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Objective: The study aimed to investigate the serum antigenomic profiling in rheumatoid
arthritis (RA) and determine potential diagnostic biomarkers using label-free proteomic
technology implemented with machine-learning algorithm.

Method: Serum antigens were captured from a cohort consisting of 60 RA patients (45
ACPA-positive RA patients and 15 ACPA-negative RA patients), together with sex- and
age-matched 30 osteoarthritis (OA) patients and 30 healthy controls. Liquid
chromatography-tandem mass spectrometry (LC-MS/MS) was then performed. The
significantly upregulated and downregulated proteins with fold change > 1.5 (p < 0.05)
were selected. Based on these differentially expressed proteins (DEPs), a machine
learning model was trained and validated to classify RA, ACPA-positive RA, and ACPA-
negative RA.

Results:We identified 62, 71, and 49 DEPs in RA, ACPA-positive RA, and ACPA-negative
RA, respectively, as compared to OA and healthy controls. Typical pathway enrichment and
protein–protein interaction networks were shown among these DEPs. Three panels were
constructed to classify RA, ACPA-positive RA, and ACPA-negative RA using random forest
models algorithm based on the molecular signature of DEPs, whose area under curve (AUC)
were calculated as 0.9949 (95% CI = 0.9792–1), 0.9913 (95% CI = 0.9653–1), and 1.0
(95% CI = 1–1).

Conclusion: This study illustrated the serum auto-antigen profiling of RA. Among them,
three panels of antigens were identified as diagnostic biomarkers to classify RA, ACPA-
positive, and ACPA-negative RA patients.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease that
leads to joint damage, systemic inflammation, and early
mortality (1). The prevalence of RA was approximately 0.5%–
1% worldwide and 0.28% in China (2, 3). The joint
inflammation, combined with extra-articular complications,
causes disability and reduces quality of life (4). Early diagnosis
and subsequent treatment can substantially slow the progression
of joint damage, thereby preventing irreversible disability (5).

Though the precise molecular mechanism in the triggering
and progression of systemic immune response is not fully
understood, the emergence of antibodies against self-antigens
marks the loss of self-tolerance and can serve as a diagnostic
biomarker (6). Among these are rheumatoid factor (RF) and
anti-citrullinated protein antibodies (ACPAs), which are
currently used as biomarkers for diagnostics, and other anti-
modified protein antibodies (AMPAs) (7–9). The combination of
autoantibody and self-antigen could form immune complexes
that significantly augment the immune response and contribute
to the inflammatory process of RA (10). Multiple antigens have
been confirmed such as a-enolase, fibrinogen, filaggrin,
vimentin, and type II collagen (11, 12). However, the profiling
of serum antigen, antigenome, remains poorly known.

For decades, research has focused on single antigen identified
as biomarkers (13). However, none of those achieves better
specificity and sensitivity than ACPA alone. In this study, we
broadened the focus by addressing the entire repertoire, aiming
to capture the enormous biodiversity of antigens, with the goal to
find a panel of diagnostic biomarkers instead of a single
candidate. Moreover, the approach allows for finding
differences of immune response by clustering the antigen
repertoire that share certain function and pathway, providing
further evidence in understanding of RA pathophysiology.

The robust growth of quantitative proteomic methods enables
researchers to discover indicator proteins for diagnosis and
treatment of diseases. There has been a recent expansion in
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proteomics research on a number of different rheumatic diseases
(14–16). Due to the large datasets generated by proteomics, it
requires informatic approaches such as machine learning
techniques to analyze and interpret data, which have been
exploited to predict biomarkers to accurate classify different
diseases (17–19). We employed a robust mass spectrometry (MS)-
based proteomics strategy to delineate the serum antigenomic
profiling. By applying a widely used machine-learning algorithm,
random forest, we described 3 panels of biomarkers to distinguish
RA, ACPA-positive RA, and ACPA-negative RA. These biomarkers
were further validated in a cohort using proteomic data. These
findings provided knowledge about serum antigen in RA and might
reveal potential therapeutic targets.
MATERIALS AND METHODS

Study Population and Serum
Sample Collection
Serum from 60 RA patients, as well as sex- and age-matched 30
osteoarthritis (OA) patients and 30 healthy controls were
col lected at the Department of Rheumatology and
Immunology, Peking University People’s Hospital, Beijing,
China. The study was approved by the Research Ethics
Committee of Peking University People’s Hospital. Informed
consent was obtained from all patients and healthy donors. The
study population was randomly split into a test cohort (36 RA, 18
OA, and 18 HC) and a validation cohort (24 RA, 12 OA, and 12
HC). Detailed clinical and demographic characteristics are
summarized in Table 1.

