
*For correspondence:

bita@ohsu.edu

Present address: †Janelia

Research Campus, Howard

Hughes Medical Institute,

Ashburn, United States

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 24

Received: 30 June 2017

Accepted: 22 October 2017

Published: 23 October 2017

Reviewing editor: Geoffrey

Schoenbaum, NIDA Intramural

Research Program, United States

Copyright Park and

Moghaddam. This article is

distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Risk of punishment influences discrete
and coordinated encoding of reward-
guided actions by prefrontal cortex and
VTA neurons
Junchol Park1†, Bita Moghaddam2*

1Department of Neuroscience, University of Pittsburgh, Pittsburgh, United States;
2Department of Behavioral Neuroscience, Oregon Health and Science University,
Portland, United States

Abstract Actions motivated by rewards are often associated with risk of punishment. Little is

known about the neural representation of punishment risk during reward-seeking behavior. We

modeled this circumstance in rats by designing a task where actions were consistently rewarded

but probabilistically punished. Spike activity and local field potentials were recorded during task

performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in

reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of

putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship

between action and punishment. At the network level, we found that coherent theta oscillations

synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal

spike activity in the two regions during punishment-free actions. This synchrony declined as a

function of punishment probability, suggesting that during reward-seeking actions, risk of

punishment diminishes VTA-driven neural synchrony between the two regions.

DOI: https://doi.org/10.7554/eLife.30056.001

Introduction
Goal-directed actions aimed at obtaining a reward often involve exposure to an aversive event or

punishment. For example, foraging for food in the wild may result in encountering a predator. In a

causally and socially complex world, appropriate representation of punishment that lurks around

during reward-seeking actions is critical for survival and optimal action selection. Deficits in this

representation may be associated with detrimental behavioral patterns observed in impulsive behav-

ior and addictive disorders while exaggerated representation of punishment risk may be linked to

anxiety disorders (Bechara et al., 2000; Gillan et al., 2016; Hartley and Phelps, 2012; Lee, 2013;

Mineka et al., 1998).

How is risk of punishment associated with reward-seeking actions represented by the brain? To

begin to address this question, we focused on the ventral tegmental area (VTA) and the medial pre-

frontal cortex (mPFC). Neurons in the VTA including dopamine (DA) and non-dopamine neurons are

critical components of the reward circuitry including reward-mediated actions (Cohen et al., 2012;

Matsumoto et al., 2016; Roesch et al., 2007; Schultz, 1998; Tan et al., 2012; van Zessen et al.,

2012; Wise, 2004; Wood et al., 2017). We, therefore, hypothesized that ensembles of VTA neurons

represent risk of punishment associated with reward-guided behavior. Importance of VTA notwith-

standing, the mPFC is also implicated in reward representation and reward-guided action selection

(Barraclough et al., 2004; Buschman et al., 2012; Kobayashi et al., 2006; Powell and Redish,

2016; Rich and Shapiro, 2009), as well as control of aversive and anxiety-like behavior
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(Adhikari et al., 2010; Kim et al., 2017; Kumar et al., 2014; Likhtik et al., 2014; Park et al., 2016;

Ye et al., 2016). At the network level, the mPFC and VTA (both DA and non-DA neurons) send

reciprocal projections to each other (Berger et al., 1976; Carr and Sesack, 2000a; 2000b). The

VTA neurons projecting to mPFC have been shown to respond to stressful and anxiogenic drugs

with a greater degree of sensitivity compared to the mesolimbic or mesostriatal projections

(Abercrombie et al., 1989; Bradberry et al., 1991; Moghaddam et al., 1990; Thierry et al., 1976).

Furthermore, photostimulation of the VTA DA input to the mPFC elicits anxiety-like behavior

(Gunaydin et al., 2014; Lammel et al., 2012), suggesting a more causal role for this neural circuit in

aversive behavior. Given this, we further hypothesized that the interaction between VTA and mPFC

provides a dynamic representation of punishment risk during reward-seeking actions.

To test these hypotheses, we first designed and validated a task that allowed us to assess

reward-guided actions in the absence or presence of punishment risk in the same recording session.

The latter criterion was critical because it allowed us to track the activity of the same ensembles of

neurons as a function of punishment risk. The task was designed so that an instrumental action

always procured a reward, but the same action probabilistically led to punishment with blockwise

varying degrees of contingency. Thus, different blocks had varying risk of punishment associated

with an action while action-reward contingency remained constant. We then recorded single unit

activity and local field potentials (LFP) from the VTA and mPFC simultaneously during this task. The

simultaneous recording allowed us to compare the inter- and intra-regional neural codes for punish-

ment risk-based modulation of behavioral events.

At the single unit level, we found that VTA and mPFC neurons encode risk of punishment and

blockwise/trial-by-trial behavioral modulation during action execution. At the network level, we

found that coherent theta oscillations synchronize the VTA and mPFC in a bottom-up direction,

effectively phase-modulating the neuronal spike activity in the two regions during punishment-free

actions. This oscillation-mediated neural synchrony declined as a function of punishment risk, sug-

gesting that desynchronization of coordinated activity in these two regions signals punishment.

eLife digest When deciding what to do, we usually try to predict the likely outcomes of our

actions. This helps us choose behaviors that will lead to positive outcomes, or rewards, and avoid

those that will lead to negative outcomes, or punishments. But in practice, actions that offer the

possibility of reward often involve varying degrees of risk. When animals forage for food, for

example, they risk encountering a predator. In our complex social world, applying for a job or asking

someone out on a date means risking rejection. Being able to weigh up the likelihood of positive

and negative outcomes is vital for effective decision-making.

Park and Moghaddam have now studied how the brain’s reward system takes account of possible

negative outcomes. Rats learned to poke their noses into a window inside a testing box whenever a

light came on, to earn a sugar reward. The rats completed three blocks of trials. During the first

block, they received only rewards. But for a few trials during the second and third blocks, they also

received a mild electric shock as well as their reward.

Throughout the task, Park and Moghaddam monitored the activity of two regions of the brain

that encode rewards, the ventral tegmental area (or VTA for short) and the medial prefrontal cortex.

The VTA sits deep within the brain and produces the brain’s reward chemical, dopamine. The

prefrontal cortex is at the front of the brain and helps support cognition. In the reward-only block of

trials, neurons in the VTA synchronized their firing with neurons in the prefrontal cortex. In blocks

two and three, where there was a risk of shock, this synchrony decreased. This suggests that the

prefrontal cortex takes greater control of decision-making when an unpleasant outcome is possible.

Consistently overestimating the risk of things going wrong will lead to anxiety. Underestimating

the risks will lead to impulsivity and poor decision-making. Park and Moghaddam’s experiment

offers a way to study the mechanisms underlying these processes in animals. The results also

suggest that using scalp electrodes to track prefrontal cortex activity in patients could be helpful in

clinical trials for anxiety or impulse-control disorders.

DOI: https://doi.org/10.7554/eLife.30056.002
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Results

Impact of punishment risk on reward-seeking behavior
Blockwise changes in punishment risk resulted in changes in behavior (Figure 1a–b, Video 1 and 2).

Videos are representative examples of trials in block 1 (Video 1) and block 3 (Video 2) of the same

animal. As clearly captured in Video 2, animals do not merely freeze during RTs; they make incom-

plete nose pokes, which, importantly, are selectively observed during instrumental pokes but not

during trough pokes to retrieve reward. The mean response time (RT) and time spent in immobility

during RT markedly increased as a function of punishment (Figure 1c; GLM repeated measures, F2,

32 = 24.94, p<0.001; GLM repeated measures, F2, 32 = 22.44, p<0.001, respectively). These increases

reflect a state anxiety but not diminished motivation to obtain reward as the latency for reward

retrieval (reward RT) remained similar across blocks regardless of punishment (Figure 1c inset; GLM

repeated measures, F2, 32 = 2.97, p=0.07). Punishment risk significantly increased the trial-to-trial

variability in RT (Figure 1—figure supplement 1a; GLM repeated measures, F2, 32 = 13.89,

p<0.001). This increase was associated with shock occurrences, since the RT varied as a function of

the trial lag (distance) from the previous shock (Figure 1—figure supplement 1b) indicating that ani-

mals adjusted their behavior across trials even within the same block in the face of punishment risk.
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Figure 1. Punishment risk induces anxiety-like changes in reward-seeking behavior. (a) A schematic diagram illustrating the task. Punishment risk varied

across blocks – Block1, P(S|A)=0; Block2, P(S|A)=0.06; Block3, P(S|A)=0.1. Every nose poke procured reward across all blocks – P(R|A)=1. (b)

Representative behavioral trajectories in block 1 (left, 10 trials) and block 3 (right, 10 trials). (c) Significant increases in response time (RT, filled bars,

mean ±s.e.m.) and immobile RT (slashed bars – time elapsed motionless during RT) were observed as a function of punishment risk. (Inset) Latency from

reward delivery to retrieval (reward RT) did not differ across blocks. 17 rats performed this task with electrophysiological recording. (d) RT, immobile RT,

and reward RT did not change across blocks in the absence of punishment (no-shock control session). 12 out of the 17 rats performed this task with

electrophysiological recording before they ever received an electrical foot shock. (e) A separate group of rats (N = 9) performed three sessions of the

task with pretreatment of saline (Day 1) – diazepam (2 mg/kg) – saline (Day 2). Pretreatment of an anxiolytic diazepam (2 mg/kg) but not saline injection

averted punishment-induced increase in the mean RT. **p<0.005; post hoc test. (Inset) Injections did not influence reward RT.

