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ABSTRACT

Gene expression is controlled by RNA-binding
proteins that modulate the synthesis, processing,
transport and stability of various classes of RNA.
Some RNA-binding proteins shuttle between the
nucleus and cytoplasm and are thought to bind
to RNA transcripts in the nucleus and remain
bound during translocation to the cytoplasm. One
RNA-binding protein that has been hypothesized to
function in this manner is the Saccharomyces
cerevisiae Scp160 protein. Although the steady-
state localization of Scp160 is cytoplasmic, previous
studies have identified putative nuclear localization
(NLS) and nuclear export (NES) signals. The goal
of this study was to test the hypothesis that
Scp160 is a nucleocytoplasmic shuttling protein.
We exploited a variety of yeast export mutants
to capture any potential nuclear accumulation of
Scp160 and found no evidence that Scp160 enters
the nucleus. These localization studies were com-
plemented by a mutational analysis of the predicted
NLS. Results indicate that key basic residues within
the predicted NLS of Scp160 can be altered without
severely affecting Scp160 function. This finding
has important implications for understanding the
function of Scp160, which is likely limited to the
cytoplasm. Additionally, our results provide strong
evidence that the presence of a predicted nuclear
localization signal within the sequence of a protein
should not lead to the assumption that the protein
enters the nucleus in the absence of additional
experimental evidence.

INTRODUCTION

Eukaryotic cells are characterized by the separation of the
genome and transcriptional machinery in the nucleus from
the translational machinery in the cytoplasm. This separa-
tion is mediated by the double membrane of the nuclear
envelope, which necessitates a system for transport between
these discrete compartments. All macromolecular trans-
port between the nucleus and the cytoplasm occurs via
nuclear pore complexes (NPCs) embedded in the nuclear
envelope (1,2). NPCs are massive multi-protein structures
each composed of �30 proteins, which are collectively
referred to as nucleoporins (3). Although passive diffusion
of molecules 440 kDa through NPCs can occur, most
macromolecules require specific transport signal sequences
to enter and exit the nucleus via the NPC (4).

Nuclear targeting signals mark proteins for transport
into and out of the nucleus (4). The best-characterized
nuclear targeting signal is the classical nuclear localization
signal (cNLS), which consists of a monopartite or
bipartite signal (5,6). The monopartite NLS contains a
single cluster of four to six basic amino acids, while a
bipartite NLS contains two stretches of basic amino acids
separated by a stretch of 8–10 spacer residues (6,7).
Nuclear export signals (NES) have also been identified.
These targeting signals consist of a weak consensus of
three to four hydrophobic residues (8). These classical
targeting sequences can be, and often are, identified by
computer searches; however, in many instances the
function of these sequences is not experimentally verified.

Targeting signals are recognized by soluble nuclear
transport receptors that shepherd cargo proteins through
the nuclear pore complex (9). These receptors are termed
karyopherins or importins/exportins. Many transport
pathways involve direct cargo binding to receptors of
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the importin/karyopherin-b family. However, import
of cargoes that contain a cNLS involves an adaptor
protein, importin-a, that serves as an NLS receptor to
recognize these cargos in the cytoplasm (4). Importin-a
and cNLS cargo interact with importin-b to form a
trimeric import complex, which then translocates through
the NPC (10). Once in the nucleus, a small GTPase,
Ran-GTP (11,12), binds to importin-b causing a con-
formational change that results in dissociation of the
import complex (13). The importin receptors are then
recycled back to the cytoplasm to participate in subse-
quent rounds of import (14). In a similar manner, NES-
dependent export involves the transport receptor, Crm1
(8,15). Like other export receptors of the importin-b
family (16), Crm1 forms a trimeric complex with Ran-
GTP and an export cargo (17). The trimeric complex
is translocated through the NPC and once it reaches the
cytoplasmic face of the NPC, Ran-GTP is hydrolyzed
to Ran-GDP resulting in dissociation of the export
complex (18).

