to be a correlation between the anti-PLY IgG 

titers and the degree of protection. This observation suggest that, while PLY is a critical 

virulence factor for most strains and serotypes, overall virulence of each strain in this model 

is likely due to a combination of virulence factors.
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Although PLY-D provided equivalent if not better protection than PCV13 in this murine 

model of pneumonia/septicemia, PLY’s limited role in nasopharygeal colonization [28,30] 

suggests that it may not induce the herd protection observed with vaccines that target the 

polysaccharide capsule. However, a vaccine combining PLY-D with a PCV could provide 

improved serotype coverage and protection against early and later stages of pneumococcal 

disease. When mice were co-administered PLY-D and PCV13, there was an increase in 

survival following challenge with a serotype 6B strain compared to mice immunized with 

either vaccine alone. While in this study immunization with PCV13 alone did not impact 

survival or time to death compared to unimmunized mice, a slight increase in time to death 

was observed in mice immunized with PLY-D alone. Interestingly, mice co-immunized with 

PLY-D and PCV13, showed a 4-fold increase in anti-PPS6B IgG antibody response 

compared to PCV13 alone. It is unclear whether this increase in anti-PPS6B titers or the 

combination of the anti-PLY and anti-capsular antibodies resulted in the improved survival 

of mice immunized with both antigens. The data do indicate, however, that PLY-D can act 

synergistically with a PCV to protect against lethal IN infection.

In summary, the continued health burden of S. pneumoniae despite efficacious 

pneumococcal vaccines and antibiotics warrants the serious consideration of serotype-

independent vaccine candidates. The World Health Organization estimated that in 2005, 

pneumococcal infection took the lives of 1.6 million people [32] and in the United States in 

2004 S. pneumoniae infections were associated with direct medical costs of $3.5 billion 

[33]. Serotype replacement and the high manufacturing cost of PCVs emphasize the need for 

a more universal, less expensive vaccine candidate to reduce the global burden of 

pneumococcal disease. The results from the present study show that PLY-D can provide 

broad serotype independent protection and can act synergistically with a PCV to protect 

against invasive disease.

4. Materials and methods

4.1. PLY-D purification and bacterial strain preparation

PLY-D was provided by Dr. Rodney Tweten and purified using the same procedure as 

described for histidine-tagged intermedilysin (ILY) in Soltani C. E. et al [34]. Pneumococcal 

clinical isolates used in IN challenge studies were provided by Dr. Steve Pelton (Boston 

University Medical Center, Boston, MA). Strain designations and sources are described in 

Table 2. Briefly, pneumococcal strains were grown at 37 °C in Todd-Hewitt broth 

supplemented with yeast extract (THY) until mid-log phase (OD600: 0.4–0.55). Cultures 

were centrifuged at 5000 × g for 10 min to pellet the bacteria. The bacterial pellet was 

resuspended in phosphate-buffered saline (PBS) to a pre-determined concentration chosen 

via murine LD50 studies (data not shown). The suspensions were stored on ice until ready 

for IN instillation. Bacterial suspensions were plated before and after instillation and 

averaged to determine the CFU/mL used for IN challenge (Supplemental Table S1).

4.2. Murine immunization and pneumococcal challenge

PLY-D immunization and S. pneumoniae IN challenge experiments were performed both at 

Matrivax Research and Development (Boston, MA) and at the University of North Texas 

Thanawastien et al. Page 8

Vaccine. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fort Worth, TX). The methods for animal experimentation were approved by and conducted 

according to the Boston University Medical Center and the University of North Texas 

Institutional Care and Use Committees (IACUC). Unless otherwise noted, groups of 10 

three- to five-week-old female BALB/c mice (Charles River Laboratory, Wilmington, MA) 

were immunized intramuscularly (IM) three times at a biweekly interval with 2 μg PLY-D 

adjuvanted with 50 μg Alhydrogel® (Aluminum hydroxide; Al–OH) (Brenntag Biosector, 

Ballerup, Denmark) or PBS as a control. A PBS control group that was formulated with 

Alhydrogel® was included in the dose–response murine study shown in Table 1. 