DOI: https://doi.org/10.7554/eLife.30056.003

The following figure supplement is available for figure 1:

Figure supplement 1. Punishment risk increases trial-to-trial variability in RT.

DOI: https://doi.org/10.7554/eLife.30056.004
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To examine whether the increase in RT reflected learning of action-punishment contingency or

merely an immediate impact of shock, we compared RTs of early trials in block 2 and 3, before the

delivery of the 1st shock. Rats displayed a subtle but significant increase in RT in block 2, and robust

increase in block 3 before the first shock (Figure 1—figure supplement 1c; GLM repeated meas-

ures, post hoc pairwise comparisons, p<0.001), suggesting that there is learning of action-punish-

ment contingency from previous experiences. During the no-shock control session, when animals

performed the same number of trials and blocks in the absence of punishment, the mean RT and the

variance RT did not differ across blocks (Figure 1d, Figure 1—figure supplement 1d).

The punishment-induced increase in RT suggested a transient anxiety-like state during block 3.

This was confirmed by the anxiolytic drug, diazepam (2 mg/kg), significantly attenuating the increase

in RT of block 3, compared with saline-pretreatment data (Figure 1e; Repeated measures ANOVA,

F4, 48 = 3.27, p=0.019; post hoc test, block 3, p values < 0.01). Diazepam or saline injected animals

showed equivalent levels of reward RT (Figure 1e inset; Repeated measures ANOVA, F4, 48 = 0.34,

p=0.852; post hoc test, p values > 0.51).

mPFC and VTA single units represent punishment risk
During task performance, 167 mPFC and 102 VTA single units were recorded from histologically ver-

ified electrodes (Figure 2—figure supplement 1). For all single unit data analyses, we classified VTA

units into putative dopamine (DA, n = 55) and putative non-dopamine (non-DA, n = 47) subtypes

(Figure 2—figure supplement 2, Materials and methods). We first examined the trial-averaged neu-

ronal activity of mPFC, VTA putative DA, and non-DA units to compare their general tuning proper-

ties during task events – cue onset, action, and reward delivery. Figure 2a shows peri-event

neuronal activity averaged across all trials and blocks. The majority of VTA putative DA units dis-

played phasic excitatory responses at each task event as has been previously reported

(Schultz et al., 1993), whereas non-DA and mPFC units showed weaker and temporally diffuse

responses (Figure 2a–c; Repeated measures ANOVA, post-cue, F2, 266 = 22.05; peri-action, F2, 266 =

43.78; post-reward, F2, 266 = 48.93, p values < 0.001).

We then examined modulation of single neuronal activity across blocks (Figure 2b–c). Some of

the mPFC, VTA putative DA, and non-DA single units appeared to have modulated their peri-event

firing rates across blocks as a function of punishment risk. Given this, we quantified individual neuro-

nal representation of punishment using a percent explained variance (wPEV) statistic

(Buschman et al., 2012). This analysis essentially quantifies how much of total variance in a neuron’s

firing rate across trials can be explained by blockwise changes in punishment risk (Materials and

methods). Comparing the wPEV statistics of the original spike trains with the wPEV distribution of

surrogate spike trains created by shuffling block labels (Figure 2d–e, Materials and methods)

allowed us to identify punishment encoding units, i.e. units that responded to the same events (cue,

action, reward) differently in different blocks. The most robust punishment encoding occurred during

the peri-action epoch (Figure 3, Figure 3—figure supplement 1) given that wPEVs during this

period was greater than that of the peri-cue or peri-reward epochs (Figure 3a). There was a signifi-

cant interaction between time and unit groups in the peri-action wPEV (Figure 3a; Repeated

Video 1. Example task performance (three trials) in the

absence of punishment risk (block 1). Task events are

captioned.

DOI: https://doi.org/10.7554/eLife.30056.005

Video 2. Example task performance (one trial) in the

presence of punishment risk (block 3). Task events are

captioned.

DOI: https://doi.org/10.7554/eLife.30056.006
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Figure 2. mPFC, VTA putative DA, and non-DA single units respond to task events and punishment. (a) Peri-event activity averaged across all trials and

all units within each neuron group. Dual-colored bars above indicate significant pairwise differences at corresponding time bins according to the post

hoc analysis (p<0.05). The green shadows indicate time windows of statistical analyses. (b) Baseline-normalized peri-event firing rates of mPFC units are

plotted per block to reveal neuronal responses to punishment. Only units with significant activity modulation are plotted – that is, punishment-encoding

units (Figure 3—figure supplement 1). (c) Peri-event activity of VTA putative DA (top panels) and non-DA (bottom panels) punishment-encoding units.

(d-e) Identification of single units discriminating their firing rates across different blocks as a function of punishment. (d) Left, A raster plot showing a

representative mPFC unit’s peri-action spike activity across blocks with spike density functions of different blocks superimposed. Right, To quantify each

unit’s encoding, percent variance in the unit’s firing rate explained by blockwise change in punishment contingency (wPEV) was calculated. To

determine the global wPEV band, trial-shuffled surrogate wPEV distribution (light blue curves) was acquired, and the pointwise and global wPEV bands

were found from the distribution at a = 0.01 (Materials and methods). A unit whose wPEV curve crosses the global band was determined as a

Figure 2 continued on next page
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measures ANOVA, F38, 5054 = 2.68, p<0.001), indicating distinct time-varying patterns in representa-

tion of punishment by different unit groups. Similar time-varying patterns were observed in the pro-

portion of units representing punishment risk (Figure 3b). To examine the time course of individual

neuronal encoding in the peri-action epoch, we recalculated the peri-action wPEV using a narrower

moving window (50 ms width, 5 ms step) to reveal time points of individual neuronal representation

of punishment at a higher temporal resolution. Response of VTA putative DA neurons appeared to

be concentrated specifically around the time of the action, whereas non-DA and mPFC units dis-

played temporally diffuse patterns (Figure 3c). This result suggested that DA units may be involved

in more precise signaling of action and punishment risk, whereas the mPFC and VTA non-DA units

may represent more persistent effects of punishment on motivational/emotional states. Consistent

with this function, substantial proportions of mPFC (31%) and non-DA (32%) units significantly modu-

lated their baseline firing rates across blocks, suggesting that they represent punishment on a longer

temporal scale (Figure 3d). Fewer VTA putative DA units (14%) modulated their baseline activity

(Figure 3d).

Next we examined the direction of neuronal response (excitation or inhibition) as a function of

punishment. Similar proportions of mPFC units encoded punishment with bidirectional modulation

of activity (Figure 4a), which resulted in the lack of net excitation or suppression of activity across

blocks (Figure 4b; Repeated measures ANOVA, F2, 241 = 2.09, p=0.126). The majority of VTA puta-

tive DA units encoded punishment risk with an excitatory response (Figure 4c) specifically at the

time of the action (Figure 4d; Repeated measures ANOVA, F2, 105 = 3.96, p=0.022), but not during

other task events. Similarly, a greater number of non-DA punishment-encoding units displayed an

excitatory modulation of activity (Figure 4e) with a trend toward a net excitatory effect of the block

(Figure 4f; Repeated measures ANOVA, F2, 105 = 2.94, p=0.057).

To distinguish neuronal encoding of punishment risk from other confounding factors that may

cause block-dependent changes in neuronal activity (e.g., satiety, fatigue, or spontaneous drifting

over time), we performed a control experiment recording from 126 mPFC and 57 VTA single units

(putative DA, n = 28; putative non-DA, n = 29) during performance of three consecutive punish-

ment-free blocks. We observed a much weaker blockwise changes in firing rate indicating negligible

impact of confounding factors on the neuronal encoding of punishment (Figure 5).

Taken together, these data indicate that both VTA and mPFC single neurons convey information

about punishment risk during reward-seeking behavior. Moreover, we observed distinct temporal

and directional tuning properties from mPFC, VTA putative DA, and non-DA neuronal subpopula-

tions. This heterogeneity may enable the VTA-mPFC circuit to represent diverse motivational/emo-

tional aspects of punishment risk.