Many proteins contain predicted NLS and NES
sequences required for entering and exiting of the nucleus.
Often, the function of these predicted sequences
is assumed in the absence of supporting experimental
data. One example of such a case is the coding sequence
of the Saccharomyces cerevisiae control of ploidy protein
of 160 kDa, Scp160. Although the exact function of
Scp160 is unknown, it is thought to modulate gene
expression through interacting with RNA substrates (19).
Scp160 contains 14 predicted K-homology (KH)
RNA-binding domains and also sequence motifs that
have been hypothesized to function as both a cNLS and a
classical NES (20,21). Since Scp160 associates with specific
mRNA transcripts (19), it has been hypothesized to
shuttle into the nucleus and then exit the nucleus in
complexes with mRNA.

Despite the presence of a sequence noted as an NLS,
the steady-state localization of Scp160 is clearly cytoplas-
mic (22–25). This cytoplasmic localization is consistent
with at least two models: (i) Scp160 is solely restricted
to the cytoplasm; or (ii) Scp160 shuttles into and out of
the nucleus but the rate of export exceeds the rate of
import. To distinguish between these two possibilities,
we exploited yeast mutants that block different nuclear
export pathways and assessed the localization of Scp160
in these mutant cells under conditions where these
specific nuclear export pathways are blocked. If Scp160
does, in fact, shuttle between the nucleus and the
cytoplasm, blocking its export would cause accumulation
of the protein within the nucleus. However, if Scp160 does
not shuttle, we would expect the localization to remain
cytoplasmic despite blocked export pathways.

This general approach has been used previously to
uncover the nucleocytoplasmic shuttling properties of
other proteins. For example, the yeast poly(A)-binding
protein 1, Pab1, has a well-characterized function in
the cytoplasm where it binds to the poly(A) tail of mRNA
transcripts and modulates their stability and translation
(26). Consistent with these functions, Pab1 is localized
to the cytoplasm at steady state (26). However, recent
studies show that Pab1 accumulates within the nucleus of

cells that express a conditional mutant of the NES
receptor, crm1-1, revealing the surprising finding that
this protein with a well-characterized cytoplasmic function
can enter the nucleus (27,28). These studies validate the
use of export mutants to test whether Scp160 is also a
shuttling protein.
The goal of this study was to carry out a functional

analysis of the nuclear targeting signals present in
the Scp160 protein. To accomplish this goal, we first
exploited a number of conditional yeast mutants that
impact nuclear export. We found that mutations that
rendered each of the major export pathways nonfunc-
tional did not cause accumulation of Scp160 within
the nucleus, suggesting that Scp160 may not enter the
nucleus. Second, we generated amino acid substitutions
predicted to disrupt the function of the putative NLS
of Scp160 and found that these mutations did not
significantly impair Scp160 function, indicating that the
putative NLS is not critical for the key cellular function of
Scp160. These data challenge the model that Scp160
performs critical functions in the nucleus, and suggest that
Scp160 functions are carried out exclusively in the
cytoplasm.

MATERIALS AND METHODS

Plasmids and yeast strains

All yeast manipulations were performed according to
standard protocols (29). All yeast strains used in this study
are listed and described in Table 1. The wild-type yeast
strain used for microscopy, JFY4493, was derived from
the haploid parent strain W303 (MAT a ura3-1 leu2-3
his3-11, 15 trp1-1 ade2-1 can1-100 RAD5+, a gift from
Dr R. Rothstein, Columbia University, NY, USA) by

Table 1. Strains and plasmids used in this study

Strains/plasmids Description Reference

ACY191 mat a rpb1-1, ura2-52, his4-53 (41)
ACY194 mat a rat7-1, ura3-52, leu2�1,

his3�200
(46)

ACY372 mat a crm1-3, ade2-1, ura3,
leu2�1, his3, trp1

(38)

ACY545 mat a MEX67::KanMX4, ura3,
leu2�1, his3�200, [+mex67-5
LEU2]

(42)