Formulation of PBS with or without Alhydrogel® did not appear to affect baseline responses 

in either ELISA or functional assays. Two weeks following the third immunization (Day 42), 

mice were infected by IN instillation with one of two dose levels (designated 1X or 0.5X) of 

the S. pneumoniae strain determined from preliminary LD50 studies (data not shown). The 

first challenge dose level (1X) was the fewest number of bacteria that resulted in 100% 

lethality, usually > 1×108 CFU/mL, and the second dose level, 0.5X contained half of the 

bacteria of the 1X lethal dose. The 1X challenge dose level ranged from 1.6 × 106 CFU to 

6.3 × 108 CFU and the 0.5X challenge dose level ranged from 6.9 × 105 CFU to 2.5 × 108 

CFU (For all challenge doses see Supplemental Table S1). The survival of mice following 

challenge was analyzed using a Log-rank Mantel-Cox test for determining statistical 

significance. For experiments comparing multiple treatment groups (such as PLY-D, PCV13, 

and PBS-immunized groups) a Holm-Bonferroni correction for multiple comparisons was 

performed on the survival analyses. A result was considered significant when the P-value 

was <0.05 (P < 0.05) for single-treatment experiments, or if the P-value was less than the α 
determined by the Holm-Bonferroni method.

4.3. PLY-specific IgG antibody ELISA

Serum samples were collected from mice two weeks following the final immunization to 

determine anti-PLY IgG antibody titers by ELISA. Immulon 96 well ELISA plates (VWR) 

were coated with a 0.05 μg/well of wild-type PLY (PLYWT) in PBS and incubated at 4 °C 

overnight. Plates were washed and then blocked the following day with PBS containing 

0.05% tween (PBST) and 3% bovine serum albumin (BSA) (Sigma-aldrich) at 25 °C for 2 h. 

Serum samples diluted in PBST containing 1.5% BSA were then added and incubated 

overnight at 4 °C. The next day plates were incubated with biotinylated anti-mouse IgG 

(Sigma) diluted in 1.5% BSA PBST for 2 h at 25 °C. Plates were washed and then 

streptavidin-AP (BD Biosciences) diluted in 1.5% BSA PBST was added to each well and 

incubated for 1 h at 25 °C. Plates were washed and para-nitrophenyl phosphate (pNPP) 

solution (Sigma) was added to each well and incubated for 30 min at 25 °C in the dark. 

Absorbance of each well was measured at a wavelength of 405 nm on a plate reader 

(Molecular Devices). The endpoint titer cutoff is defined as the A405 value that is two 

standard deviations above the mean of the negative control serum sample [35]. Negative 

control mouse serum and a positive reference control PLY antiserum were included on each 

plate to validate assay performance. Where indicated, the individual endpoint titers for each 

mouse serum sample in an experimental group were used to calculate the geometric mean 

titer (GMT). For pooled mouse serum samples, the antibody titer was reported as the 

reciprocal antibody titer as determined by ELISA. GMTs were analyzed for statistical 

significance using a Mann-Whitney U Test when comparing two groups and a One-way 
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ANOVA with a Tukey’s test for multiple comparisons for analyzing multiple groups. A 

result was considered significant when P < 0.05.

4.4. Pneumococcal polysaccharide 6B (PPS6B)-Specific IgG antibody ELISA

Serum samples from groups of immunized mice were analyzed for antigen-specific IgG by 

ELISA adapted from methods described preciously by Khan et al. [36]. For pneumococcal 

polysaccharide (PPS) specific ELISAs, immune sera were serially diluted in PBS-0.05% 

Tween 20 containing 10 μg/ml pneumococcal cell wall polysaccharides, CWPS Multi, 

(MiraVista Diagnostics/Statens Serum Institut) which is a mixture of CWPS1 and CWPS2. 

CWPS-adsorbed immune sera were added to Immulon 4HB microtiter plates (VWR 

International) coated 16–20 h with 100 μL per well of 5 μg/mL pneumococcal 

polysaccharide antigen diluted in PBS. Following incubation for approximately 16 h at 4 °C 

with immune serum, wells were washed 4 times with PBS-0.05% Tween 20 and then 

incubated with 100 μL/well of biotinylated goat anti-mouse gamma-chain specific IgG 

(Sigma) followed by addition of 100 μL/well of streptavidin conjugated to alkaline 

phosphatase (BD Biosciences). Plates were developed by the addition of 100 μL per well of 

1 mg/ml PNPP in 0.2 M Tris buffer (Sigmafast tablets from Sigma) and quantitated by 

reading absorbance at 405 nm. Data are reported as reciprocal geometric mean titer (GMT), 

with the endpoint titer cutoff calculated as the absorbance value that is two standard 

deviations above the mean of the negative control.