All RA patients met the 2010 American College of
Rheumatology (ACR)/European League Against Rheumatism
(EULAR) classification criteria (20). The exclusion criteria
include active infection, malignancy, and other known
autoimmune or immune-mediated diseases, such as systemic
lupus erythematosus, Sjogren’s syndrome, and type I diabetes.
TABLE 1 | Clinical and laboratory characteristics of RA patients and controls in the study.

Characteristics RA (n = 60) OA (n = 30) HC (n = 30)

Age, mean (range), years 61.77 (44–78) 64.27 (46–81) 62.37 (52–69)
Gender, no. male/female 11/49 7/23 8/22
Duration, mean (range), years 12.37 (1–42) – –

ESR, mean (range), mm/h 39.28 (5–106) – –

CRP, median (range), mg/L 23.85 (0.22–172) – -
RF, median (range), IU/ml 327.4 (2–3750) – –

Anti-CCP, median (range), U/ml 147.4 (1.93–296.9) – –

WBC, median (range), 109/L 5.793 (2.6–12.3) – -
TJC, median (range) 7 (0–22) – -
SJC, median (range) 5 (0–21) – -
DAS28, median (range) 4.258 (1.15–6.93) – -
Medication, no (%)
Steroids 25 (41.67%) – –

NSAIDs 13 (21.67%) – –

DMARDs 59 (98.3%) – –

Biologics 31 (51.67%) – –
April 2022 | Volume 13 |
HC, healthy controls; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide antibody; WBC, white blood cell; TJC,
tender joint count; SJC, swollen joint count; DAS28, disease activity score 28; NSAIDs, nonsteroidal anti-inflammatory drugs; DMARDs, disease-modifying anti-rheumatic drugs.
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The individuals (n = 10 in each group) selected for IgG
purification were required to be free from monoclonal
antibody treatment in at least 6 months.

Sample Preparation and Tryptic Digestion
IgG from human serum was purified using protein G spin kit
(Catalog No.22852, Thermo Fisher Scientific). IgG was purified
from 500 ml of pooled serum of ten patients according to the
manufacturer’s instrument, representing the repertoire of
antibodies of each group. The eluted IgG was then washed and
concentrated using 30-kDa MWCO filters (Catalog No.
UFC803096, Amicon, Millipore). To capture serum antigen, 5
mg of IgG was coupled to 1 ml of CNBr-activated Sepharose 4B
column (Catalog No.17043001, GE). By pretreating the IgG
column with acidic elution buffer (10 mmol/L Gly-HCl, pH =
2.8), the antigens bound to IgG were eluted. Then, the diluted
serum of one patient was incubated at room temperature with
end-over-end mixing for 1 h. Bound antigens were eluted with
acidic elution buffer (10 mmol/L Gly-HCl, pH = 2.8) and
immediately neutralized by Tris-HCl (1 mmol/L, pH = 9.1).
The concentration of the protein was determined by Bradford
protein assay (Catalog No. DQ101-01, Transgen Biotech) and
then stored at −80°C .

LC-MS/MS and Data Analysis
Protein (10 mg) was hydrolyzed with trypsin. Digested products
were separated by a 120-min gradient elution at a flow rate of
0.300 µL/min with the Thermo Ultimate 3000 nano-UPLC
system, which was directly interfaced with the Thermo Fusion
LUMOS mass spectrometer. The analytical column was an
Acclaim PepMap RSLC column (75 µm ID, 250 mm length,
C18). Mobile phase A consisted of 0.1% formic acid, and mobile
phase B consisted of 100% acetonitrile and 0.1% formic acid. The
single full-scan mass spectra were acquired in a data-dependent
manner in the Orbitrap at a mass resolution of 60,000 at 375–
1500 m/z. Xcalibur 4.1.50 software was used for data acquisition.
Protein identification was carried out using Mascot and Sequest
search algorithms through the Proteome Discovery software
(version 2.4). Searches were carried against Human RefSeq
protein database. MS tolerance was set to 10 ppm while MS/
MS tolerance was set to 0.02 Da. The peptide-spectrum match
allowed 1% target false discovery rate (strict). We used label-free
quantification (LFQ) algorithm to quantify protein expression
and peptide-spectrum matching. Normalization was performed
against the total peptide amount. Immunoglobulins and post-
translational modifications are not analyzed in the study, but
could be potentially analyzed in the future.