ACY1508 mat a MLP1-RFP::KanMX4, ura3,
leu2�1, his3�200, lys2

(56)

JFY4247 mat a SCP160::HIS3, EAP1::HIS3,
ade2-1, ura3, leu2-3, his3-11, trp1-1,
can1-100, [+SCP160-URA3]

(36)

JFY4493 mat a FLAG-SCP160::SCP160, ade2-1,
ura3-1, leu2-3, his3-11, trp1-1, can1-100

(57)

pRS312 TRP1, CEN, AMP (58)
pRS315 LEU2, CEN, AMP (58)
pAC213 SV40 NLS-PK1 NES-GFP, URA3,

2 mM, AMP
(39)

pAC980 �RGG Nab2-GFP, URA3, CEN, AMP (32)
JF4470 SCP160-GFP, TRP1, CEN, AMP This study
JF4823 FLAG-SCP160, LEU2, CEN, AMP This study
JF4843 FLAG-SCP160-NLSmut, LEU2,

CEN, AMP
This study
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integration of a FLAG epitope onto the N-terminus of the
Scp160 open reading frame. All recombinant DNA
manipulations were performed according to standard
procedures (30) utilizing the XL10-gold (Stratagene)
strain of Escherichia coli. All mutagenesis was done
using a QuikChange Site-Directed Mutagenesis Kit
(Stratagene). Experiments were carried out at 348C
unless otherwise noted.

Lysate preparation and immunoblot analysis

Cells were grown to mid-log phase and harvested
by centrifugation (5min, 4000g at 48C). Following two
washes with ddH2O, cells were lyzed by vortex agitation
with an equal volume of glass beads in 0.5ml lysis
buffer (25mM Tris pH 7.2, 50mM KCl, 30mM MgCl2,
1.5% Triton). Lysates were then transferred to a clean
microfuge tube and centrifuged for 5min at 3000 g at 48C.
The supernatant was again transferred to a clean microfuge
tube and centrifuged at 12 000 g for 10min at 48C.
Immunoblot analysis was performed essentially as

described previously (22). Briefly, samples to be analyzed
were mixed with sample buffer, boiled and run through a
10% SDS–polyacrylamide gel. The gel was then electro-
blotted onto a nitrocellulose membrane (Bio-Rad) and
GFP-fusion proteins were detected by incubation of
the membrane with a 1:10 000 dilution of an a-GFP
polyclonal antibody (31).

Direct fluorescence microscopy

Imaging was performed as described previously (32).
In brief, yeast cells transformed with plasmids expressing
GFP-fusion proteins were grown to mid-log phase in
media lacking uracil and supplemented with adenine.
Cultures were split and half was left at room temperature
while the other half was shifted to 378C for 2 h. Direct
fluorescence and DIC images were collected using an
Olympus BX epifluorescence microscope equipped with
a Photometrics Quantix digital camera. IP Lab Spectrum
software was used to capture images of cells. Prior
to imaging, cells were incubated with 5 mM Hoechst dye
to visualize the chromatin within the nucleus.

Functional analysis of Scp160 variants in vivo

To assess the function of an Scp160 NLS variant
(Scp160-NLSmut) four lysine residues (321, 322, 331 and
333) within the predicted NLS were changed to alanines.
We then tested whether this variant of Scp160 could
rescue the synthetic lethality of an Dscp160Deap1 mutant
using a standard plasmid shuffle assay (33). Briefly,
Scp160-NLSmut (LEU2) was transformed into an
Dscp160Deap1 double mutant containing a wild-type
URA3 maintenance plasmid. Cells were inoculated into
liquid medium and grown to saturation for 2 days. Cell
numbers were equalized, serially diluted 1:10, and then
spotted onto control plates of synthetic medium lacking
leucine and test plates of synthetic medium lacking leucine
and containing the drug 5-fluororotic acid (5-FOA).
5-FOA is toxic to cells containing the URA3 gene product
and, therefore, the only cells that grow on 5-FOA
plates have lost the URA3 plasmid and retain only the

LEU2 test plasmid (34). Test plasmids encoding a second
wild-type copy of SCP160 and empty vector (pRS315)
were analyzed in parallel as positive and negative
controls, respectively. Plates were incubated for two
days at 348C.