Punishment risk-induced trial-by-trial changes in response time is
tracked by mPFC and VTA neurons
Our behavioral data indicated remarkable trial-to-trial variability of RT in the face of punishment risk

(Figure 1—figure supplement 1). To better understand the relationship between the behavioral

and neural data, we examined whether, and to what extent, RT variability is related to mPFC and

VTA neuronal activity. At the single neuron level, only a small fraction of single units exhibited signifi-

cant correlation between firing rate and the RT across trials (mPFC, 10.2%; VTA putative DA, 36.4%;

VTA putative non-DA, 25.5%). This result indicated that inferring trial-by-trial behavior from single

neuronal activity was limited. We, therefore, moved on to correlating single-trial RT with neuronal

Figure 2 continued

punishment-encoding unit. (e) Left, A representative VTA unit’s peri-action activity across blocks. Right, This VTA unit satisfied the punishment-encoding

criterion.

DOI: https://doi.org/10.7554/eLife.30056.007

The following figure supplements are available for figure 2:

Figure supplement 1. Histologically verified placements of mPFC and VTA electrodes.

DOI: https://doi.org/10.7554/eLife.30056.008

Figure supplement 2. Classification of VTA single units to putative DA or non-DA units.

DOI: https://doi.org/10.7554/eLife.30056.009
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Figure 3. mPFC, VTA putative DA, and non-DA single units encode punishment risk by modulating their peri-

event and baseline firing rates. (a) Shaded areas indicate the mean ±s.e.m. wPEV averaged across all units in each

neuron group across time. (b) Line plots indicate proportions of punishment-encoding units. (c) To reveal time

points of punishment encoding, crossing of the global wPEV band by each unit is marked with a line segment

(Materials and methods). Only the units with at least one crossing are included in each plot. Single units with

significant change in their baseline firing rate are marked with gray lines (see below). (d) Subpopulations of single

units represented punishment with significant excitatory or inhibitory modulation of their baseline (inter-trial

interval) activity. The mean ±s.e.m. baseline firing rates are plotted across trials and blocks.

DOI: https://doi.org/10.7554/eLife.30056.010

The following figure supplement is available for figure 3:

Figure 3 continued on next page
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population activity. A conventional measure of the neuronal population activity is averaging across

neurons, but the bi-directionality in the individual neuronal representation of risk (Figure 4) under-

mined the feasibility of this approach. As an alternative approach, we used a neuronal population

state space analysis that detected patterns of activity co-modulation in simultaneously recorded

mPFC or VTA populations (comprising of 10 or more units). Trial-by-trial neural population trajecto-

ries were extracted within this state space using a dimensionality reduction method Gaussian pro-

cess factor analysis (GPFA; Materials and methods) (Yu et al., 2009). Examining the correlation

between the neural population trajectory and the RT across trials revealed that mPFC and VTA pop-

ulation trajectories track trial-to-trial variation in RT (Figure 6). Specifically, the deviation (Euclidean

distance) of each trial’s neural trajectory from the block 1 mean trajectory was significantly correlated

with the deviation of each trial’s RT from the block 1 mean RT. Simply put, the further each trial’s

neural trajectory departed from the block 1 mean trajectory, the greater the RT appeared (Figure 6,

Figure 3 continued

Figure supplement 1. Representative punishment-encoding mPFC (a-b), VTA putative DA (c-d), and non-DA (e-f)

single units.

DOI: https://doi.org/10.7554/eLife.30056.011
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Figure 4. Distinct subpopulations of single units represent punishment risk with excitatory or inhibitory activity

modulation. (a, c, e) Units are distributed horizontally based on modulation of their peri-action activity across

blocks as a function of punishment. Standardized regression coefficients (SRC) were computed for a normalized

quantification of each unit’s peri-action activity modulation by punishment (Materials and methods). In each

distribution, units with excitatory or inhibitory activity modulation are located in the right or left portion of the

distribution. Punishment-encoding units are solid-colored, while non-encoding units are pale-colored. (a) Direction

of the mPFC neuronal activity modulation. (b) The baseline-normalized activity of the mPFC encoding units per

block (mean ±s.e.m.). (c) Direction of the VTA putative DA neuronal activity modulation. (d) The activity of the VTA

DA encoding units per block (mean ±s.e.m.). Asterisk indicates a significant effect of block on the peri-action

activity (p<0.05). (e) Direction of the VTA putative non-DA neuronal activity modulation. (f) The activity of the VTA

non-DA encoding units per block (mean ±s.e.m.).
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Figure 6—figure supplements 1–2). Significant correlations were observed in all four mPFC and

three VTA populations comprising 10 to 25 single units subjected to this analysis (Figure 6—figure

supplements 1–2). Next we looked to see if the neural population trajectories could track behavioral

variation within each block. As our behavioral data indicated more pronounced trial-to-trial variability

in RT in the riskiest block (Figure 1—figure supplement 1), it was of particular interest whether the

increased behavioral variability was correlated with the neural population trajectories in this block.

Significant correlations were observed specifically in the riskiest block in two of the four mPFC popu-

lations (Figure 6—figure supplement 1), indicating that the neural and behavioral correlation

emerged as the behavioral variability arose along with risk of punishment. Similarly, significant corre-

lations were detected in two of the three VTA populations in the riskiest block (Figure 6—figure

supplement 2).

Figure 5. Blockwise firing rate changes in the presence vs absence of punishment risk. (a) Proportion of mPFC

units showing significant firing-rate changes across blocks during the peri-action epoch in the presence vs absence

(no-shock control) of punishment. (b) Left, Percent variance in the mPFC unit firing rates explained by the block

shift (wPEV) in the presence vs absence of punishment (mean ±s.e.m.). Right, Maximum peri-action wPEV of mPFC

units differed in the presence vs absence of punishment (Student’s t-test, t291 = 3.81, p<0.001). (c) Proportion of

VTA putative DA units showing significant firing-rate changes across blocks. (d) Left, wPEV of VTA putative DA

units. Right, Maximum peri-action wPEV of VTA putative DA units (t81 = 4.19, p<0.001). (e) Proportion of VTA

putative non-DA units showing significant firing-rate changes across blocks. (f) Left, wPEV of VTA putative non-DA

units. Right, Maximum peri-action wPEV of VTA putative non-DA units (t74 = 2.25, p=0.028). *p<0.05, **p<0.005.

DOI: https://doi.org/10.7554/eLife.30056.013
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Finally, we computed trial-by-trial trajectories of neuronal population activity recorded from the

no-shock control sessions. Consistent with the lack of correlation observed in the absence of risk,

there was no significant correlation between mPFC and VTA population activity and RT (Figure 6—

figure supplements 1–2). These results indicate that distinct neuronal population activity track trial-

to-trial variation of reward-seeking behavior in the presence, but not the absence, of punishment

risk.
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Figure 6. mPFC and VTA neuronal populations track the trial-to-trial variability in RT. (a) Trial-by-trial trajectories of

an mPFC neuronal population (16 units) activity were extracted using the GPFA (Materials and methods).

Trajectories of trials in block 1 and 3 are visualized in a population state space comprising the top three ortho-

normalized dimensions. For simplicity, ten trials were randomly selected per block. The dimensionality of state

space was determined to be five for all populations, based on the cross-validated data likelihood (Materials and

methods). Each trajectory corresponds to �0.5 to 0.5 s peri-action epoch (action occurring at time = 0). Filled

circles indicate initial points of neural trajectories. Heavy lines indicate the mean trajectory averaged across all

trials in each block. The purple-colored block 3 neural trajectory represents a single trial with an outlying RT similar

to a block 1 trial. (b) A scatter plot indicating behavioral deviation from the block 1 mean RT and neural deviation

from the block 1 mean trajectory of the mPFC population shown in (a). RT was log transformed for proper scaling.

Superimposed color-coded lines indicate regression slopes per block. The dark gray line indicates the regression

slope for total trials pooled across blocks. The behavioral and neural correlation coefficients calculated on total

trials and trials per block are indicated. *p<0.05, **p<0.005. (c) Neural population trajectories of a representative

VTA population comprising 10 units. (d) A scatter plot indicating behavioral deviation from the block 1 mean RT vs

neural deviation from the block 1 mean trajectory of the VTA population shown in (c).

DOI: https://doi.org/10.7554/eLife.30056.014

The following figure supplements are available for figure 6:

Figure supplement 1. Single-trial analysis of mPFC neuronal population activity reveals the linkage between

neural and behavioral variability during risky reward-seeking.

DOI: https://doi.org/10.7554/eLife.30056.015

Figure supplement 2. Single-trial analysis of VTA neuronal population activity reveals the linkage between neural

and behavioral variability during risky reward-seeking.