4.5. Anti-Hemolysis assay

The anti-hemolysis assay tested the PLY-neutralizing ability of antibodies from serum 

samples collected from mice immunized with PLY-D on a biweekly or weekly schedule. 

Rabbit red blood cells (RRBC) were washed and diluted to 10% in PBS. In a 96-well flat-

bottomed plate sera samples were serially diluted 2-fold in PBS to a final volume of 75 μL. 

Pre-diluted serum samples from each well were transferred to a 96-well flat-bottomed half-

area plate and incubated at a 1:1 ratio with PLY-WT (100 ng/mL final concentration) at 

room temperature for 20 min. After the sera was incubated with PLY-WT, 50 μL from each 

well was transferred to a round-bottomed plate and 50 μL of the 10% RBCs solution was 

added. The plate was incubated at room temperature for 1 h, then centrifuged for 5 min at 

2,000 relative centrifugal force (rcf), and 50 μL of supernatant was transferred from each 

well to a 96-well flat-bottomed half-area plate. The absorbance of each well was read at 540 

nm using a plate reader. The endpoint titer cutoff was defined by the 2-fold standard 

deviations below the average absorbance of the positive control (PLY-WT).

5. Author summary

S. pneumoniae is a leading cause of global morbidity and mortality despite the availability 

of effective antibiotics and vaccines. While the current pneumococcal conjugate vaccines 

(PCVs) are highly efficacious, they only protect against a subset of S. pneumoniae serotypes 

and are complex and expensive to manufacture thereby limiting their availability to less 

developed countries. Since the widespread introduction of PCVs, the incidence of non-PCV 

serotypes in colonization and pneumococcal disease has increased requiring PCV 

manufacturers to expand the number of serotypes covered by the vaccines in order to 
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maintain pace with the evolving serotype prevalence. The limitations and expense of PCVs 

has renewed interest in the development of non-serotype dependent or ‘universal’ vaccines 

to combat the continued threat of pneumococcal disease. A promising vaccine target is the 

highly-conserved pneumococcal toxin, pneumolysin (PLY), which plays a major role in 

mediating disease symptoms associated with pneumococcal pneumonia and invasive disease. 

Here, we describe the protective capacity of a highly attenuated genetic PLY toxoid (PLY-D) 

in a murine intranasal lethal infection model. In this model, PLY-D immunization conferred 

protection against challenge with 17 of 20 serotypes tested (85% efficacy), including both 

PCV and emerging serotypes. Additionally, PLY-D conferred better protection against 

challenge with serotype 4 and 18C strains than PCV13. Furthermore, immunization with 

PLY-D co-administered with PCV13 enhanced protection against challenge with serotype 

6B strain compared to immunization with either vaccine antigen alone. Together, these data 

indicate that PLY-D is broadly protective and could potentially serve as a serotype-

independent vaccine for preventing the global burden of pneumococcal disease either alone 

or in combination with a PCV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Weekly immunization with PLY-D improves survival following challenge with S. 
pneumoniae serotypes 4 or 18C compared to immunization with PCV13. Groups of 10 mice 

were immunized IM three times at a weekly interval with 2 μg PLY-D adjuvanted with 

Alhydrogel® (Al-OH), PCV13 (~0.2 μg each polysaccharide), or PBS control (naïve). 