Bioinformatic Analysis
To obtain the intersection of antigen among RA, OA, and
healthy controls, we used the Venn diagram software (http://
bioinformatics.psb.ugent.be/webtools/Venn/). Pathway
enrichment analysis was performed to classify proteins based
on molecular function and biological processes by Metascape
web-based platform (21). Protein–protein interaction of
differentially expressed proteins was performed using Search
Frontiers in Immunology | www.frontiersin.org 3
tool for the retrieval of interaction gene/protein (STRING)
database (PPI enrichment p-value < 1.0e-16) and visualized by
Cytoscape plug-in Cytohubba (22, 23).

Statistical Analysis and Machine Learning
Missing values were imputed with the minimal values for each
feature. To get differentially expressed proteins, the fold change
and t-test p-value were calculated between RA, ACPA-positive
RA, ACPA-negative RA, and control (OA and healthy controls).
The protein whose p-value < 0.05 and fold change > 1.5 was
defined as differentially expressed protein. The heatmaps were
drawn using the R package “pheatmap” (version 1.0.12), the sum
of z-scores of log-transformed values were displayed, and the
rows were sorted by fold changes. The PCA was performed using
the function “decomposition.PCA” in scikit-learn (version
0.23.1) with default parameters. The log-transformed values
were used as input for PCA.

The random forest classifiers were build using the function
“ensemble.RandomForestClassifier” in scikit-learn (version
0.23.1), with 101 trees, and the max depth for the trees was set
to 4 to avoid overfitting. The log-transformed values of
differentially expressed proteins were used as input features,
and the number of features to consider in each tree was sqrt
(number of features). We deleted SAA (D3DQX7) as the
sequence was very similar to SAA1 and SAA2. The importance
of proteins was calculated using the build-in function
“feature_importances_”, which provides the impurity-based
feature importance. The train-test split and classification
process were repeated 500 times to calculate the AUC and
feature importance.
RESULTS

Patients and Study Design
We procured a cohort of patients containing 60 RA, 30 OA, and
30 healthy controls. The detailed clinical and demographic
characteristics are shown in Table 1. The median age was
61.77 years and 81.7% of the patients were female. Thirty OA
patients and 30 healthy controls were all age- and sex-matched.
The disease duration ranged from 1 to 42 years, with a mean
duration of 12.37 years. Seventy-five percent (45 of 60) of RA
patients were ACPA-positive. The mean ESR (erythrocyte
sedimentation rate) and CRP (C-reactive protein) were 39.28
mm/h and 23.85 mg/dl, respectively. The mean DAS28 score
(Disease Activity Score-28) was 4.258.

The workflow employed for this study is shown in Figure 1.
Briefly, IgGs were purified from 500 ml of pooling mixture serum
of 10 individuals in each group, respectively. These IgGs were
bound to the Protein G column and then were treated to remove
the antigens potentially bound to the antibodies first. After that,
serum antigens from 120 samples were purified and collected
individually. The antigen peptide mixture of each sample was
then analyzed and quantified by high-resolution liquid
chromatography with tandem mass spectrometry (LC-MS/
MS) (24).
April 2022 | Volume 13 | Article 884462
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Serum Antigenomic Profiling of
RA Patients
Applying this workflow, we quantified 4,475 proteins and 12,217
peptides from 120 samples. With immunoglobulins excluded,
461 proteins in ACPA-positive RA, 409 proteins in ACPA-
negative RA, 427 proteins in OA patients, and 422 proteins in
healthy control were identified. A total of 360 proteins were in
common among the 3 groups, while 35 proteins were specific for
ACPA-positive RA and 15 for ACPA-negative RA. Eight
proteins were found only in the ACPA-negative group and 28
in the ACPA-positive group (Figure 2A). Proteins with high
confidence and could be detected in more than 20% in a
particular patient group were chosen for further analyses.

