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ABSTRACT

Recombinant mouse strains that harbor tightly
controlled transgene expression proved to be
indispensible tools to elucidate gene function.
Different strategies have been employed to achieve
controlled induction of the transgene. However,
many models are accompanied by a considerable
level of basal expression in the non-induced state.
Thereby, applications that request tight control of
transgene expression, such as the expression of
toxic genes and the investigation of immune
response to neo antigens are excluded. We de-
veloped a new Cre/loxP-based strategy to achieve
strict control of transgene expression. This
strategy was combined with RMCE (recombinase
mediated cassette exchange) that facilitates the tar-
geting of genes into a tagged site in ES cells. The
tightness of regulation was confirmed using
luciferase as a reporter. The transgene was
induced upon breeding these mice to effector
animals harboring either the ubiquitous (ROSA26)
or liver-specific (Albumin) expression of CreERT2,
and subsequent feeding with Tamoxifen. Making
use of RMCE, luciferase was replaced by
Ovalbumin antigen. Mice generated from these ES
cells were mated with mice expressing liver-specific
CreERT2. The transgenic mice were examined for the
establishment of an immune response. They were

fully competent to establish an immune response
upon hepatocyte specific OVA antigen expression
as indicated by a massive liver damage upon
Tamoxifen treatment and did not show OVA toler-
ance. Together, this proves that this strategy
supports strict control of transgenes that is even
compatible with highly sensitive biological readouts.

INTRODUCTION

The ability to switch genes ‘on’ or ‘off’ in a particular
tissue in the mouse at any defined time point is a
powerful tool to investigate mammalian gene function in
development, disease and various physiological processes.
Currently, the regulated expression of transgenes has been
achieved by two different methods, i.e. reversible tran-
scriptional control employing regulated promoters and
irreversible genetic control by the use of site-specific
recombinases [reviewed in (1–5)]. Transcriptional systems
have been established, in particular, employing the
Tetracycline (tet) system to control transgene expression
in mammalian cell culture (6–8) as well as in mice (9–11).
According to the design of the expression modules, both
gradual expression and stochastic, i.e. bimodal expression
can be achieved (12).
A different mode of regulation is provided by genetic

switches based on recombinases such as Cre or Flp. Most
commonly for conditional gene activation, the specific
gene to be switched on is usually separated from the
promoter by a ‘STOP’ cassette that prevents the
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transcription and translation of the target gene. This
‘STOP’ cassette is in turn flanked by directly oriented
loxP sites (13–18). The ‘STOP’ cassette usually comprises
of single or multiple polyadenylation signal(s). Upon
excision of the STOP cassette via Cre, the target gene is
activated. An efficient method to achieve temporal regu-
lation of Cre-mediated recombination is by fusing the Cre
ORF to the mutated ligand-binding domain (LBD) of the
human estrogen receptor (CreERT). Currently, several
steroid regulated forms of CreERT recombinases are avail-
able (19–23) that can be activated by the synthetic ligand
Tamoxifen (Tam).
While a plethora of transgenic systems for various

biological applications could be generated, questions
that require extremely tight control of transgenes in
transgenic mice were not yet addressed. In particular,
immune activation studies have been shown to be
compromised by ‘leaky’, unregulated gene expression
as e.g. revealed by successful DNA immunization even
with non-induced expression cassettes (24). In transgenic
mice, unintended basal antigen expression during embry-
onic development would result in tolerance since the
antigen will be recognized as an endogenous (‘self’)
antigen. Accordingly, even though disease models do
exist that employ the above mentioned controlled
tissue-specific gene regulation systems (25,26), their appli-
cation toward immune activation studies was not yet
evaluated.
We developed a mouse model that shows strict regula-

tion of any transgene. We employed Cre-mediated inver-
sion of the transgene rendering it under the control of the
ubiquitously active ROSA26 promoter. Breeding with
mice providing ubiquitously expressed or liver-specifically
expressed CreERT2 allows activation of antigens by Tam
at any time. The transgene cassette was introduced into
the ROSA26 locus in a way that supports its exchange by
recombinase mediated cassette exchange (RMCE),
thereby providing a highly flexible approach for inducible
transgene expression of choice. Here, we report the results
from two transgenes, luciferase and Ovalbumin, and
evaluate the strategy as a model for induced hepatitis.

