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Abstract
Background: Cerebrovascular reactivity (CVR) is an important aspect of brain func-
tion, and as such it is important to understand relationship between CVR and func-
tional connectivity.
Methods: This research studied the role of CVR, or the brain's ability to react to 
vasoactive stimuli on brain functional connectivity by scanning subjects with blood-
oxygenation-level-dependent	(BOLD)	functional	magnetic	resonance	imaging	(fMRI)	
while	 they	 periodically	 inhale	 room	air	 and	 a	CO	2-enriched	 gas	mixture.	We	de-
veloped a new metric to measure the effect of CVR on each intrinsic connectivity 
network	(ICN),	which	contrasts	to	voxel-wise	CVR.	We	also	studied	the	changes	in	
whole-brain connectivity patterns using both static functional network connectivity 
(sFNC) and dynamic FNC (dFNC).
Results: We found that network connectivity is generally weaker during vascular di-
lation, which is supported by previous research. The dFNC analysis revealed that par-
ticipants	did	not	return	to	the	pre-CO	2	inhalation	state,	suggesting	that	one-minute	
periods	of	room-air	inhalation	is	not	enough	for	the	CO	2	effect	to	fully	dissipate.
Conclusions: Cerebrovascular reactivity is one tool that the cerebrovascular sys-
tem uses to ensure the constant, finely-tuned flow of oxygen to function properly. 
Understanding the relationship between CVR and brain dynamism can provide 
unique information about cerebrovascular diseases and general brain function. We 
observed that CVR has a wide, but consistent relationship to connectivity patterns 
between functional networks.
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1  | INTRODUC TION

Cerebrovascular reactivity (CVR) reflects the brain's ability to mod-
ulate cerebral blood flow (CBF) in response to vasoactive stimuli. 
CVR reflects dilation and constriction capacity of blood vessels in 
response to vasoactive stimuli. The dilation and constriction serve 
to regulate the cerebrovascular blood flow (CBF). Studying CVR 
provides an important perspective on how the brain functions in 
conjunction with the vascular system, which could lead to a greater 
understanding of cerebrovascular disease (Fierstra et al., 2013). CVR 
can be measured by inducing vasodilation, such as inhalation of a 
CO2	gas	mixture,	while	monitoring	perfusion-sensitive	MRI	signals	
such	as	blood-oxygenation-level-dependent	 (BOLD)	MRI	 (Lu	et	al.,	
2011). The use of gas inhalation to study perturbations in cerebral 
blood flow as reactions to stimuli dates back to the 1940s (Shenkin, 
Scheuerman, Spitz, & Groff, 1949) and has been a popular tool since. 
The gas mixture used has also changed over time, including both 
NO2-heavy	(Kety	&	Schmidt,	1945,	1948)	and	CO2-heavy (Shenkin, 
Novak,	 Goluboff,	 Soffe,	 &	 Bortin,	 1953)	 combinations.	 Other	 re-
searchers have studied the relationship between CVR and FNC prior 
to our research (Tak, Polimeni, Wang, Yan, & Chen, 2015).

Cerebrovascular	reactivity	is	typically	measured	using	BOLD	sig-
nal at the voxel level (Liu, De Vis, & Lu, 2019; Lu et al., 2014) by con-
ducting a linear regression between voxel-wise time course (TC) of 
the	BOLD	signal	and	end-tidal	(Et)	CO2,	which	is	the	CO2 content in 
the	exhaled	air	and	an	estimate	of	arterial	CO2 level in an individual's 
central nervous system. This method of studying CVR through the 
use	of	CO2 inhalation has been used in previous research to study 
cerebrovascular disease (Marshall et al., 2014; Yezhuvath et al., 2012) 
and	to	study	brain	networks	related	to	CVR	(Liu	et	al.,	2016).	It	should	
be noted, however, that there are other techniques to achieve the 
same goal, such as breath-holding techniques (Bright & Murphy, 2013; 
Chan, Evans, Rosen, Song, & Kwong, 2015; de Boorder, Hendrikse, & 
van der Grond, 2004) and venous refocusing for volume estimation 
(VERVE) (Chen & Pike, 2009; Hoge et al., 1999; Stefanovic & Pike, 
2005).	VERVE	is	a	newer	technique	than	CO2 gas inhalation, uses met-
abolically induced deoxyhemoglobins to deoxygenate subjects’ blood 
and	modulate	the	BOLD	signal.	However,	CO2 gas inhalation is still a 
widely used and exhaustively studied technique for measuring CVR.