The principal component analysis (PCA) showed that the
clustering of samples is clearly classified into different groups as
RA, OA, and healthy controls (Figure 2B). However, PCA
analysis could not distinguish ACPA-negative RA from ACPA-
positive RA patients, demonstrating their similar antigenome
pattern. Taken together, these data presented a deep antigenome
coverage, a promising basis for discovery of biomarkers.

Analysis of Differentially
Expressed Proteins
We next assessed significant quantitative differences between RA, OA,
and healthy controls. We selected significantly upregulated and
downregulated proteins by >1.5-fold (p < 0.05). A total of 62
differentially expressed proteins (DEPs) such as fibrinogen alpha
chain, lipopolysaccharide-binding protein, and serum amyloid protein
in RA were identified and shown in the volcano plot (Figure 3A).
Heatmap analysis was performed to visualize those proteins
(Figure 3A). We next found 71 proteins differentially expressed in
ACPA-positive and 49 proteins differentially expressed in ACPA-
negative patients, using the same filter criteria (Figures 3B, C).
Frontiers in Immunology | www.frontiersin.org 4
The DEPs were then subjected to enrichment analysis
(Figure 4). The analysis revealed that DEPs of these 3 groups
were significantly enriched in pathways associated with
immunology and inflammatory response, “acute inflammatory
response”, “activation of complement system”, and “humoral
immune response”. DEPs in RA were enriched in pathways
including “cell-cell adhesion” and “IL-4 and IL-13 signaling”. The
pathways ofDEPs inACPA-positiveRAwere enriched inprocesses
involved in “binding and uptake of ligand of scavenger receptors”
and “IL-6 pathway”. Some pathways associated with metabolic
process were enriched in DEPs of ACPA-negative RA, such as
“folate metabolism”, which might be interesting in future studies.

As shown by protein–protein interaction (PPI) analysis of
DEPs by the STRING database, the antigenome possessed
abundant interactions. To recognize the key antigens lying in
an essential position, we exploited Cytoscape plugin Cytohubba,
which identified hub proteins in the networks. As shown in
Figure 5, DEPs such as haptoglobin and ITIH4 were screened
out as top hub proteins based on the connectivity degree. Both
haptoglobin and ITIH4 could function as acute-phase reactants
(25, 26). It was previously reported that the levels of haptoglobin
were elevated in RA serum (27). ITIH4 was found to be a serum
biomarker for a variety of malignancies including gastric cancer
and hepatocellular carcinoma (28, 29). However, there is limited
research investigating their detailed role in RA. These proteins
might be essential in the pathogenesis of RA and utilized as
biomarkers after rigorous validation.

Machine Learning for Identification of
RA Patients
Next, we attempted to discriminate RA from OA and healthy
controls based on the DEPs. A widely used machine learning
algorithm, random forest, was used to classify the patients. The
FIGURE 1 | Study overview and antigenome characterization. Overview of the study cohort and schematic workflow. RA, rheumatoid arthritis; OA, osteoarthritis;
ACPA, anti-citrullinated protein antibody; HC, healthy control; MS, mass spectrometry; DEP, differentially expressed protein.
April 2022 | Volume 13 | Article 884462
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model was trained on 60% of the samples (36 RA, 18 OA, and 18
healthy controls) and evaluated on the remaining 40% of the
samples (24 RA, 12 OA, and 12 healthy controls). We repeated
this process 500 times to calculate the area under the curve
(AUC) of the receiver operating characteristic curve and feature
importance for each antigen.

For the classification of RA, the AUC of the random forest
model reached 0.9949 (95% confidence interval [CI] = 0.9792–1)
(Figure 6A), and the top 15 dominant antigens in the model
were SAA2, C-reactive protein (CRP), leucine-rich alpha-2-
glycoprotein, fibrinogen alpha chain, annexin A1, complement
component C9, complement C4-A, SAA1, carbonic anhydrase,
testicular tissue protein Li 70, ficolin-3, ACX136, hemoglobin
subunit alpha, paired like homeobox 2B, and beta-actin-like
protein 2 (Figure 6A).