RESULTS

Scp160-GFP is localized to the cytoplasm at steady state

Figure 1A shows a schematic representation of the
domain structure and postulated sequence motifs of
Scp160. The predicted NES sequence is contained within
the N-terminal portion of the protein, while the predicted
NLS is located between KH domains three and four
(KH3 and KH4), spanning a few residues into both KH3
and KH4. The amino acid sequence for each predicted
transport signal is shown.

Figure 1B shows that, as previously reported (23–25),
Scp160-GFP is localized to the cytoplasm and excluded
from the nucleus. To confirm that the GFP signal reflects
the localization of full-length Scp160, soluble lysates
of wild-type cells expressing Scp160-GFP were subjected
to immunoblot analysis with an a-GFP antibody
(Figure 1C). Lysate from cells expressing NLS-NES-
GFP served as a control for the specificity of the antibody.
FLAG-Scp160-GFP migrated as a single band at
�200 kDa while NLS-NES-GFP migrated at 35 kDa.

As an additional control, we tested whether the
GFP tag impacts the function of Scp160 by assaying the
ability of Scp160-GFP to replace wild-type Scp160 in vivo
using a plasmid shuffle assay. A TRP1 plasmid containing
SCP160-GFP was transformed into Dscp160Deap1 yeast
containing a wild-type URA3 maintenance plasmid of
SCP160. Although Scp160 is not essential for cell viability
(23), Scp160 becomes essential when the spindle pole body
protein, Eap1 (35), is also deleted (36). Thus, we can
employ this double mutant background where Scp160 is
essential to rapidly assess Scp160 function. Transformants
containing both the wild-type URA3 plasmid and the
TRP1 test plasmid were streaked onto synthetic complete
plates lacking uracil and tryptophan (control) and 5-FOA
plates lacking tryptophan. No significant growth defect
was observed in the Scp160-GFP versus the untagged
Scp160 (data not shown). As expected, cells containing
vector alone failed to grow, confirming the requirement
for Scp160 in this genetic background.

Scp160 does not accumulate in the nucleus
in a NES export mutant

To begin to assess whether Scp160 can enter the nucleus,
we took advantage of the observation that Scp160
contains a predicted classical NES (20). If this NES
mediates nuclear export of Scp160, then blocking the
NES-dependent export pathway should cause nuclear
accumulation of Scp160. To block this pathway, we
utilized a conditional mutant of the NES receptor,
Crm1 (37). crm1-3 cells show defects in export of NES-
cargo (38). Plasmids encoding Scp160-GFP or control
cargoes either containing a classical NES, NLS-NES-GFP
(39), or lacking an NES, �RGG-Nab2-GFP (32),
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were transformed into wild type and crm1-3 cells. Protein
localization was assessed by direct fluorescence micro-
scopy. Scp160 remained strictly localized to the cytoplasm
in crm1-3 cells at the non-permissive temperature with
no apparent nuclear concentration (Figure 2). In contrast,
the control NLS-NES-GFP accumulated in the nucleus
of crm1-3 cells. The localization of a control non-NES
cargo protein, �RGG-Nab2-GFP, was not altered in the
crm1-3 cells compared to wild-type cells. These results
indicate that either Scp160 does not enter the nucleus
or its export is not dependent on the Crm1 export
pathway.