DOI: https://doi.org/10.7554/eLife.30056.016
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Punishment risk diminishes neural synchrony between VTA and mPFC
At the neural network level, synchronous oscillations can provide temporal coordination among

groups of neurons, which may subserve cognitive and affective functions (Adhikari et al., 2010;

Buschman et al., 2012; Fries, 2015; Karalis et al., 2016a; Kim et al., 2012; Likhtik et al., 2014).

We, therefore, examined oscillation-mediated neural synchrony during reward-seeking behavior in

the absence and presence of punishment risk.

During punishment-free performance in block 1, theta oscillations in the frequency band of 5 to

15 Hz emerged in mPFC and VTA before and during action execution (Figure 7a–d). This oscillation

was markedly reduced as a function of punishment risk in both regions (Figure 7e–f). Of note, this

change in theta oscillation observed before and during the action could not be caused by changes

in animals’ motor activity because they all engaged in the action within this epoch. A significant

interaction between punishment and frequency band was detected in LFP power during post-cue

and pre-action time periods in both regions (Repeated measures ANOVA, VTA, post-cue, F52, 1092 =

5.11; pre-action, F52, 1092 = 7.78, p values < 0.001; mPFC, post-cue, F52, 1872 = 1.60, p=0.005; pre-

action, F52, 1872 = 2.29, p<0.001, Figure 7g–h). Theta oscillations appeared to be coherent between

the two regions during the punishment-free action, but the coherence significantly decreased as a

function of punishment (Figure 7i). A significant interaction between punishment and frequency

band was observed in LFP coherence during the pre-action period (Repeated measures ANOVA,

post-cue, F52, 1092 = 0.93, p=0.62; pre-action, F52, 1092 = 2.45, p<0.001).

To examine mutual influences (directionality) of LFP time series between the two regions, we

quantified Granger causal influences (GC) in VTA-to-mPFC and mPFC-to-VTA directions (Materials

and methods). During punishment-free action in block 1, the theta oscillation was driven by VTA, as

mPFC was GC influenced by VTA significantly greater than the GC influence in the other direction

(Figure 7j). A significant interaction between directionality and frequency band was observed in GC

coefficients in all blocks, indicating that the oscillation directionality varied across frequency bands

(Figure 7j; Repeated measures ANOVA, Block 1, F25, 700 = 2.05, p=0.002; Block 2, F25, 700 = 2.38,

p<0.001; Block 3, F25, 700 = 5.59, p<0.001). Importantly post hoc analysis revealed significantly

greater VTA-to-mPFC directionality in frequency bands including the theta band in block 1, and the

directionality became less apparent in blocks 2 and 3 (Figure 7j, data not shown for block 2). Taken

together, these results suggest that the VTA-driven theta oscillation entrains the VTA-mPFC circuit

during punishment-free action. Decline in this entrainment may represent punishment risk, since

power, coherence, and directionality of the theta oscillation declined as a function of punishment

risk. Analyses of no-shock control data revealed that these punishment-dependent changes in the

VTA-mPFC theta oscillations do not occur in the absence of punishment (Figure 7—figure supple-

ment 1).

Risk of punishment weakens LFP–spike synchrony within and between
PFC and VTA
Synchronous oscillations can provide temporal coordination of spike activity between local and dis-

tant neurons and neuronal communication between coherently timed neuron groups (Fries, 2015;

Harris and Gordon, 2015). The presence of such LFP-mediated spike timing coordination was

examined by measuring phase-locking of the neuronal spike activity to local and inter-regional theta

oscillations.

Within each region, substantial proportion of single units (37% in VTA and 23% in mPFC) showed

significant phase-locking to local theta oscillation in the punishment-free block 1. Consistent with the

temporally specific increase in the theta spectral power (Figure 7c–d), the phase synchrony arose

during action from the baseline level in the phase-locked units in both regions (Figure 8a and d;

Signed-rank test, p values < 0.001). Enhanced phase-locking, albeit to a lesser degree, was observed

even in units that failed the Rayleigh’s test (Figure 8a and d; Signed-rank test, p values < 0.001),

indicating widespread influence of the theta oscillation on local neuronal spike timing. The temporal

relationship (directionality) between spike outputs and theta oscillation was examined using a time-

lagged phase-locking analysis (Likhtik et al., 2014; Spellman et al., 2015). The spike-LFP phase-

locking was recalculated using spike times shifted relative to the local or inter-regional LFP to infer

the directionality in the LFP-spike interaction. We found that in block 1 greater proportions of units

appeared to be phase-locked with negative time lags. The vast majority of phase-locked units (VTA,

Park and Moghaddam. eLife 2017;6:e30056. DOI: https://doi.org/10.7554/eLife.30056 11 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.30056


-.5

0

.5

1

10 20 30 40(Hz)

V
T

A
 P

S
D

 (
Z

)

Block1
Block2
Block3

Post-Cue PSDg

-.5

0

.5

1

Pre-Action PSD

10 20 30 40(Hz) 

-.4

-.2

0

.2

.4

.6

.8

Post-Cue PSD

m
P

F
C

 P
S

D
 (

Z
)

h

10 20 30 40(Hz) 

-.4

-.2

0

.2

.4

.6

.8

Pre-Action PSD

10 20 30 40(Hz)

0

1

2

.4

.7

10 20 30 40(Hz)

10 20 30 40(Hz) 

i

0

1

2

Frequency 

V
T

A
-m

P
F

C
 C

o
h
e
re

n
ce

 (
Z

)

.4

.7

10 20 30 40(Hz)

10 20 30 40(Hz)

Block 1

.1

.2

G
-c

a
u
s
a
l 
in

fl
u
e
n
c
e

VTA    mPFC
mPFC    VTA

VTA

mPFC
j

10 20 30 40(Hz)

.1

.2

Block 3

VTA

mPFC

10 20 30 40(Hz)

*********

ActionCue Action

0
.2

m
V

1s

Cuea b

c

(H
z
)

80

60

40

20

Block1, P(Shock|Action)=0

80

60

40

20

d

-1.5

0

1.5

N
o
rm

a
liz

e
d
 P

S
D

 (
Z

)

Block3, P(Shock|Action)=0.1

80

60

40

20

-0.5 Cue 0.5Time(s)

e

-0.5 Action 0.5 -0.5 Action 0.5

80

60

40

20

-0.5 Cue 0.5

f

Coherence Coherence
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74%; mPFC, 67%) had their maximum phase-locking values (PLVs; Materials and methods) with a

negative lag (Figure 8b and e; Signed-rank test, p values < 0.005). These indicated an entrainment

of spike timing by preceding cycles of the oscillation – that is, directionality from the theta oscillation

to the spike activity. To examine the modulation of LFP-spike phase-locking by punishment, we com-

pared PLVs across different blocks. A trend toward reduction in PLV was found in block 3 compared

with block 1 in mPFC (Figure 8c; Signed-rank test, p=0.077), and a significant reduction was found

in VTA (Figure 8f; p=0.006). Likewise, a trend toward reduction in the proportion of phase-locked

Figure 7 continued

The following figure supplement is available for figure 7:

Figure supplement 1. mPFC and VTA theta oscillations did not change across blocks in the absence of punishment.

DOI: https://doi.org/10.7554/eLife.30056.018
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units was observed in block 3 compared with block 1 in mPFC (Figure 8b; Chi-square test,

�2
1 = 3.25, p=0.071), and a significant reduction was found in VTA (Figure 8e; �2

1 = 4.31, p=0.038).

We next examined VTA putative DA and non-DA neuronal phase-locking separately. Greater fraction

of putative DA units (45%) appeared to be phase-locked compared with non-DA units (23%) in block

1 (Figure 8g; Chi-square test, �2
1 = 5.04, p=0.025). The DA neuronal PLV in block1 significantly

declined as a function of punishment contingency in block 2 and 3 (Figure 8h; Signed-rank test, p

values < 0.01), whereas non-DA neuronal PLV did not differ across blocks (p values > 0.43). These

indicated that the punishment risk-induced reduction in the VTA neuronal phase-locking was pre-

dominately due to the reduction in DA neuronal synchrony.

Next we examined LFP-spike phase-locking between VTA and mPFC. Based on the Granger

causal influence indicating VTA-to-mPFC directionality in theta oscillations, we anticipated a stronger

mPFC neuronal synchrony to VTA than that of the other direction. Consistent with this, we found

that a substantial proportion of mPFC units (31%) were phase-locked to VTA theta oscillation in

block 1. A representative mPFC unit with significant phase-locking is shown in Figure 9a–b. The

inter-regional spike-phase synchrony emerged during action compared to baseline (Figure 9c,

Signed-rank test, p values < 0.001). We then examined directionality of the LFP-spike synchrony

using the time-lagged phase-locking analysis. In block 1, the majority of phase-locked units had their

peak PLVs with a negative lag (Figure 9d; Signed-rank test, p=0.066). Likewise, greater proportions

of phase-locked units were observed on negative lags (Figure 9d, bottom). In addition, the mean

PLV across negative time lags appeared to be greater than that of the positive lags (Figure 9e;

Signed-rank test, p=0.023). These indicate that mPFC neurons are entrained by the preceding VTA

theta oscillatory cycles suggesting VTA-to-mPFC directionality. When compared across blocks, the

mPFC neuronal entrainment by the VTA theta oscillation declined as a function of punishment con-

tingency (Figure 9e–g, Signed-rank test, p=0.003). As the degree of phase-locking diminished, the

VTA-to-mPFC directionality also declined (Figure 9d–e).