MATERIALS AND METHODS

ROSA26 tagging plasmid and RMCE exchange vector
construction

To create a platform ES cell line for RMCE-based
ROSA26 targeting, we established a tagging vector
based on pROSA26-1 (17) harboring the homology
arms of the ROSA26 locus and additionally comprising
the following components (i) adenoviral splice acceptor
site (SA); (ii) non-interacting FRT sites (wild-type
FRT, shown as F in the figure and the mutant F5 site
(27), respectively, flanking; (iii) an inverted luciferase
(LUC) cassette flanked by inverted loxP sites followed
by a puromycin N-acetyltransferase (PAC) gene; and
(iv) a promoter and start-codon deficient neomycin
phosphotransferase gene (� Neo). The design of the
cassette upon homologous recombination in the
ROSA26 locus is depicted in Figure 1.

The RMCE exchange vectors are based on pEMTAR
(28) and harbor a multiple cloning site followed by the
encephalomyocarditis virus (EMCV) internal ribosome
entry site (IRES) element with a translational ATG start
codon positioned in frame with the non-interacting FRT
and the mutant F5 site, respectively.

In all ES cells evaluated in this study, the transgene of
interest (Cre-activatable Ovalbumin or luciferase gene)
was integrated in antisense and flanked by oppositely
oriented wild-type loxP sites. The OVA coding sequence
gives rise to a fusion protein comprising of three compo-
nents (i) hsp 73-capturing N-terminal viral J domain of
SV40 T-Ag (cT77); (ii) 108-residue of the Ovalbumin
fragment (aa 246–353 with a isoleucine to valine change
at position 258) with well-characterized Kb- and Ad/b-
binding epitopes (specifically recognized by OT-I or
OT-II/D011 TCR) and (iii) the eGFP reporter
(Schirmbeck, R., unpublished data).

Vector sequences and maps are available on request.

Cell culture

IB10 murine embryonic stem cells (mES) cells (subclone of
E14 ES cell line) (29) were cultured on feeder cells
[mitotically inactivated murine embryonic fibroblasts
(MEF)] and maintained in DMEM+GlutaMAX-I
(Gibco) supplemented with 15% fetal calf serum (heat
inactivated: 30min at 56�C), penicillin (10U/ml), strepto-
mycin (100 mg/ml), 1mM non-essential amino acids
(Gibco), 1mM sodium–pyruvate (Gibco), 0.1mM
b-mercaptoethanol and in the presence of leukemia inhibi-
tory factor (LIF). The cells were kept at 37�C and 7% CO2

in humidifying incubators.

In vitro differentiation of ROSALUC mES cells. A total of
1� 106 ROSALUC mES cells were seeded in 15ml
DMEM medium (Gibco) supplemented with 10% fetal
calf serum, penicillin (10U/ml), streptomycin (100 mg/
ml), 2mM L-glutamine in bacterial dishes. Suspension
culture in bacterial dishes, in the absence of feeders and
LIF for 5–7 days led to the formation of embryoid bodies.
Embryoid bodies were centrifuged (500 rpm, 5min) and
plated on gelatinized 10 cm cell-culture dishes so that
they could adhere and form outgrowths of differentiated
cells. After 4–5 days, the cells were dissociated by trypsin
EDTA (TEP) (Sigma) and split on to gelatinized six wells.
Accordingly, samples were then harvested for subsequent
analysis of luciferase activity.

Modification of mES cells

Homologous recombination of ROSA26 locus with the
tagging vector. A total of 4� 106 mES cells were
harvested with TEP, centrifuged (1000 rpm, 5min) and
the cell pellet was washed once with PBS to remove any
residual culture medium. For electroporation with the
Gene Pulser (Biorad) cells were re-suspended in 1ml
Phosphate Buffered Saline (PBS) and 10 mg of the
purified, XhoI linearized plasmid DNA was added.
Electroporation was performed at 240V and 475 mF
capacitance (time constant=10.2). After electroporation,
the cell suspension was transferred to pre-warmed culture
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medium, seeded onto feeder coated 10cm cell-culture
dishes and allowed to recover. After 48 h, puromycin
was added at a concentration of 1 mg/ml to select the cells.