Scp160 does not accumulate in the nucleuswhen poly(A)RNA
export is blocked

Since Scp160 associates with mRNA (19), we hypothe-
sized that Scp160 localization could depend on ongoing
mRNA synthesis and mRNA export. A number of
mRNA-binding proteins that undergo nucleocytoplasmic
shuttling depend both on ongoing transcription and
mRNA export (32,40). Therefore, we examined the
steady-state localization of Scp160 in both rpb1-1 cells
where RNA polymerase II transcription is decreased
(41) and mex67-5 mutant cells where poly(A) RNA export
from the nucleus is blocked (42,43). As controls we
also examined the localization of NLS-NES-GFP,
which is not affected by mRNA export (44), and

�RGG-Nab2-GFP, which depends on ongoing mRNA
export and synthesis for export from the nucleus (44).
No nuclear accumulation of Scp160 was observed in

either the mex67-5 or rpb1-1 cells (Figure 3). As expected,
the control mRNA binding protein, �RGG-Nab2-GFP,
accumulated in the nucleus of both mex67-5 and rpb1-1
cells following a shift to the non-permissive temperature.
No change in the localization of NLS-NES-GFP was
observed. These results indicate that either Scp160 does
not enter the nucleus or its export does not depend on
ongoing mRNA synthesis or mRNA export.

Scp160 does not accumulate in the nucleus of cells
with an export-deficient NPC

As a final test of whether Scp160 enters the nucleus,
we exploited a nuclear pore mutant that blocks all known
nuclear export pathways, rat7-1 (32,45–47). We hypothe-
sized that if Scp160 enters the nucleus it should
accumulate in the nucleus of rat7-1 cells. Although
RAT7 (NUP159) is essential, the rat7-1 allele is a
temperature-sensitive allele that can be shifted to the
non-permissive temperature to inactivate Rat7/Nup159
and block export pathways (46). We examined the
localization of Scp160-GFP and control proteins, NLS-
NES GFP and �RGG-Nab2-GFP, in rat7-1 cells.
Following the shift to the non-permissive temperature,
Scp160-GFP remained cytoplasmic in rat7-1 cells similar
to wild-type cells (Figure 4). In contrast, NLS-NES-GFP
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Figure 1. Scp160 is localized to the cytoplasm at steady state. (A) Schematic representation of Scp160 domain structure and location of putative
nuclear targeting motifs. The predicted NLS is indicated by the filled diamond and the predicted NES is indicated by the open diamond. The
sequences for the predicted NLS and NES motifs as well as their positions within the open reading frame are indicated. Numbered boxes represent
the 14 KH domains. (B) The Scp160-GFP protein was expressed in wild-type cells that express a red-fluorescent protein-tagged nuclear rim protein,
Mlp1 (56) to mark the position of the nucleus. Fluorescent protein localization was examined by direct fluorescence microscopy. Cells were also
stained with Hoechst dye to mark the position of chromatin within the nucleus. A merged fluorescence image is shown as well as the corresponding
DIC image. (C) Immunoblot analysis of GFP in protein lysate from wild-type cells transformed with plasmids encoding FLAG-Scp160-GFP (right
lane) or a control NLS-NES-GFP (left lane). Migration of protein standards is indicated to the left of the image. The position of the bands
corresponding to FLAG-Scp160-GFP and NLS-NES-GFP is indicated.
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and �RGG-Nab2-GFP both accumulated in the nuclei of
rat7-1 cells. These results taken together with localization
of Scp160 in other export mutants suggest that Scp160
does not enter the nucleus, at least under normal growth
conditions.

In vivo function of an Scp160 NLSmutant

Based on its primary amino acid sequence, Scp160 has
been predicted to contain a bipartite NLS (20). Like other
previously characterized bipartite NLS sequences, Scp160
contains two stretches of basic amino acids separated by a
short spacer region (Figure 5A). However, results of our
localization studies suggest that the predicted NLS within
Scp160 does not target the protein to the nucleus and,
therefore, may not be functional. If this assessment is
correct, amino acid substitutions within the key NLS