Finally, we examined VTA neuronal phase-locking to the mPFC theta oscillation. The degree of

VTA neuronal phase-locking to mPFC theta oscillation was weaker than the mPFC neuronal phase-

locking to the VTA theta oscillation (Wilcoxon Rank-sum test, p<0.001), indicating VTA-to-mPFC

directionality in the theta oscillation-mediated spike phase modulation (Figure 9—figure supple-

ment 1). The PLVs did not differ across different blocks in both putative DA and non-DA units (Fig-

ure 9—figure supplement 1). Analyses of no-shock control data showed no change in neural

synchrony across blocks in the absence of punishment (Figure 9—figure supplements 2–3).

Collectively, these analyses indicate that a coherent theta oscillation transiently synchronizes the

VTA-mPFC neural network during reward-guided actions and that this synchrony declines when

there is a risk of punishment associated with those actions (Figure 9h).

Discussion
Previous work has implicated mPFC and VTA neural networks in representation of actions that are

associated with either reward or punishment. In reality, however, an action rarely retains such unitary

outcome. In particular, reward-guided actions often involve varying risk of punishment. This risk

must be computed by the brain for optimal selection and execution of actions. Here we addressed

how mPFC and VTA represent risk of punishment during rewarded actions by simultaneously record-

ing from both regions as animals performed an instrumental task where an action consistently pro-

cured a reward but probabilistically led to punishment. We found that these structures use multiple

coding schemes, involving spike-rate and LFP-mediated neural synchrony, to compute risk of punish-

ment. At neuronal ensemble level, putative DA and non-DA VTA and mPFC units responded to the

same action differently if that action was punishment-free versus punishment-prone, suggesting that

these neurons encode the relationship between action and punishment. At the network level, coher-

ent theta oscillations, which synchronized mPFC and VTA activity during punishment-free actions,

declined during punishment-prone actions, indicating that risk of punishment disrupts the mPFC-

VTA synchrony that emerges during reward seeking behavior.
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Figure 9. Punishment risk reduces mPFC neuronal synchrony to the VTA theta oscillation. (a) Top, Example raw (thin line) and bandpass filtered (heavy

line) VTA LFP traces. Bottom, Neuronal spikes of a simultaneously recorded mPFC single unit. This unit’s preferred phase is indicated with light blue

columns superimposed on the LFP trace. (b) Distribution of spike phase angles of the example mPFC unit relative to the VTA theta oscillation

(Rayleigh’s p<0.001). (c) Fold change from baseline in the strength of mPFC neuronal phase-locking (PLV) during the peri-action epoch in units that

passed Rayleigh z-test (Sig.) and rest of the units (N.S.). (d) Top, Normalized PLVs in block 1 across a range of time lags for all phase-locked mPFC units,

aligned by peak lags. Bottom, Percentage of significantly phase-locked units in block 1 vs 3 (e) Left, PLVs calculated with negative and positive time

lags applied to spike trains relative to LFP time series. Right, Mean ±s.e.m. PLVs of all units across different blocks. Inset, PLVs including significantly

phase-locked units only. (f-g) Each polar plot represents the distribution of spike-phase angles of an example mPFC unit relative to VTA theta

oscillation in block 1 vs 3. To quantify the circular concentration of phase angles, we calculated the mean resultant vector indicated as a superimposed

bar on each polar plot. (h) At the neural circuit level, the theta-oscillation-mediated neural synchrony in the VTA-mPFC circuit that emerged during

punishment-free actions declined during punishment-prone actions. Neural synchrony mediated by the theta oscillation may subserve binding of the

VTA-mPFC neurons responding to the appetitive action into the ‘appetitive’ neural network. Our observation of decline in theta-mediated neural

synchrony may reflect reduced activation of the appetitive neural network in the presence of punishment risk.

DOI: https://doi.org/10.7554/eLife.30056.020

The following figure supplements are available for figure 9:

Figure 9 continued on next page
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VTA and mPFC neurons represent risk of punishment on different
timescales
Using a novel behavioral paradigm that assessed punishment risk during reward-guided behavior,

we found that the majority of VTA and mPFC neurons respond to punishment risk by modulating

their firing rates. Critically, this response was most pronounced at the time of the action as com-

pared to other task events such as cue or reward delivery. This suggests that neurons in both struc-

tures preferentially encode risk of punishment during reward-seeking actions.

Given the relatively low probability and modest experience of punishment in the present task,

one may wonder to what extent animals were cognizant of the punishment contingency on the

action. Our data suggest that the punishment based behavioral changes is due to both learning of

action-punishment contingency and state-dependent effects of punishment. Learning of contingency

is supported by data showing a selective increase in instrumental RTs but not in reward RTs. As

shown in the video reproducing stereotypical risky actions, animals were timid/cautious at the time

of instrumental actions and made many ‘incomplete’ nose pokes, which was not the case for nose

pokes to the food trough. The latter is mechanically the same action to which punishment was never

contingent on. These suggest that pronounced changes in neural activity within the peri-action

epoch may reflect changes in action-punishment contingency. We also observed a correlation

between behavior and neuronal responses as behavioral variability increased with risk of punishment

suggesting that the direct impact of shock experiences may contribute, in part, to behavioral and

neural changes irrespective of learned contingency.

Punishment influences behavior, and neuronal representation associated with that behavior, on

multiple timescales (Cohen et al., 2015; Somerville et al., 2013). On short timescales, real-time

neural processing of punishment may be important to signal contingency of punishment on a specific

event in order to promote rapid behavioral adaptation. Our data suggest that VTA DA neuronal sig-

naling may be involved in this context. DA neurons displayed phasic excitatory responses tightly

linked to each of the task events (cue, action, and reward). Importantly, the DA neuronal encoding

of punishment was concentrated around the time of the action compared with other task epochs,

suggesting that DA neuronal signaling of punishment may primarily reflect the action-punishment

contingency. On longer timescales, punishment can elicit persistent changes in motivational and

emotional states – e.g., changes in mood. We found that mPFC and VTA non-DA neurons display

temporally diffuse encoding of punishment within the peri-action window. Likewise, many of the

mPFC and non-DA neurons showed significant modulation of their baseline firing rates, suggesting

that these neurons may encode punishment with persistent changes in activity. This sustained

change in activity may be responsible for longer-lasting affective impact of punishment.

Neurons display bidirectional responses to punishment risk
Subpopulations of VTA putative DA, non-DA, and mPFC neurons responded to punishment risk by

increasing or decreasing their peri-action firing rates. This is not surprising given that while punish-

ment is an aversive event that should be avoided, it is highly salient and deserving prioritized atten-

tion. These aspects of punishment need to be represented for appropriate behavioral coping. In

general, the direction of neuronal responses to appetitive vs aversive events is thought to carry infor-

mation about motivational properties encoded by the neuronal activity. While heterogeneous

response patterns have been widely observed in PFC neurons that respond to punishment

(Kobayashi et al., 2006; Matsumoto et al., 2007; Seo and Lee, 2009; Ye et al., 2016), there is

Figure 9 continued

Figure supplement 1. VTA single units show weak phase synchrony to the mPFC theta oscillation.

DOI: https://doi.org/10.7554/eLife.30056.021

Figure supplement 2. mPFC neuronal synchrony to mPFC and VTA theta oscillations did not change across blocks in the absence of punishment (No-

shock control).

DOI: https://doi.org/10.7554/eLife.30056.022

Figure supplement 3. VTA neuronal synchrony to VTA and mPFC theta oscillations did not change across blocks in the absence of punishment (No-

shock control).

DOI: https://doi.org/10.7554/eLife.30056.023
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some debate on whether the VTA DA neurons respond to punishment with excitatory or inhibitory

responses (Bromberg-Martin et al., 2010; Schultz, 2016). It has been demonstrated that reward

prediction error (RPE)-coding DA neurons respond to appetitive (better-than-predicted) vs aversive

(worse-than-predicted) events by excitation and inhibition, integrating information about appetitive

and aversive events into a common currency of value (Eshel et al., 2016; Matsumoto et al., 2016;

Mileykovskiy and Morales, 2011; Mirenowicz and Schultz, 1996; Roitman et al., 2008). We found

that a subset of VTA putative DA neurons conformed to this pattern. These neurons responded to

punishment-free (purely appetitive) actions with phasic excitation, which decreased as a function of

punishment risk.