Following the final immunization, mice were challenged by IN instillation of either 1.4 × 

109 CFU of S. pneumoniae serotype 4, strain TIGR4 (A) or 4 × 108 CFU serotype 18C, 

strain ML-1 (C) and monitored for survival and time to morbidity or death. Prior to 

challenge, anti-PLY IgG antibody responses were determined for each individual mouse by 

ELISA (B and D). S. pneumoniae challenge results are reported as percent survival and 

analyzed using a Log-rank Mantel-cox test with a Holm-Bonferroni correction for multiple 

comparisons; where (*) represents a significant increase in percent survival. (A and C). 
ELISA data is shown as the logarithm of the anti-PLY IgG GMT with the 95% confidence 

interval. Data was analyzed using a Mann-Whitney U Test; (****) indicates a P-value < 

0.0001 relative to naive (B and D).
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Fig. 2. 
Biweekly immunization with PLY-D admixed with PCV13 boosts survival following 

challenge with S. pneumoniae serotype 6B. Groups of 10 mice were immunized IM three 

times at a biweekly interval with 2 μg PLY-D adjuvanted with Alhydrogel® (Al-OH), 

PCV13 (~0.2 μg each polysaccharide), PCV13 admixed with PLY-D, or PBS control (naïve). 

(A) Two weeks following the final immunization, mice were challenged IN with 3 × 108 

CFU of S. pneumoniae serotype 6B, strain P084 and monitored for survival and time to 

death. Results are reported as percent survival and analyzed using a Log-rank Mantel-cox 

test with a Holm-Bonferroni correction for multiple comparisons; where (*) represents a 

significant increase in percent survival from naïve and (#) represents a significant increase in 

percent survival compared to PCV13 alone. (B) Prior to challenge, anti- PLY IgG antibody 

responses of each mouse were determined by ELISA. Data is shown as the logarithm of anti- 

PLY IgG GMT with the 95% confidence interval. ELISA data was analyzed using a One-

Way ANOVA with a Tukey’s Test for multiple comparisons, (**) indicates a P-value of 

0.001 to 0.01, (***) a P-value of 0.0001 to 0.001, and (****) a P-value of < 0.0001. (C) 
Anti-6B IgG antibody responses of each group were assayed by ELISA two weeks 

following the third and final immunization.
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Table 1

Summary of anti-PLY IgG antibody responses and preliminary anti-hemolytic titers following three biweekly 

immunizations.

Test Articles Administered with 50 μg Al-OH 
a

Anti-PLY IgG GMT (Day 42)
a

Anti-Hemolytic Titer (Day 42)
a

2 μg PLY-D 844,485 600

10 μg PLY-D 844,485 600

25 μg PLY-D 1,341,600* 600

100 μg PLY-D 685,935 600

PBS 10 150

(Abbreviations: PBS: Phosphate-buffered saline)

*
IgG titer from 25 μg dose regimen is significantly different than titers from 2 μg, 10 μg, and 100 μg dose regimens (p value < 0.05 (One way 

ANOVA)).

a
Groups of 10 mice were administered test articles intramuscularly three times at a biweekly interval (Days 0, 14, and 28). Sera were assayed for 

anti-PLY IgG antibody titers two weeks following the third and final immunization. All groups were formulated with Alhydrogel® (Al-OH).
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Table 2

Characterization of clinical isolates of 20 serotypes/28 strains of S. pneumoniae.

Serotype Strain PCV13 Serotype Source

1 5267 Yes Clinic (CA)

3 09AR0038 Yes Clinic-Blood

14AR0032 Yes Clinic-Pneumonia

11AR0031 Yes Clinic-Bacteremia

CH2439 Yes Clinic-Carriage

4 TIGR4 Yes Lab

5 5577 Yes Clinic (CA)

6A 06AR0213 Yes Clinic-Blood

6B P084 Yes Clinic (Dom. Rep.)

8 P014b No Clinic (Dom. Rep.)

11A LE4018 No Clinic-Nasopharynx

P073 No Clinic (Dom. Rep.)

14 645 Yes Clinic

15A 6343 No Clinic (CA)

15B/C MIB02–102 No Clinic-Nasopharynx

18C ML-1 Yes Lab

19F TW14 Yes Clinic-Sputum

17AR0017 Yes Clinic-IPD (MA)

17AR0030 Yes Clinic-IPD (MA)

19A FG23 Yes Clinic-Nasopharynx

22F 06AR0298 No Clinic-Blood

17AR0025 No Clinic-IPD

CNPCX1037 No Clinic-Carriage

23F P098 Yes Clinic (Dom. Rep.)

23A 609 No Clinic (Finland)

23B 6362 No Clinic (CA)

33F 07AR0098 No Clinic-Blood

35B 229 No Clinic (Finland)
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