residues in the sequence should not significantly impact
the function of Scp160. To test this hypothesis, four basic
residues within the predicted NLS of Scp160 were changed
to alanines to create Scp160-NLSmut (residues changed are
indicated by asterisks in Figure 5A). This Scp160 variant
was then assayed for its ability to rescue the synthetic
lethality of the Dscp160Deap1 cells. Growth of
Dscp160Deap1 cells expressing Scp160-NLSmut was not
significantly affected compared to growth of these cells
expressing wild-type Scp160 (Figure 5B). In contrast,
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Figure 5. Functional analysis of Scp160-NLSmut. (A) An alignment of
the predicted NLS sequence from Scp160 with functional NLS
sequences from nucleoplasmin and p53 is shown. The lysine residues
that were changed to alanines to create Scp160-NLSmut are indicated
by asterisks. (B) To assess the functional importance of the predicted
NLS within Scp160, we tested whether an Scp160 variant with a
mutant NLS (Scp160-NLSmut) could replace wild-type Scp160 in
Dscp160Deap1 cells where Scp160 is required for viability (36).
Cultures were grown to log phase and equal numbers of cells were
serially diluted by orders of magnitude and spotted onto control plates
lacking uracil and leucine (left) or test plates lacking leucine but
containing 5-FOA (right). The top row shows cells carrying LEU2
vector (pRS315); the middle row shows cells containing a wild-type
copy of Scp160; the bottom row shows cells that express
Scp160-NLSmut as the sole copy of Scp160.
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Figure 2. Localization of Scp160-GFP in crm1-3 and wild-type cells.
The localization of Scp160-GFP was examined in crm1-3 cells
following a 2 h shift to 378C where NES-dependent nuclear export is
blocked. Scp160 is localized to the cytoplasm in both wild-type and
crm1-1 cells. As controls, we also localized NLS-NES-GFP and
�RGG-Nab2-GFP. As expected, NLS-NES-GFP accumulates in the
nucleus of crm1-1 cells, but �RGG-Nab2-GFP, which is exported via
an mRNA export-dependent pathway, does not. Corresponding DIC
images are shown.
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Figure 4. Localization of Scp160-GFP in rat7-1 and wild-type cells.
The localization of Scp160-GFP was examined in rat7-1 cells following
a 30min shift to 378C where all known transport pathways are blocked.
As shown, Scp160 is localized to the cytoplasm in rat7-1 cells.
As controls, we also visualized NLS-NES-GFP and �RGG-Nab2-
GFP. As expected both control proteins accumulate in the nuclei of
rat7-1 cells.
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Figure 3. Localization of Scp160-GFP in rpb1-1, mex67-5 and wild-
type cells. The localization of Scp160-GFP was examined in wild-type,
rpb1-1 and mex67-5 cells following a 1 h shift to 378C. Results indicates
that Scp160 is localized to the cytoplasm in both rpb1-1 and mex67-5
cells. As controls, we also localized NLS-NES-GFP and �RGG-Nab2-
GFP. As expected, �RGG-Nab2-GFP, which is exported in an mRNA
export-dependent manner, accumulates in the nuclei of both rpb1-1 and
mex67-5 cells, but NLS-NES-GFP does not.
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yeast-containing vector alone (pRS315) were unable to
grow on 5-FOA medium. These results suggest that the
predicted NLS does not affect the global in vivo function
of Scp160.

DISCUSSION

This study was designed to test whether the yeast
RNA-binding protein, Scp160, is a nucleocytoplasmic
shuttling protein and hence to examine the function of the
predicted nuclear targeting signals within Scp160.
Previous studies have revealed that Scp160 is localized
to the cytoplasm at steady state (22–25) and also provided
evidence that Scp160 associates with specific mRNAs (19).
Given the presence of sequences reminiscent of both
an NLS and an NES motif (21), one possible mechanism
for Scp160 function, consistent with other shuttling RNA
binding proteins (26,32), is that Scp160 could enter the
nucleus, associate with RNA substrates, and then
accompany these RNA transcripts to the cytoplasm.
However, results of our analysis indicate that Scp160 is
not likely to enter the nucleus. Furthermore, the predicted
NLS is not required for Scp160 function. Taken together,
these experiments argue for an alternative model for
Scp160 function. More generally, this study underlines the
importance of experimental analysis to support the
identification of putative nuclear transport signals in a
protein of interest.