In	 this	 research,	 we	 expanded	 the	 concept	 of	measuring	 CVR	
from the per-voxel level to a per-network level. The per-network 
CVR provides an understanding of pathophysiology as it relates 
to functional networks. Capturing the direct relationship between 
CVR and functional networks could provide deeper insight into how 
between-network connectivity is altered, moving beyond spatial 
patterns to provide information about the ongoing dynamics. We 
accomplished	this	by	calculating	the	correlation	between	the	EtCO2 
TCs and each network TC and then averaging this correlation across 
all subjects.

Our	research	further	sought	to	develop	a	better	understanding	
of how CVR and vasodilation relate to intrinsic connectivity net-
works	(ICNs)	as	well	as	the	virtually	unstudied	area	of	how	vasodi-
lation	due	to	CO2 inhalation impacts the connectivity relationships 

between	 ICNs.	We	 accomplished	 this	 by	 observing	 and	 analyzing	
the	 influence	 of	 the	 CO2 inhalation effect on functional network 
connectivity	(FNC),	estimated	as	the	cross-correlation	between	ICN	
time	courses	via	independent	component	analysis	(ICA).

Independent	component	analysis	 is	an	effective	 tool	as	 it	 is	da-
ta-driven and, as such, preserves the vascular relationship within 
and between networks (Anderson et al., 2011), which is why it was 
chosen	 to	 analyze	 the	CO2	 task	data.	 From	 the	CO

-
2 task data, we 

divided	 the	data	 into	CO2 and room-air time courses based on the 
EtCO2.	Static	FNC	was	applied	to	the	CO2 and room-air segmented 
ICN	time	courses	in	order	to	capture	the	overall	changes	of	the	FNC	
time courses, while dynamic FNC was used to capture more nuanced 
changes that may have been lost while using the full time course to 
measure	FNC.	In	order	to	include	the	time-varying	information	during	
the subjects' transitions between the different air-composition inter-
vals,	we	segmented	the	dFNC	time	courses,	as	opposed	to	the	 ICN	
time courses prior to dFNC. The results of both methods were cap-
tured	and	compared	between	the	room-air	and	CO2	conditions.	Our	
dFNC analysis, which was a first for the field, provided nuanced infor-
mation about the dynamics of the data, which has not been captured 
by previous research. This analysis of network connectivity, from both 
static and dynamic perspectives could lead to a better understanding 
of how the human brain operates in the context of CVR.

2  | METHODS

2.1 | Data collection and acquisition

The	study	was	approved	by	the	Institutional	Review	Board	(IRB)	of	
the University of Texas Southwestern Medical Center at Dallas. Each 
participant gave written informed consent. The dataset (Hou et al., 
2019) included 54 healthy participants that were part of the Dallas 
Lifespan Brain Study (DLBS) (Rodrigue et al., 2013) and consisted 
of 22 males and 32 female young adults with ages ranging from 20 
to	39.	During	the	scans,	each	subject	inhaled	a	CO2 gas mixture for 
approximately 60 s and then spent another 60 s breathing room air. 
This cycle recurred for a total of three times (Figure 1).

2.2 | Gas delivery system

Each subject was fitted with a nose and mouth apparatus affixed 
with a non-rebreathing valve, which ensures one-way gas flow, so 
they	 could	 breathe	 either	 room	 air	 or	 the	 CO2 gas mixture. This 
two-way	breathing	 valve	 is	 affixed	 to	 the	MRI	 head	 coil	 and	 con-
nected	to	a	bag	containing	 the	CO2 gas mixture. A research assis-
tant was present in the scanner room to manually operate a control 
valve	to	switch	between	room	air	and	CO2 gas. A signaling bar was 
inserted through a wave guide between the control room and the 
magnet room as a way to communicate with the research assistant 
when	 to	 switch	 the	 control	 valve	 between	CO2 gas and room air. 
The	EtCO2 concentration in the subject's lungs was recorded using a 
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capnograph device. The heart rate and arterial oxygen saturation of 
the subject were monitored using a pulse oximeter (Lu et al., 2014). 
During the CVR scan, the subjects began by breathing normal room 
air for 60 s (30 time points) and then breathed a gas mixture with an 
elevated	level	of	CO2 for another minute. From this point forward, 
the subjects cycled inhalation methods every 60 s (30 time points). 
The scan paradigm is shown in Figure 1, which shows the breathing 
task	in	detail.	CO2	gas	mixture	consisted	of	21%	O2, 74% N, and 5% 
CO2.	This	mixture	has	an	elevated	level	of	CO2, compared with the 
normal room air, which is generally negligible, but with similar levels 
of	O2 and N2 (Liu et al., 2016).