Next, we investigated the possibility of discriminating ACPA-
positive and ACPA-negative RA patients from OA patients and
healthy controls based on the DEPs. Random forest algorithm
was employed as well; 60% of the samples were used to train and
40% of the samples were used to evaluate. For ACPA-positive RA
patients, the model reached an AUC of 0.9913 (95% CI = 0.9653–
1) (Figure 6B), and the top 15 best-performing proteins were
leucine-rich alpha-2-glycoprotein, SAA2, CRP, complement
component C9, fibrinogen alpha chain, annexin A1, C4a
Frontiers in Immunology | www.frontiersin.org 5
anaphylatoxin, arfaptin-1, testicular tissue protein Li 70, SAA1,
ITIH4 protein, ficolin-3, carbonic anhydrase, hemoglobin
subunit alpha, and complement C4-A (Figure 6B). Moreover,
for the classification of ACPA-negative RA patients, the AUC
was calculated as 1.0 (95% CI = 1–1) (Figure 6C). The top 15
proteins were SAA2, fibrinogen alpha chain, SAA2-SAA4
readthrough, alpha-1-antitrypsin MBrescia variant, platelet
glycoprotein V, SAA1, Fc-gamma receptor IIIb, beta-actin-like
protein 2, testicular tissue protein Li 70, complement C1r
subcomponent-like protein, AEP4D11, CRP, procollagen C-
endopeptidase enhancer, Keratin type II cytoskeletal 6B, and
caspase 14 (Figure 6C).
DISCUSSION

Our study presented a serum antigenomic investigation of RA
using label-free global proteome strategy, which offered a
landscape view of antigens. Using random forest, an ensemble,
supervised machine learning algorithm, 3 diagnostic signatures
were built to classify RA, ACPA-positive RA, and ACPA-
negative RA patients. Our findings might help to understand
the pathogenesis of RA and provide novel and specific diagnostic
targets for the disease.
A

B

FIGURE 2 | Protein quantification through LC-MS/MS. (A) Venn diagram of the identified proteins among RA patients and controls. (B) Clustering analysis of
differentially expressed proteins on PCA analysis. ACPA+, ACPA-positive RA; ACPA-, ACPA-negative RA; PCA, principal component analysis.
April 2022 | Volume 13 | Article 884462
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Early diagnosis and immediate, effective therapy are crucial to
gain control of inflammation and prevent deterioration, functional
disability, and unfavorable progression in RA patients. To carry out
personalized medicine for RA, clinical practice requires the use of
biomarkers to ensure diagnosis, accurate stratification, and the high
efficacy of treatment. Current clinically used biomarkers including
anti-CCP and RF only shows a modest discriminating power due to
the lack of sensitivity and specificity (30). Searching biomarkers for
diagnosis is a continuous effort, but none of those translate into
routine clinical use (31). Therefore, searching reliable biomarkers
for RA in a large population is highly desirable. To address the
problem, we have combined cutting-edge mass spectrometry
hardware, MS data processing, and bioinformatic analysis to build
a high-performance serum antigenomic workflow.

Other groups have also performed proteomic studies for RA.
Mun et al. performed a quantitative proteomic study and
Frontiers in Immunology | www.frontiersin.org 6
identified 5 biomarkers using RA serum, which were
quantitively verified by multiple reaction monitoring (MRM)
(32). Colasanti et al. discovered that anti-Hcy-A1AT
(homocysteinylated alpha 1 antitrysin) autoantibody could be
considered as a potential biomarker for RA by using matrix-
assisted laser desorption/ionization-time of flight (MALDI-TOF/
TOF) (33). However, we used a novel approach to capture the set
of serum antigens, which was advantageous as it focused on a
more targeted set of proteins, compared to entire serum
proteome. We identified confirmed and putative antigens as
candidates of novel potential biomarkers. In total, 4,475
proteins were identified by label-free comparative proteomic
analysis of antigen profiling of RA, OA, and healthy control
serum. Compared to OA and healthy controls, we found 62
DEPs (FC > 1.5, p < 0.05) in RA, 71 DEPs that were specific in
ACPA-positive patients, and 49 DEPs specific in ACPA-negative
A B C

FIGURE 3 | Analysis of differential expressed proteins. Volcano plots compare RA (A), ACPA-positive RA (B), ACPA-negative RA (C), and controls. Heatmap
analysis of proteins that differ significantly (p < 0.05, fold change > 1.5) in abundance in RA (A), ACPA-positive RA (B), and ACPA-negative RA (C).
April 2022 | Volume 13 | Article 884462
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patients. We tried to gain insight into the functional roles of
these DEPs associated with RA via pathway enrichment analysis.
The interaction of DEPs was shown based on PPI networks.
Moreover, we identified hub proteins in the interaction
networks. These avenues of enquiry may provide insight into
the underlying mechanisms of RA.