In contrast, a greater proportion of putative DA neurons showed excitatory responses to punish-

ment; that is, they treated appetitive and aversive components in the same direction, and responded

to actions prone to punishment with further excitation. We observed that excitatory representation

of punishment risk was predominant among DA neurons, suggesting that risk of punishment is not

simply encoded as reduced value of the action. Previous studies have reported that a subpopulation

of putative DA neurons show similar excitatory responses to appetitive and aversive stimuli

(Brischoux et al., 2009; Joshua et al., 2008; Matsumoto and Hikosaka, 2009; Valenti et al.,

2011). An excitatory DA neuronal encoding of aversive or neutral events has been interpreted as

conveying motivational salience (Bromberg-Martin et al., 2010; Matsumoto and Hikosaka, 2009),

detection (Nomoto et al., 2010), intensity (Fiorillo et al., 2013) of a sensory event, as well as gener-

alization effect of rewarding stimuli (Kobayashi and Schultz, 2014). Combination of these factors

may comprise the excitatory DA neuronal encoding of punishment-prone actions we observed. Fur-

thermore, the DA neuronal encoding of aversion has been suggested to depend on animals’ behav-

ioral state. A recent study demonstrated that DA neurons encoded aversive events with inhibition in

a low reward context but with biphasic responses in a high reward context (Matsumoto et al.,

2016). In addition, different DA neural responses have been reported based on how animals

responded to an aversive event. For example, DA concentration in the ventral striatum increased or

decreased when rats displayed active avoidance or passive reaction (freezing) to shock-predicting

cues (Oleson et al., 2012; Wenzel et al., 2015). These patterns of state dependency in DA neural

responses to aversion are in line with our observation of excitatory encoding of punishment when

risk was taken for reward in a highly rewarding context. Thus, our results support the view that DA

neuronal signaling of aversion is not a uniform process and depends on behavioral states and reward

availability in the environment.

VTA-mPFC neural synchrony declines with punishment
At the network level, we observed that coherent theta oscillation synchronizes VTA and mPFC spe-

cifically during punishment-free actions, effectively phase-modulating the neuronal spike activity in

the two regions. Analyses of the temporal relationship indicated that the neural synchrony arose in

the VTA-to-mPFC direction. That is, VTA-driven theta oscillation entrained mPFC LFPs and neuronal

spike activity during punishment-free actions. The theta oscillation preferentially entrained putative

DA neurons but much fewer non-DA neurons in the VTA. Considering the phasic excitatory

responses of DA neurons during action, the theta oscillation-mediated neural synchrony may pro-

mote phase-coupling between VTA DA and mPFC neurons selectively during reward-seeking behav-

ior when there is no risk of punishment. This phase-coupling diminished during punishment-prone

actions. Thus, prediction of punishment can be inferred by dual alterations in the phase and the rate

of the DA neurotransmission in the mPFC (model in Figure 9h). Our data showing preferential DA

(vs non-DA) neuronal phase-locking with VTA and mPFC theta oscillations supports the theoretical

model suggesting that the VTA DA input may play a crucial role for cortical theta oscillations

(Buhusi and Meck, 2005). In addition, our data is consistent with previous studies showing that

inhibiting DA D1 receptors in mPFC diminishes theta oscillations (Parker et al., 2014). Establishing

the causality of VTA DA neuron driving mPFC theta oscillation, however, would require future

experiments with pharmacological or optogenetic manipulation of specific cell types.

While somewhat out of the scope of the present study, it is noteworthy that theta oscillations in

the mPFC and/or VTA have been related to the hippocampal theta oscillation (Hyman et al., 2005;

Jones and Wilson, 2005; Siapas et al., 2005; Sirota et al., 2008). Local infusion of DA in mPFC

enhances theta oscillations and coherence between mPFC and hippocampus (Benchenane et al.,

2010), while both mPFC and VTA neurons exhibit phase coherence to the hippocampal theta
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oscillation (Fujisawa and Buzsáki, 2011). Thus, the theta-mediated neural synchrony we observed in

the VTA-mPFC circuit may be coupled with the hippocampal theta oscillation, including the possibil-

ity that the theta oscillation are led by the hippocampus and/or a third structure.

Recent studies have reported slow (4 Hz) oscillation in mPFC during fear-conditioned freezing in

synchrony with other regions including the amygdala (Dejean et al., 2016; Karalis et al., 2016;

Likhtik et al., 2014). The distinct behavioral states associated with 4 Hz oscillations in these studies

taken together with theta oscillations observed in our study may suggest that mPFC is entrained by

different bands of oscillations in appetitive vs aversive states. However, the 4 Hz oscillation in the

VTA-mPFC circuit has also been associated with working memory (Fujisawa and Buzsáki, 2011).

The fast vs slow mPFC oscillations occurring in appetitive vs aversive states may arise in preferential

synchrony with VTA or amygdala in appetitive vs aversive states, thereby the bottom-up information

transfer from the two subcortical regions can be routed depending on the behavioral context. This

scenario would predict that the theta-oscillation-mediated VTA-mPFC synchrony decreases in the

presence of punishment while 4 Hz oscillation increases in the mPFC. Consistent with this, we

observed that mPFC theta-oscillation-mediated synchrony significantly declined as a function of

action-punishment contingency. We did not observe the emergence of 4 Hz oscillation presumably

because, unlike fear conditioning paradigms, our task involved instrumental actions. Of note,

entrainment of a neural circuit with varying frequency oscillations as a function of a task variable has

been widely observed in sensory cortical circuits (Bosman et al., 2012; Jia et al., 2013). Such fre-

quency modulation, along with the power modulation, could promote selection and binding of task-

relevant neuronal ensembles to give rise to a functional neural network (Fries, 2015). Likewise, our

data may reflect the rise and fall of coherent VTA and mPFC neuronal ensembles that may promote

a flexible control of instrumental behavior as a function of punishment contingency.

The neural synchrony mediated by different bands of oscillations in distinct behavioral states may

also implicate neuron groups in the other connected structures such as nucleus accumbens, amyg-

dala, hippocampus, and lateral habenula that are critical for appetitive and aversive behaviors.

Mounting evidence suggests that distinct neuron groups within these regions selectively respond to

appetitive vs aversive events and display different patterns of input-output connectivity (Howe and

Dombeck, 2016; Lammel et al., 2012; Parker et al., 2016; Roeper, 2013; Ye et al., 2016) suggest-

ing that projection specificity may be the foundation for selective recruitment of distinct neuron

groups in distinct-valence experiences. The anatomical connectivity alone, however, may not be suf-

ficient to bind the neuron groups tuned to appetitive or aversive events into a functional neural net-

work in a timely manner. Therefore, the neural synchrony mediated by coherent oscillations, such as

that demonstrated here, may play a key role for the rise and fall of the functional neural networks

depending on the behavioral context.

In conclusion, proper encoding of punishment risk and its contingency on actions and outcomes

are fundamental to adaptive behavior and survival. Our data reveal dynamic coding schemes of the

VTA-mPFC neural networks in representing risk of punishment and punishment-based modulation of

rewarded actions.

Materials and methods

Subjects and surgical procedure
Male Long Evans rats weighing 300 ~ 400 g (Harlan) were singly housed on a 12 hr light/dark cycle

(lights on at 7 p.m.). All data were collected during the dark cycle. Microelectrode arrays were surgi-

cally implanted in ipsilateral mPFC and VTA (N = 10) or bilateral mPFC (N = 4) of isoflurane-anesthe-

tized rats (Figure 2—figure supplement 1). All mPFC electrode arrays were placed in the prelimbic

subregion of the mPFC. The following coordinates relative to the bregma were used:

mPFC = AP +3.0 mm, ML 0.7 mm, DV 4.0 mm; VTA = AP �5.3 mm, ML 0.8 mm, DV 8.2 mm

(Paxinos and Watson, 1998). Only the mPFC and VTA single units and field potentials simulta-

neously recorded were subjected to inter-regional network analyses. Behavioral training began after

1 week of postsurgical recovery. At the completion of all recordings, rats were anesthetized with

400 mg/kg chloral hydrate and perfused with saline and 10% buffered formalin. Coronal brain slices

of mPFC and VTA were collected and cresyl-violet stained. Placements of electrode arrays were veri-

fied under a light microscope. All procedures were in accordance with the National Institute of
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Health’s Guide to the Care and Use of Laboratory Animals, and were approved by the University of

Pittsburgh Institutional Animal Care and Use Committee.