2.3 | Imaging parameters

The	 data	 were	 collected	 on	 a	 3-Tesla	 Philips	 MRI	 system	 with	 a	
32-channel	head	coil.	The	BOLD	fMRI	images	were	acquired	using	an	
echo-planar	imaging	(EPI)	sequence	with	a	repetition	time	(TR)	of	2	s,	
a	field	of	view	(FOV)	of	220	×	220	×	150	mm3, voxel size of (3.4 mm, 

3.4	mm,	3.5	mm),	43	total	slices,	a	64	×	64	matrix,	and	a	total	of	207	
volumes. The echo time (TE) was 25 ms, and the flip angle was 80°.

2.4 | Data preprocessing

Preprocessing was performed primarily within the SPM software 
(http://www.fil.ion.ucl.ac.uk/spm/) and custom MATLAB (https 
://www.mathw	orks.com)	 scripts.	 We	 used	 the	 INRIAlign	 toolbox	
in SPM to correct for subject head motion. Next, we performed a 
slice-timing correction using SPM. The data were then warped to the 
Montreal	Neurological	Institute	(MNI)	template	and	resampled	to	3	
mm3 isotropic voxels. Next, spatial smoothing with a 6 mm full width 
at	half-maximum	(FWHM	=	6	×	6	×	6	mm3). Finally, the TC of each 
voxel was z-scored (variance normalization).

2.5 | Preprocessing and ICA

Spatial	group	 ICA	was	used	 to	estimate	 ICNs	using	 the	group	 ICA	
of	 fMRI	 (GIFT)	 Toolbox	 (http://mialab.mrn.org/softw	are/gift/)	
(Calhoun & Adali, 2012; Calhoun, Adali, Pearlson, & Pekar, 2001). 
Subject-specific principal component analysis (PCA) was first used to 
reduce the subject level TC to 200 principal components. Next, the 
principal components of individual subjects were temporally con-
catenated, and the group-level PCA was used to reduce the aggre-
gated components from 200 to 100 along the direction of maximal 
variance across subjects (Erhardt et al., 2011). The infomax algorithm 
was applied to maximize spatial independence of the group PCA re-
duced data resulting in a total of 100 independent components. We 
selected 100 components based on previous research (Damaraju et 
al.,	2014;	Griffanti	et	al.,	2014)	which	shows	that	100	 ICs	 is	a	suf-
ficient amount to properly capture recognized networks. However, 
there	are	certainly	other	options	for	how	many	ICs	to	select,	but	we	
prefer to leave a full exploration of this topic for future work.

The	ICA	algorithm	was	repeated	20	times	and	the	most	central	
run was selected to ensure stability (Ma et al., 2011). A group in-
formation	guided	 ICA	 (GIG-ICA)	approach	 from	GIFT	was	used	 to	
back-reconstruct the subject-specific spatial maps and TCs from 
group-level	 independent	 components	 (Du	&	Fan,	2013).	 The	GIG-
ICA	 approach	has	 been	 shown	 to	 be	 a	more	 effective	 artifact	 re-
moval	approach	than	using	single-subject	ICA	prior	to	the	group	ICA	
analysis (Du et al., 2016) and more sensitive to group differences 
than a spatiotemporal regression approach (Salman, 2017).

2.6 | Post-ICA processing

Intrinsic	 connectivity	 networks	 were	 identified	 by	 assessing	 the	
spatial	maps	and	TCs	of	the	independent	components.	One	sample	
t tests for each spatial map were calculated and then those maps 
were thresholded to obtain the regions of peak activation clusters 
for	 each	 component.	 ICNs	 were	 selected	 if	 the	 peak	 activations	

F I G U R E  1   Mean and standard error across individuals of 
the	paradigm	of	gas	inhalation	(top)	and	the	concomitant	CO2 
(middle) modulation. As well as the mean and standard error across 
individuals	of	the	BOLD	signal	time	courses	(bottom).	The	x-axis	
represents time in seconds

Time in seconds

http://www.fil.ion.ucl.ac.uk/spm/
https://www.mathworks.com
https://www.mathworks.com
http://mialab.mrn.org/software/gift/
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covered gray matter and showed minimal overlap with vascular, 
ventricular, or edge regions (Allen et al., 2011). The mean spectral 
power (Allen et al., 2011) was calculated for the TC corresponding 
to a given component. This information, along with a priori knowl-
edge	of	ICNs	was	used	to	select	ICNs.	This	process	was	made	easier	
by	the	high-model-order	ICA	we	chose	(i.e.,	this	process	was	easier	
due to the 100 available components). These procedures resulted 
in	a	total	of	42	ICNs	(Figure	S1).	We	then	assigned	each	ICN	with	
a specific functional domain, based on our prior work (Allen et al., 
2012). The seven domains consisted of subcortical (SC), auditory 
(AUD), sensory motor (SM), default mode (DM), attention (ATN), 
visual	(VIS),	and	cerebellar	(CB).	Once	the	ICNs	were	selected,	the	
corresponding TCs were detrended and then despiked for FNC 
analysis (Du et al., 2016). As it has been shown to be effective in 
reducing noise, a low-pass band filter (0.15 Hz) was used to pre-
process	the	ICN	TCs	prior	to	computing	the	FNC	(Allen	et	al.,	2011).	
Post-ICA	processing	methods,	 including	detrending	and	despiking	
were applied as extra steps of cleaning to effectively reduce poten-
tial	noise	and	obtain	the	cleanest	possible	ICN	time	courses	while	
not	removing	important	information	needed	for	the	ICA	framework	
to properly separate the artifacts and neuronal components within 
fMRI	data.	Recent	work	has	studied	how	processing	order	changes	
results	in	certain	capacities	(Iraji	et	al.,	2019).	However,	it	is	worth	
noting that there is still room to study the impact of the order of 
detrending	 on	 ICA	 and	 artifact	 removal,	 which	 is	 worth	 further	
investigation.