As a single biomarker may hardly achieve satisfactory
discriminating power, seeking multiple biomarkers and
developing a combinatorial model is a compromising strategy.
By virtue of comprehensive antigenome profiling and random
forest algorithm, we revealed 3 predictive models for RA, ACPA-
Frontiers in Immunology | www.frontiersin.org 7
positive RA, and ACPA-negative RA. The models have achieved
low classification errors and resulted in very high AUC levels.

Compared to ACPA-positive RA, ACPA-negative RA is
poorly understood in etiology and pathogenesis. Lack of
effective biomarkers impedes early diagnosis and treatment,
highlighting the importance of identifying specific antigens in
this subset (34). It is worth noting that several antigens are
unique in the ACPA-negative model, such as SAA2-SAA4
readthrough, platelet glycoprotein V, Fc-gamma receptor IIIb,
complement C1r subcomponent-like protein, procollagen C-
endopeptidase enhancer, and caspase 14 (Figure 6C). These
A

B

C

FIGURE 4 | Functional analysis of DEPS. Pathway analysis of DEPs in patients with RA (A), ACPA-positive RA (B), and ACPA-negative RA (C). GO, gene ontology.
April 2022 | Volume 13 | Article 884462
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proteins participate in various biological processes including acute
phase response, cornification, complement activation, innate
immune response, platelet activation, and collagen binding (35,
36). There is limited research investigating their function and
association with autoimmune or inflammatory diseases (37).
Validation by ELISA in larger ACPA-negative RA cohorts and
exploration of their detailed functions in the disease are needed.
Hopefully, these newly identified antigens may help early diagnosis
and hint underlying mechanism of ACPA-negative RA.

Though assay results were promising, this study does have
limitations. First, we utilized IgG purified from ACPA-positive
Frontiers in Immunology | www.frontiersin.org 8
patients to capture antigens rather than anti-CCP2 antibody,
which resulted in an incomplete reactivity pattern of ACPA-IgG
due to its lower affinity toward citrullinated antigens. Besides, by
using an IgG column to capture serum antigens from the
corresponding group of patients, the DEPs identified between
groups might be partially due to the differences of IgG binding
ability from various patients rather than antigens that were
purely from the capture. Second, if the model is to be applied
in clinic, more rigorous quantification and extensive validation
by targeted protein quantification or ELISA are still needed. The
detailed roles of antigens in the pathogenesis of RA should be
A

B C

FIGURE 5 | PPI network construction of DEPs. Interaction network analysis of DEPs in RA (A), ACPA-positive RA (B), and ACPA-negative RA (C) by STRING and
Cytoscape. Cytohubba plug-in was applied to identify the hub proteins in the network by protein degrees. Red indicated DEPs were at the center of the network and
possessing 5–10 edges. Orange indicated DEPs possessing 3–5 edges. Yellow indicated DEPs possessing 1 to 2 edges. PPI, protein–protein interaction.
April 2022 | Volume 13 | Article 884462
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further elucidated or experimentally validated. Third, this was a
single-center study, and the results merit validation in a larger,
multicenter study that involve OA, systemic lupus erythematosus
(SLE), ankylosing spondylitis (AS), psoriatic arthritis (PsA), gout
patients, etc. Lastly, this work establishes the foundation for
longitudinal studies geared toward the development of models
Frontiers in Immunology | www.frontiersin.org 9
predictive of disease onset or progression, and efficacy after
treatment. The sera samples were collected at a single time
point in both RA patients and control, and future studies of
sera frommore time points along the disease course are required,
which could be potentially utilized to explore molecular
dynamics during disease progression.
A

B

C

FIGURE 6 | Identification of potential biomarkers based on machine learning. Classification of RA (A), ACPA-positive RA (B), and ACPA-negative RA (C). Top 15
proteins prioritized by random forest analysis (left). ROC of the random forest model in the test cohort (right). AUC, area under curve.
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In summary, we employed label-free global proteomics
technology to analyze serum antigenome profiling of RA. The
study increased our understanding of RA antigens and identified
potential biomarkers to provide novel and specific diagnostic
targets for the disease. We suggest that these panels identified
here could be utilized as multiplex protein microarray platforms
that have potential for scalability and contribute toward improved
decision-making.
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