An instrumental task with varying punishment risk
After the postsurgical recovery, rats were kept at 85% of their free-feeding weight on a restricted

diet of 13 g food pellets a day with free access to water. In an operant chamber (Coulbourn Instru-

ments), rats were fully trained to make an instrumental nose poke to the cue port to receive a sugar

pellet at the food trough located in the opposite side of the chamber on the fixed ratio schedule of

one – that is, FR1 (Figure 1a–b). The operant chamber was equipped with an infrared activity moni-

tor (Coulbourn Instruments) which detected animals’ movement episodes. Time elapsed without any

movements greater or equal to 1 s was scored as immobility and summed to compute the immobile

RT (Figure 1). After completion of three FR1 sessions consisting of 150 trials in 60 mins, rats under-

went a no-shock control recording session, in which they performed 150 trials of nose pokes divided

into three blocks in the absence of punishment risk (Figure 1d). Then rats were trained with the task

consisting of three blocks with varying degrees of action-punishment contingency (50 trials per

block). Each block was assigned an action-punishment contingency of 0, 0.06, or 0.1 – that is, the

conditional probability of receiving an electrical foot shock (0.3 mA, 300 ms) given an action. The

action–reward contingency was kept at one across all training and recording sessions; that is, every

nose poke procured a reward even in the shock trials. To minimize generalization of the action-pun-

ishment contingency across blocks, they were organized in an ascending shock probability order –

Block1: 0, Block2: 0.06, Block3: 0.1, interleaved with 2 min timeout between blocks. In block 2 and 3

of each session, 3 and 5 trials were pseudo-randomly selected and followed by an electrical foot

shock. No explicit cue was provided on shock trials to keep the shock occurrence unpredictable. The

cue onset only signaled initiation of a trial. Animals were informed of the block shift by the 2 min

darkened timeout in between blocks. In addition, the first shock trial of block 2 and the first two

shock trials of block 3 were randomly selected from the initial 5 trials of each block. Also, animals

completed two sessions of this task before the recording session, thus the shock occurrence and the

task design including the ascending punishment contingency were not novel to them at the time of

the recording session. All training and recording sessions were terminated if not completed in 180

mins, and data from the completed sessions only were analyzed. Animals displayed stable behavioral

performance overall without any sign of contextual fear conditioning, since they performed fearless

in the safe block across all sessions. In addition, there was no evidence for habituation to the shock

as they showed equivalent punishment-based behavioral changes across sessions. For the diazepam

pretreatment experiment, a separate group of rats (N = 9) were trained using abovementioned pro-

cedure, and they underwent three test sessions with intraperitoneal pretreatment of saline – diaze-

pam (2 mg/kg, Hospira, Inc.) – saline. After injection, animals were returned to their home cage for

10 min before they were placed in the operant chamber. Three days of washout period was allowed

between sessions.

Electrophysiology
Single-unit activity and local field potentials (LFPs) were recorded simultaneously using a pair of

eight channel Teflon-insulated stainless steel 50 mm microwire arrays (NB Laboratories). Unity-gain

junction field effect transistor headstages were attached to a headstage cable and a motorized com-

mutator nonrestrictive to the animals’ movement. Signals were amplified via a multichannel amplifier

(Plexon). Spikes were bandpass filtered between 220 Hz and 6 kHz, amplified �500, and digitized at

40 kHz. Single-unit activity was then digitally high-pass filtered at 300 Hz and LFP were low-pass fil-

tered at 125 Hz. Continuous single-unit and LFP signals were stored for offline analysis. Single units

were sorted using the Offline Sorter software (Plexon). Only the single-units with a stable waveform

throughout the recording session were further analyzed. If a unit presented a peak of activity at the

time of the reference unit’s firing in the cross-correlogram, only either of the two was further

analyzed.

Neural data analysis
Single unit and LFP data analyses were conducted with Matlab (MathWorks) and SPSS statistical soft-

ware (IBM). For single unit data analyses, 1 ms binned spike count matrix of the peri-cue, action, and
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reward periods (starting 2 s before each event and ending 2 s after each event) were produced per

unit. The baseline period was a 2 s time window beginning 2.5 s before the cue onset. For all neural

data analyses, the trials with shock delivery (three and five trials for block 2 and 3, respectively) were

excluded as single-unit and LFP signals in these trials were affected by electrical artifacts during

shock delivery.

Trial-averaged firing-rate analysis
Spike count matrices were further binned using a 50 ms rectangular moving window with steps of 50

ms within the �2 to 2 s epoch aligned to the task event occurring at time = 0, and smoothed across

five 50 ms time bins for the firing rate analysis. Binned spike counts were transformed to firing rates

and averaged across trials. The trial-averaged firing rate of each unit was Z-score normalized using

the mean and standard deviation of its baseline firing rate.

VTA cell classification
The VTA single units were classified into putative dopamine (DA) or non-dopamine (non-DA) neurons

based on two criteria. First, units whose mean baseline firing rate slower than 12 Hz, waveform width

greater than 1.2 ms were considered as potential DA units (Grace and Bunney, 1984; Kim et al.,

2016; Schultz and Romo, 1987). This traditional classification, however, has been suggested to be

potentially inaccurate (Margolis et al., 2006). Thus, the second criterion utilized the neuronal reward

response properties for the putative DA and non-DA cell identification. Receiver-operating charac-

teristic (ROC) curves were calculated by comparing the distribution of firing rates across trials in 100

ms bins (starting 0.5 s before reward delivery and ending 1 s after reward delivery) to the distribu-

tion of baseline firing rates. Principal component analysis was conducted using the singular value

decomposition of the area under the ROC (auROC). Units were mapped in the 3-d space comprising

the top three principal components. Within the 3-d PC space, unsupervised clustering was con-

ducted by fitting Gaussian mixture models using the expectation-maximization algorithm. This

method found two clusters: one with phasic excitation to reward (Type 1), one with sustained excita-

tion or suppression to reward (Type 2) (Figure 2—figure supplement 2c–e). Units in the former class

were classified as putative DA units, as previous studies have shown that optogenetically tagged

dopamine neurons displayed similar phasic excitatory reward responses (Cohen et al., 2012;

Eshel et al., 2015). Taken together, we defined a VTA unit satisfying both criteria as a putative DA

unit and a unit that met either or none of the criteria as a putative non-DA unit (Figure 2—figure

supplement 2). mPFC units were not classified based on their firing and spike-waveform properties.

Only 2 out of the total 293 mPFC single units had the mean baseline firing rates higher than 20 Hz,

thus few fast-spiking interneurons should be included in our data analysis.

Spike rate selectivity
To quantify single neuronal encoding of blockwise action-punishment contingency, we computed a

bias-corrected percent explained variance (wPEV) statistic with binned spike counts calculated in a

200 ms rectangular window moving with steps of 50 ms within the 2 s peri-event epochs (�1 to 1 s

with an event occurring at time = 0).

!PEV¼
SSBlocks� dfBlocksMSError

SSTotalþ MSError

where SSBlocks and SSTotal are the between-blocks (action-punishment contingency) and total sums of

squares, dfBlocks is degrees of freedom, and MSError is the mean squared error. This formulation

resulted in an unbiased metric with an expected value of zero when there is no difference across

blocks (Buschman et al., 2012; Keren and Lewis, 1979). A unit was determined to encode action-

punishment contingency if its peri-event wPEV surpassed ‘the global wPEV band’, which was defined

as the upper bound of the 99% confidence interval of the trial-shuffled (1000 times) surrogate wPEV

distribution – that is, fewer than 1% of the trial-shuffled wPEVs crossed the global band across all

time bins in the peri-event epoch (a = 0.01). To find the global wPEV band, we computed the mean

and standard deviation of the trial-shuffled wPEV distribution. By stepping up from the mean by

one-hundredth of the standard deviation, we found the pointwise band at each time bin and the

global band across time bins both at a = 0.01 (Figure 2d–e). This approach effectively resolves the
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issue of multiple comparisons that can arise as statistical comparisons made separately across multi-

ple time bins increase the rate of false rejection of the null hypothesis (Fujisawa et al., 2008). We

repeated this analysis using the mutual information metric, and found that the two metrics yielded

similar results.

Linear regression analysis
For a standardized quantification of the individual neuronal encoding of action-punishment contin-

gency in peri-event epochs, we computed the standardized regression coefficient of the following

linear regression model for each unit:

SC¼ b punishment riskx þ "

where SC denotes binned spike counts calculated in a 200 ms moving window with steps of 50 ms,

b punishment risk regression coefficients for the independent variable, blockwise punishment contingency

(1, shock prob. = 0; 2, shock prob. = 0.06; 3, shock prob. = 0.1), respectively. The regression coeffi-

cients were standardized by b�ðSx= SyÞ, where Sx ; Sy denote the standard deviations of independent

and dependent variables, respectively.