2.7 | Data partitioning

The	EtCO2 TCs were used to determine in which time points the 
subjects	were	exposed	to	either	the	CO2 gas mixture or room air. 
The subject-wise TC was thresholded as either below the aver-
age	or	 above	 the	average,	defining	 the	 room-air	 and	CO2 condi-
tions used in our experiments. To mitigate noise associated with 
ambiguous time points, or those steps in which the subjects 
were transitioning between intervals, we also experimented with 
groups	where	 scans	 at	 the	 beginning	 and	 end	 of	 each	 CO2 and 
room-air interval were eliminated. The results from these com-
parisons showed no statistically significant differences from one 
another and thus we report only on the results using the above/
below mean approach. However, the time points at the beginning 
and end of each interval might be ambiguous due to the subjects’ 
transition	to	or	from	CO2	 inhalation.	In	order	to	evaluate	the	im-
pact of this, we performed the same experiments while remov-
ing	the	first	and	 last	time	point	of	each	 interval.	Our	results	and	
conclusions were effectively the same as with the case in which 
all	time	points	were	used.	The	portioning	was	done	after	ICA,	but	
the order with respect to the FNC calculations differed based on 
whether	the	FNC	was	static	or	dynamic.	In	the	case	of	sFNC,	the	
subject-wise	BOLD	TCs	were	separated	before	the	FNC	matrices	
for	both	groups	were	individually	calculated.	In	the	case	of	dFNC,	

the FNC TCs were portioned into the two groups. The act of por-
tioning the TCs after the dFNC calculations was done so as to not 
bias the FNC TCs by group.

2.8 | Network-wise CVR calculation

As this work focuses primarily on functional network analysis, it 
was	pertinent	 to	quantify	 the	 effect	 of	CO2 at the network level. 
This informs us as to which networks are most impacted by vascular 
reactivity.	 In	order	to	approximate	the	network-wise	CVR,	we	cal-
culated the correlation coefficients between each network TC and 
the	EtCO2 TC for every subject. These coefficients were then av-
eraged across all subjects per network and weighted with the net-
work spatial maps to better visualize network-wise CVR. Because 
the	ICN	time	courses	were	z-scored, the standard deviation of the 
TCs is 1. As such, the correlation values are the same as CVR calcula-
tions except for a global scaling value, the standard deviation of the 
EtCO2 TCs. Due to this similarity, we can rationally use correlation to 
represent	the	effect	of	CVR	on	the	ICNs.	We	do	this	as	correlation	
demonstrates	the	strength	of	the	similarity	between	the	EtCO2 and 
ICN	TCs.

2.9 | Static functional network connectivity (sFNC)

To compute sFNC, the TCs were segmented into either room-air or 
CO2	intervals	based	on	the	EtCO2 average for every subject. Then, 
the	pair-wise	correlations	between	ICN	TCs	were	calculated	for	each	
subject, which results in a 42 by 42 symmetric FNC matrix. The col-
umns and rows of the correlation matrix were ordered by the afore-
mentioned domains.

2.10 | Dynamic functional network connectivity 
(dFNC)

In	addition,	a	dynamic	FNC	analysis	was	performed	on	all	compo-
nent	TCs,	 including	both	room-air	and	CO2 time points, which in-
cludes sliding-window correlation followed by clustering (Allen et 
al., 2012). The chosen window size was 30 TR (60 s) in steps of 1 
TR, consistent with previous work suggesting this is a good trade-
off between over smoothing and sensitivity to noise (Vergara & 
Calhoun, 2018). To allow for tapering along the edges, each window 
was defined as a rectangular window of 30 time points, convolved 
with Gaussian with a 3 TR full width at half max. We estimated 
covariance	 from	 the	 regularized	 inverse	 covariance	matrix	 (ICOV)	
using	 the	graphical	LASSO	framework	 to	 reduce	noise	associated	
with	short	time	series	(Allen	et	al.,	2011).	In	order	to	impose	spar-
sity, we imposed an L1 norm constraint on the inverse covariance 
matrix. The log likelihood of unseen data was evaluated to optimize 
the regularization parameter for each subject in a cross-validation 
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framework. The dFNC TCs, or the correlation matrices per time 
point	for	every	subject	were	then	segmented	based	on	the	EtCO2 
thresholding method.