In this study, we localized Scp160 in a number of
conditional mutants to test the hypothesis that Scp160
is able to move into the nucleus and accompany
transcripts to the cytoplasm by virtue of its predicted
NLS and NES signals. We localized Scp160 in mutants
blocked in well-characterized export pathways, including
NES-protein export (crm1-3), mRNA biosynthesis
(rbp1-1), mRNA export (mex67-5) and all known export
pathways (rat7-1). Despite its putative targeting
sequences, Scp160 did not accumulate in the cell nucleus
when any of these pathways were blocked. Furthermore,
we have shown that amino acid changes within the
predicted NLS of Scp160 do not severely affect Scp160
function in vivo. Due to the slight growth defect we
observed when four lysines within the NLS were changed
to alanines, we cannot eliminate the possibility that
these residues are important for some other function of
Scp160, however, taken together our data suggest that
Scp160 does not enter the nucleus. We cannot, however,
eliminate the possibility that Scp160 enters the nucleus
under specific growth conditions not tested here. There
is also the possibility that Scp160 export could depend on
a pathway not examined here, but the nuclear pore
mutant, which blocks all known export pathways, makes
this interpretation of our results unlikely.

As a whole, these data suggest that Scp160 functions
exclusively in the cytoplasm where it most likely associates
with mRNA. A further extension of these findings is
that the pleiotropic effects observed in Dscp160 cells
(20,23,48), including increased DNA content per cell,
missegregation of nutritional markers through meiosis
and abnormal cell morphology, are likely due to indirect

effects, perhaps caused by changes in expression of
genes required for these pathways. Thus, deregulation
of mRNA transcripts that bind to Scp160 may cause some
of the phenotypes observed in Dscp160 cells. Alternatively,
some phenotypes may be due to loss of direct interaction
of Scp160 with other proteins within the cell resulting
in incompletely formed mRNP complexes. Taken with the
localization studies described here, we conclude that
the predicted nuclear targeting sequences in Scp160 are
non-functional.
Scp160 is most closely related to the vigilin class of

proteins, which, like Scp160, contain a large array of 14 to
15 repeated KH domains (21). Vigilins control gene
expression through multiple mechanisms including reg-
ulating mRNA stability in the cytoplasm (49,50) and
modulating heterochromatin formation in the nucleus
(51,52). One piece of data that links Scp160 function
with related proteins from higher eukaryotes is the finding
that the Drosophila vigilin protein, Ddp1, can comple-
ment one phenotype associated with deletion of the
SCP160 gene in S. cerevisiae (48). Specifically, this study
demonstrated that expression of Ddp1 in yeast cells
lacking Scp160 could complement the ploidy defect
observed when Scp160 is absent. However, this study
did not test whether the Ddp1 entered the yeast nucleus
and thus the mechanism underlying the phenotypic
suppression remains unclear. Furthermore, given the
vast differences in centromere sequence and organization
in S. cerevisiae and Drosophila (53,54), it seems extremely
unlikely that Ddp1 could complement the Dscp160 yeast
mutant by interacting with yeast centromeres. Thus, Ddp1
may share other evolutionarily conserved functions
with Scp160 that have yet to be defined. Taken together,
these findings suggest that the vigilin family of proteins
controls gene expression through multiple mechanisms
and that those functions that are located within the
nucleus may be present only in higher eukaryotes. It is
interesting that the role of vigilins in modulating hetero-
chromatin is related to the RNAi pathway and that
this pathway is absent from S. cerevisiae (55). Perhaps the
nuclear function of vigilins arose in concert with the RNAi
pathways.
Beyond the implications for Scp160 and vigilin func-

tion, this study highlights the importance of experimen-
tally testing predicted targeting signals. Many proteins
contain putative classical nuclear transport signals pre-
sumed to contribute to protein function in the absence of
corroborating experimental evidence. Thus, caution must
be used when incorporating in silico predictions into
models for protein function.
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