Gaussian-process factor analysis (GPFA)
GPFA extracts a smooth low-dimensional neural trajectory from simultaneously recorded neuronal

time series data (binned spike counts). GPFA performs smoothing and dimensionality reduction in a

common probabilistic framework. The GPFA model simply consists of a set of factor analyzers, one

at each time bin, that are linked together in the low-dimensional state space by a Gaussian process.

We provide a simple mathematical description of GPFA below. Yu et al. (2009) provides a thorough

analytical and practical discussion of the GPFA model. Let y:;t 2 R
q�1 be the high-dimensional vector

of square-rooted spike counts recorded at time point t = 1, . . . , T, where q is the number of simul-

taneously recorded single units. We extract a corresponding low-dimensional latent neural state

x:;t 2 R
p�1, at each time point, where p is the dimensionality of the neural state space (p<q). We

define a linear-Gaussian relationship between y:;t and x:;t.

y:;t jx:;t ~ NðCx:;t þ d; RÞ (1)

where C 2Rq�p, d 2Rq�1, and R2Rq�q are model parameters to be fitted. The neural states x:;tat dif-

ferent time points are linked through Gaussian processes. A separate GP is defined for each dimen-

sion of the neural state space indexed by i = 1, . . . , p

xi;: ~ Nð0; KiÞ (2)

where x2R1�T is the ith row of x:;t¼1;...;T and Ki 2R
T�T is the covariance matrix for ith GP. The param-

eters of the GPFA model (1, 2) were fitted using the expectation-maximization algorithm, which finds

the model parameters that maximize the probability of the observed data. Using the learned GPFA

model, we extract neural trajectories E x:;:jy:;:
� �

from the observed data. These low-dimensional neu-

ral trajectories can be related to the high-dimensional observed activity using 1ð Þ, which defines a lin-

ear mapping C between the two spaces. Each column of C defines an axis in the high-dimensional

space, and the ith element in x:;t specifies the location along each axis. Columns of C were orthonor-

malized for a ‘PCA-like’ visualization, and the neural trajectories were plotted in the orthonormalized

low-dimensional space. The dimensionality was determined based on the distribution of cross-vali-

dated data likelihoods across different dimensionalities. We found that data likelihoods peaked or

plateaued around the dimensionality of five in all neural populations, thus 5D was used across all

populations for better comparability. We also tested other dimensionalities, and found that similar

behavioral and neural correlations held at different dimensionalities. GPFA model fitting and extrac-

tion of population neural trajectories were implemented using the open-source GPFA matlab code

package (Yu et al., 2009).
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LFP power spectra and coherence
The local field potential (LFP) power spectral densities were quantified using the chronux routine

mtspecgramc (Bokil et al., 2010). Briefly, the LFP time series within the peri-event epochs were

Fourier transformed in a 500 ms moving window with steps of 50 ms with the multi-taper method

applied:

S¼
1

K

X

K

k¼1

Z T

0

ukðtÞxðtÞe
�2pift dt

�

�

�

�

�

�

�

�

2

where ukðtÞ is the multi-tapers (nine tapers were used), xðtÞ is the LFP time series in a moving win-

dow. The baseline normalized power spectra (Z-score) were calculated using the mean and standard

deviation of the baseline power spectra across trials. In addition, we inspected the trial-by-trial spec-

tro-temporal representations of LFP time series applying the continuous wavelet transform. We con-

firmed that comparable representations were attained by the Fourier- and wavelet-based time-

frequency analyses.

The magnitude squared coherence (MSC) between time series recorded from mPFC and VTA

was calculated in the same moving window with the nine multi-tapers applied using the chronux rou-

tine cohgramc. Briefly, the MSC was quantified as:

Cxyðf Þ ¼
Sxyðf Þ
�

�

�

�

2

Sxðf ÞSyðf Þ

where Sxyðf Þ is the cross spectral density of LFP time series in the two regions, and Sxðf Þ; Syðf Þ are

the autospectral density for each region.

Bivariate Granger causality analysis
To examine mutual influences (directionality) between LFP oscillations in the two regions, we quanti-

fied Granger causality between the simultaneously recorded peri-action LFP traces (�2 to 2 s around

the action occurring at time = 0). The bivariate Granger causality (G-causality) infers causality

between two time series data based on temporal precedence and predictability (Barnett and Seth,

2014; Granger, 1969). That is, a variable X1 ‘Granger causes’ a variable X2 if information in the past

of X1 helps predict the future of X2 with better accuracy than is possible when considering only infor-

mation already in the past of X2 itself. In this framework, two time series X1(t) and X2(t) recorded

from mPFC and VTA can be described by a bivariate autoregressive model:

X1ðtÞ ¼
X

p

j¼1

A11;jX1ðt� jÞþ
X

p

j¼1

A12;jX2ðt� jÞþ "1ðtÞ

X2ðtÞ ¼
X

p

j¼1

A21;jX1ðt� jÞþ
X

p

j¼1

A22;jX2ðt� jÞþ "2ðtÞ

where p is the model order (the maximum number of time-lagged observations included in the

model), which was estimated by the Akaike information criterion. We then estimated parameters of

the model; A contains the coefficients of the model, and "1, "2 are residuals (prediction errors) with

covariance matrix S for each time series.

Once the model coefficients Aj and S are estimated, the spectral matrix can be obtained as:

Sðf Þ ¼ Xðf ÞX � ðf Þh i ¼Hðf ÞSH � ðf Þ

where the asterisk denotes matrix transposition and complex conjugation, S is the noise covariance

matrix, and the transfer function Hðf Þis defined as the inverse matrix of the Fourier transform of the

regression coefficients:
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Hðf Þ ¼ I�
X

p

j¼1

Aje
�2pikf

 !�1

0 � f � 2p

The spectral G-causality from 1 to 2 is then obtained by:

I1!2ðf Þ ¼ �ln 1�
S11�S2

21
=S22

�� �

H21 fð Þj j2

S22ðf Þ

 !

The spectral G-causality measure lacks known statistical distribution, thus a random permutation

method was used to generate a surrogate distribution, by which the upper bound of the confidence

interval was found at a = 0.001. This procedure was implemented using an open-source matlab tool-

box, the Multivariate Granger Causality Toolbox (Barnett and Seth, 2014).

LFP-Spike phase-locking analysis
To quantify the individual neuronal spike time synchrony with the local and inter-regional theta oscil-

lations were quantified as follows. The mPFC and VTA LFPs during the baseline and peri-action 4 s

time windows were bandpass filtered to isolate oscillations within 5–15 Hz frequency range. The

instantaneous phase of each filtered LFP segment was determined using the Hilbert transform and

each spike was assigned the phase of its contemporaneous LFP segment. The phase-locking value

(PLV) of each unit was defined as the circular concentration of the resulting phase angle distribution,

which was quantified as the mean resultant length (MRL) of the phase angles. The MRL is the modu-

lus of the sum of unit vectors indicating instantaneous phases of each spike occurrence normalized

by the number of spikes, thus the MRLs were bound to take a value between 0 (no phase-locking) to

1 (perfect phase-locking).

MRL¼
1

N

X

N

n¼1

ejFn

�

�

�

�

�

�

�

�

�

�

where Fn represents the phase assigned to nth spike occurrence, and N is the total number of

spikes. Since the MRL statistic is sensitive to the number of spikes, we calculated MRL 1,000 times

with 100 spikes of each unit randomly selected for each iteration, and the PLV was the MRL aver-

aged across all iterations. As comparing PLVs across blocks with varying action-punishment contin-

gency was of our central interest, PLV was computed per each block. Only the units with their peri-

action spike counts within each block greater than 100 in all three blocks were included in the

phase-locking analysis. Units passing the Rayleigh’s z-test at a = 0.05 were determined to be signifi-

cantly phase-locked. The directionality of the LFP and spike phase relationship was inferred by a

time-lagged phase-locking analysis, in which the spike times were shifted relative to the LFP time

series, stepping by 4 ms within the range of �100 to 100 ms (Likhtik et al., 2014; Spellman et al.,

2015). At each time lag, the PLV of each single unit and its significance were assessed, and the maxi-

mum PLV across all time lags was found for each unit. We repeated the analysis with different time

lags and analysis windows, and confirmed that the results were very similar across different

parameters.

Statistical analysis
Parametric statistical tests were used for z-score normalized data and non-normalized data that are

conventionally tested using a parametric test. Nonparametric approaches, such as conventional non-

parametric tests or bootstrapping were used for a hypothesis test of data, of which statistical distri-

bution is unknown, e.g. phase-locking values (PLVs). For all tests, the Greenhouse–Geisser correction

was applied as necessary due to violations of sphericity. All statistical tests were specified as two-

sided. Multiple testing correction was applied for all tests including multiple comparisons using the

Bonferroni correction.
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