2.11 | Clustering

As has been observed in the past, patterns of network connectivity can 
reoccur within subjects across time and across subjects. Because of 
this, we used k-means to cluster the FNC windows in order to minimize 
the distance between members of a cluster and its cluster centroid 
(Allen et al., 2012). We used the city-block distance as our measure, 
due to previous research that suggested city-block was more effec-
tive than Euclidean (Aggarwal, Hinneburg, & Keim, 2001). The elbow 
criterion	was	used	to	estimate	the	model	order	of	five	clusters.	Initially,	
we clustered a subset of windows (known as subject exemplars) from 
every subject corresponding to the windows with maximal variance in 
correlations between component pairs. The exemplars were obtained 
by	calculating	the	variance	in	connectivity	across	all	ICN	pairs	at	each	
window and selecting windows corresponding to local maxima among 
this variance TC. From this, we clustered the exemplars and calculated 
the five centroids. These centroids were then used to initialize a clus-
tering of the entire dataset.

2.12 | Statistics

From the sFNC results, we computed average matrices across all 
subjects	for	both	the	CO2 and room-air results. We also computed a 
paired t-test	per	ICN	pair,	for	CO2 versus room air. The same method 
of comparison was used for each of the five dFNC states between 
the	CO2 and room-air matrices. From the dFNC matrices, we also 
calculated several additional analyses. We computed the transition 
matrices, or the probability of a subject changing from one state to 
another,	between	the	five	states	for	both	the	CO2 and the room-air 
results, and then compared the two transition matrices with a paired 
t-test. The mean dwell time (MDT), or how long a subject stayed in 
a single state without changing states, and the fraction rate (FR), or 
how	often	a	given	state	occurred,	were	also	calculated	for	both	CO2 
and room-air results and then compared via a paired t-test.

3  | RESULTS

Building upon previous whole-brain functional connectivity work, 
we	estimated	and	evaluated	42	ICNs	and	their	corresponding	time	
courses	using	spatial	group	ICA.	Using	these	networks,	we	proposed	
a solution to calculate the network-wise CVR. We then examined 

F I G U R E  2   (a) The voxel-wise CVR map compared with (b) the network-wise CVR map, showing (from left to right) interior left 
hemisphere, exterior left hemisphere, top, bottom, exterior right hemisphere, and interior right hemisphere. (c) A violin plot showing the 
median value, the interquartile range, the probability density, as well as the confidence (95%) interval of the network-wise CC values
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both static and dynamic FNC (sFNC, dFNC) for both room-air and 
CO2 time points separately.

3.1 | Network-wise CVR calculations

We applied the network-wise CVR measurement technique on this 
data, the results of which can be seen in Figure 2. From these results, 
we can see the difference between voxel-wise CVR and network-wise 
CVR. The voxel-wise CVR tends to be more prominent in the gray-mat-
ter regions of the brain, as that is where much of the brain's vasculature 
resides. The network-wise CVR, although it does show similarities to 
the voxel-wise CVR, there were key differences within certain parts 
of the brain. There are clear areas of low correlation which can be ob-
served in the network-wise CVR maps. This would appear to be caused 
by a lack of individual networks in those areas. However, there were 

also regions that were lower in the voxel-wise maps, possibly due to 
increased noise in the voxel-wise measurements and the multivariate 
nature of the network-wise CVR maps. Notably, there were prominent 
networks	with	 low	 correlation	 to	 the	 CO2 effect, including compo-
nents 79 and 55 in the DMN domain, as well as network 9 in the SC 
domain. Aside from the differences, the highest and most consistent 
correlations	occurred	in	networks	18,	19,	and	23	in	the	VIS	domain	and	
network 54 in the DMN domains, respectively. There were also several 
SM	networks	with	relatively	high	correlation	to	the	CO2 effect. These 
network names have been identified in Figure 2.

3.2 | sFNC results

The sFNC correlation matrices were calculated separately for 
CO2 and room-air time points. The paired t-test results provided a 

F I G U R E  3  The	mean	sFNC	maps	for	room-air	(left)	and	CO2 (right) time points. The black lines separate the FNC maps into the seven 
domains, labeled as follows: subcortical (SC), auditory (AUD), sensory-motor (SM), default-mode network (DMN), attention (ATN), visual 
(VIS),	and	cerebellar	(CB).	The	group	differences	(using	paired	t	tests)	between	room-air	and	CO2 time points. These values are the FDR-
corrected negative log of the p-values multiplied by the sign of the t-statistic. These values have been corrected for multiple comparisons via 
a false discovery rate (FDR) threshold of 0.05

F I G U R E  4  The	mean	dynamic	FNC	maps	for	both	room-air	(top	row)	and	CO2 (bottom row) time points. Each column represents the FNC 
for each state, from state 1 to state 5. Significant cell-wide differences are visible in States 2, 4, and 5
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comparison	between	the	CO2 and room-air matrices across all sub-
jects. The resulting matrix (Figure 3) was corrected for multiple com-
parisons using the false discovery rate (FDR), thresholded at 0.05.

3.3 | dFNC results

States 2, 4, and 5 showed higher brain connectivity in the room-air 
time	 points,	 as	 opposed	 to	 the	CO2 time points. This is expected 
since, as the oxygenation of the brain increases (due to venous oxy-
genation),	 the	BOLD	signal	 becomes	 less	 sensitive	 to	oxygenation	
effects caused by neural activity (Boynton, Engel, Glover, & Heeger, 
1996).	Both	room-air	and	CO2 time points showed higher connectiv-
ity	(compared	to	other	pair-wise	correlations)	within	the	VIS	domain	
compared with other domain pairs (Figure 4).

The five dFNC states, computed across all time steps regard-
less	 of	 CO2 content, were compared with paired t-tests across 
all subjects for each pair-wise correlation. From this, we saw the 
greatest differences in states 2, 4, and 5. The results can be seen in 
Figure 5. From this, we can see large differences between room-air 
and	CO2	time	points	within	the	SM	and	VIS	domains	in	state	2.	The	
SM domain showed higher correlation overall. We also see smaller 

differences in the SM domain in state 4. Additionally, we see that 
state 2 most often occurred in the first portion of the experiment, 
with very little occurrence during the remainder of the experiment.

Figure 6 shows the per-time point occurrence of each state av-
eraged across all subjects. This allows us to visualize changes in the 
dynamic connectivity which is consistent across individuals. We see 
that state 2 primarily occurs in the first segment of the experiment, 
before	the	subjects	have	inhaled	any	amount	of	the	CO2 gas mixture. 
This aligns with our FNC results showing that state 2 had a signifi-
cant	difference	between	room-air	and	CO2 time point.

3.4 | Transition matrices

After the dFNC states were calculated, we measured the tran-
sition probabilities between states. The transition matrices for 
both	 room	 air	 and	 CO2 show high transition probability within 
states (Figure 7) and relatively low transition probabilities be-
tween states. FDR-corrected paired t-tests show little difference 
between	states	room-air	and	CO2 transition probabilities, except 
for within state 2, which aligns with the other results related to 
state 2.

F I G U R E  5   Paired t	tests	for	each	pair-wise	correlation	of	the	dFNC	maps	for	(left	to	right)	states	2,	4,	and	5	for	room-air	and	CO2. The 
t tests are the negative log of the p-values, corrected with a false discovery rate (FDR) threshold of 0.05, and multiplied by the sign of the 
t-statistic. States 1 and 3 were omitted because they had nonsignificant differences

F I G U R E  6   The percent occurrence of 
each state across the entire time series 
(averaged across all subjects). We see 
that state 2 occurs most often in the first 
portion of the experiment, before subjects 
began	inhaling	the	CO2
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3.5 | Mean dwell time results

The mean dwell time (MDT), or the average number of consecutive 
time points a subject is classified as a given state, was also calcu-
lated	for	both	room-air	and	CO2 time points. A paired t-test was 
used to compare the MDT per each state between the room-air 
and	CO2 time points. MDT across all subjects showed significant 
differences	between	room	air	and	CO2 for states 1 and 2 (Figure 8).

3.6 | Fraction rate results

The fraction rate (FR), or the total number of time points a subject 
is classified as a given state, were also calculated. These results can 
be seen in Figure 8. As with the MDT results, paired t-tests were 
used	to	compare	the	FR	of	each	state	between	room-air	and	CO2 
time points. Similar to the MDT results, the FR of states 1, 2, and 4 
were	significantly	different	between	CO2 and room-air time points.

4  | DISCUSSION

Cerebrovascular reactivity is a powerful approach to study the 
human	 brain.	 In	 some	 recent	 studies,	 it	 has	 been	 shown	 that	

large-scale resting networks can be estimated from CVR data (Hou 
et al., 2019; Liu et al., 2016). However, CVR data have not yet been 
studied in the context of dynamic network connectivity and associ-
ated	dynamics	from	ICA.	Our	analysis	quantified	the	effect	of	CO2 
on	both	sFNC	and	dFNC	using	ICA.	This	provides	an	evaluation	of	
the connectivity across the entire brain during a CVR experiment, 
providing results similar to previous research (Clarisse, Mazerolle, & 
Jean Chen, 2015; Tak et al., 2015).

We	showed,	primarily	from	the	dFNC	results,	that	inhaling	CO2 
reduces the overall functional network connectivity. These results 
reinforce and extend previous research (Madjar et al., 2012; Xu et al., 
2011). Reduced functional connectivity can be seen both between 
domain and within domain.

We present novel results showing an estimation of CVR at the 
network level. This was accomplished by calculating the correla-
tion	between	each	network	and	EtCO2 TC, an estimation of CVR. 
The	EtCO2	TC	is	used	as	an	approximation	of	the	CO2 content in 
arterial blood within the brain (Lu et al., 2014), which acts as the 
causal agent of vascular reactivity. Currently, there is much dis-
cussion to whether the stimuli during hypercapnia are isometa-
bolic	 or	 not.	 Our	 primary	 assumption	 is	 hypercapnia	 effects	 do	
induce changes in neural activity. Previous work has challenged 
this suggesting that hypercapnic stimuli are isometric, or that neu-
ral activity does not change with respect to the baseline during a 

F I G U R E  7  The	transition	matrices	between	all	5	states	for	room-air	(left)	and	CO2 (middle) time points. The paired t	tests	between	CO2 
and	room-air	time	points	(right)	are	the	negative	log	of	the	p-values,	corrected	with	an	FDR	correction	with	a	threshold	of	0.05.	Only	one	
transition cell, 2–2 passed the FDR threshold

F I G U R E  8   (left) The FR of all 5 states 
comparing	CO2 and room-air time points. 
(right) Mean standard error of dwell times 
for	all	five	states	comparing	CO2 and 
room-air time points
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hypercapnia challenge (Chen & Pike, 2009). However, based on 
other research (Liu et al., 2019; Xu et al., 2011), we suggest that 
although the cause and effect is debatable, this does not invalidate 
the	results	from	CO2 manipulation. As such, we suggest that high 
correlation	between	the	EtCO2	and	network	BOLD	time	courses	
may imply that vascular reserve in a given network is abundant. 
Results	showed	high	correlation	between	the	EtCO2	TC	and	BOLD	
signal	in	both	the	VIS	and	SM	domains.	A	benefit	of	looking	at	the	
network-wise CVR relationship is that we can see the interplay 
between CVR and brain function. This interplay could be explored 
more in-depth in the future with a more nuanced analysis of the 
correlation between functional domains and CVR estimation. 
Future research could also focus on new techniques to evaluation 
the relationship between CVR and functional networks that are 
more nuanced than correlation alone.

Compared with the sFNC results, the dFNC results showed 
much	 larger	 differences	 between	 the	 room-air	 and	 CO2 results, 
both in local patterns and across the whole brain. This dynamic 
analysis provides nuanced information about how vasodilation 
impacts brain connectivity that is not detected in a static analy-
sis. For example, the dFNC analysis captured information about 
how the brains changed from the beginning of the experiment 
(before	 CO2 inhalation) and the time points during the experi-
ment. The dFNC analysis also appears to be more sensitive to the 
CO2-induced brain activity changes, capturing multiple significant 
changes in more than one state.

From the dFNC maps, as well as the state occupancy rates 
(Figure 7), we consider state 2 to be a state in which the room-air 
time	points	are	mostly	free	from	the	CO2 effect. We observed that 
state 2 has the most dominant anticorrelation patterns between 
functional domains, including patterns between the SM and DM 
domains,	the	SM	and	ATN	domains,	and	between	the	VIS	and	ATN	
domains; patterns that have been seen in previous research (Fox et 
al., 2005, Fox, Zhang, Snyder, & Raichle, 2009; Uddin, Clare Kelly, 
Biswal, Xavier Castellanos, & Milham, 2009). These anticorrelation 
patterns	 are	most	dominant	 in	 state	2.	Within	 this	 state,	 the	CO2 
effect had the highest impact on lowering the connectivity within 
the sensory-motor domain (seen in Figure 5). This result is consistent 
with	 previous	 findings	 showing	 that	 CO2 impacts the SM domain 
(Golestani, Kwinta, Strother, Khatamian, & Jean Chena, 2017; Liu et 
al.,	2013;	Mazerolle,	Ma,	Sinclair,	&	Pike,	2016),	as	well	as	the	VIS	do-
main,	meaning	that	our	findings	that	CO2 inhalation reduces connec-
tivity within these two domains accompanies an overall reduction of 
activity within the two domains. These results are congruent with 
results from the network-wise CVR estimation as there was both a 
significant	impact	of	CO2	on	the	FNC	of	SM	and	VIS	domains,	and	
both	domains	were	highly	correlated	with	the	EtCO2 TCs. We sug-
gest that this congruency adds robustness to our conclusions about 
both FNC differences and the effectiveness of our network-wise 
CVR estimation.

Based on our findings that there are marked differences be-
tween state 2 and the other states, we show that generally, the 
BOLD	signal	after	 the	start	of	 the	CO2 inhalation was affected by 

the	CO2 inhalation, even during the room-air intervals. This suggests 
to us that the minute-long periods of room-air inhalation may not 
be enough time for the average subject to recover from the neural 
modulation	effects	of	CO2 inhalation.

State 4 also produced interesting results, in that it showed more 
global differences than the other states (Figure 6). This indicates that 
although	CO2 has significant impact on specific regions, it also has 
a significant global effect as well. This result may indicate that the 
vasodilation	caused	by	CO2 occurs indiscriminately across the entire 
brain. State 5 shows a similarly global difference, but with a smaller 
effect.

The MDT and FR are secondary metrics used to evaluate 
time-varying information of the FNC patterns, which gives us a 
broader perspective than what FNC maps alone provide. From our 
results, the FR and MDT show significant differences within state 2 
(room	air	>	CO2), which is congruent with the FNC maps, but they 
also	 show	 significant	 differences	within	 state	 1	 (CO2 < room air). 
From Figure 6, we speculate that this might be related to the fact 
that state 1 contains few time points from the initial portion of the 
experiment. The dFNC matrices show insignificant cell-wise differ-
ences	within	state	1,	which	implies	that	both	room-air	and	CO2 in-
tervals	are	impacted	by	the	CO2 effect, as most of the time points 
occur	after	or	during	CO2 inhalation. However, the FR and MDT do 
show significant differences, which may be due to the lack of room-
air time points clustered as state 1, meaning there are fewer room-
air	time	points	compared	with	CO2 time points. This could possibly 
increase	the	difference	within	the	MDT	between	room-air	and	CO2 
time points and would definitely increase the FR differences. We 
also see that there are significant differences within the state 5 FNC 
maps	between	room	air	and	CO2, but no significant difference in the 
FR	or	MDT.	It	is	also	possible	that	this	is,	in	part,	due	to	the	opposite	
effect found in state 1. Approximately 1% of all time points within 
the first interval are clustered as state 5. This may be the cause of 
some of the differences between the FNC maps but may also con-
tribute to the similarities found in the FR and MDT. The first inter-
val is a slightly larger length of time than the other intervals, 80 s 
compared with 60 s. But, due to the lower number of state 5 time 
points within the first interval compared to the other intervals, there 
would	be	a	more	equal	number	of	room-air	time	points	and	CO2 time 
points. This would show the opposite effect from state 1, as it may 
reduce the MDT differences, and would most likely reduce the FR 
differences.

5  | CONCLUSION

Our	network-wise	CVR	calculation	is	a	simple	method	to	depict	the	
relationship	between	CVR	and	 individual	 ICNs.	Whether	 this	 rela-
tionship is causal one way or another is still up for discussion and 
future research. We suggest that this method could be used in fu-
ture analyses of CVR to capture more of the spatial relationships 
using the multivariate connectivity networks. The network-wise 
CVR maps showed the relationship between CVR and networks, 
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which, when compared to per-voxel CVR maps, show distinctive dif-
ferences. We showed high network-wise CVR in both the SM and 
VIS	domains.

The results from our experiments showed widespread dif-
ferences	 between	 room-air	 and	 CO2 time points. We saw that 
across	 the	whole	 brain,	CO2 time points showed lower network 
correlation values than the room-air time points. The dFNC analy-
sis, likely a more natural way to analyze brain connectivity, shows 
more	 sensitivity	 to	 CO2 effects not detected by the sFNC. For 
instance, from the dFNC results, we concluded that state 2 was 
most	prevalent	prior	to	exposure	to	CO2. Given this, it may be use-
ful to utilize this connectivity pattern to predict breathing nor-
mally	or	breathing	a	CO2 heavy air mixture. Due to the differences 
between the states, we also suggest that the minute-long period 
of	 time	 between	 CO2 inhalation intervals was not enough time 
for	the	subjects	to	fully	recover	from	the	CO2 gas-induced neural 
modulation. We also concluded that during the task portion of the 
experiment, the network correlations across the whole brain for 
both global and local effects, with local effects primarily affecting 
the	SM	and	VIS	domains.	The	observed	effects	of	CO2 on the SM 
and	VIS	domains	are	comparable	with	the	network-wise	CVR	cal-
culations	which	showed	high	correlation	between	BOLD	signals	in	
these	domains	and	the	EtCO2 TCs respectively.
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