RMCE. All the targeting experiments in ROSALUC mES
cells based on Flp mediated cassette exchange were
performed using LipofectamineTM 2000 (Invitrogen).
For this purpose, 80–90% confluent ROSALUC mES
cells seeded on gelatinized six-well dishes were co-
transfected with the circular exchange vector and the Flp
recombinase expression vector pFlpe (30) (usually at a
DNA concentration ratio of 1:3 or 1:1 respectively)
along with 10 ml of the LipofectamineTM 2000 reagent as
per the manufacturer’s instructions. After 48 h the trans-
fected ES cells were transferred to feeder coated 10 cm cell-
culture dishes and selection pressure with G418 at a con-
centration of 0.4mg/ml was applied. As a negative
control, ROSALUC mES cells transfected with only the
Flp recombinase expression plasmid was always included.
Selection was usually carried out for 8–10 days during
which it was ascertained that all the cells in the negative
control were killed. Putative RMCE targeted G418 resist-
ant subclones obtained were then picked and cultured in
medium containing G418.

Stable transfection of ROSALUC mES cells with Cre
expression vector. ROSALUC mES cells were stably
transfected with a Cre recombinase expression vector,
pPGKcrebpA (31) using the LipofectamineTM 2000
(Invitrogene). For this purpose, 1� 105 ROSALUC ES
cells seeded on gelatinized six-well dishes were
co-transfected with 3 mg of circular pPGKcrebpA and
1 mg of circular pSBC2neo (for conferring G418 resist-
ance) along with 10 ml of the Lipofectamine reagent as
per the manufacturer’s instructions. Treatment and selec-
tion of the transfected cells was then performed as
described earlier.

Luciferase detection

Cells were harvested from six-well plates and the cell pellet
was re-suspended in 50 ml Tris–HCl (pH 7.6). The cell sus-
pension was subjected to repeated freeze-and-thaw cycles
(4�) in liquid nitrogen and a 37�C water bath, respect-
ively. After centrifugation (15 000 rpm, 20min, 4�C) the
protein supernatant was used for the luciferase and BCA
assays. To detect luciferase activity in the different mouse
tissues, the mouse was sacrificed by cervical dislocation
and the chosen organs were isolated and frozen in liquid
nitrogen. For preparation of lysates, the frozen organs
were quickly wrapped in alu-foil and crushed in liquid
nitrogen using a chilled mortar and pestle. The
powdered tissue was then immediately transferred to a
douncer, followed by addition of 400ml Tris–HCl
(pH 7.6) and further homogenized. The homogenized
tissue was then subjected to the freeze-thaw cycles and
subsequently protein lysates were obtained as described
earlier.

An amount of 10ml of the protein lysate was then added
to 400 ml of reaction buffer (1:5 ATP solution of 5mM
ATP in ddH2O, pH 7.5, luciferase buffer containing
25mM glycylglycine, 15mM MgSO4 in ddH2O, pH 7.8)

in a suitable tube and emitted light was measured with a
Lumat LB9507 (Berthold) Luminometer after automatic
injection of 50 ml luciferin solution containing 0.1mM
synthetic D-luciferin (Promega), 25mM glycylglycine in
ddH2O, pH 7.8 (measurement period: 10 s). Luciferase
activity was measured in relative light units (RLU). The
RLU were normalized to total amount of proteins present
in the cell lysate using the BCA assay (32). Moreover, in
case of quantitative luciferase detection in the individual
organs, luciferase activity of >15RLU/mg of total protein
was considered as real expression.

Standard luciferase assay for absolute determination of
luciferase molecules per cell

In order to correlate the luciferase activity to the number
of luciferase molecules/cell a luciferase standard using the
QuantiLum Luciferase enzyme (Promega) was performed.
This QuantiLum Luciferase enzyme was used to generate
a Standard Curve. The kinetics of QuantiLum Luciferase
and the luciferase gene in ROSALUC are the same and
therefore on a theoretical basis, it could be used to
estimate the amount of luciferase molecules cell lysates.
The QuantiLum Luciferase enzyme was serially diluted

in 1� luciferase buffer (containing 1mg/ml BSA) to
known quantities and corresponding RLU were
measured to generate a Standard Curve (duplicates were
set up for each serial dilution). This standard curve was
then used to further calculate the molecules of luciferase
present in the given cell lysates.

Transgenic mice

Transgenic mice were generated by blastocyst injection.
ROSAConL mice were obtained from ROSALUC male
mice upon breeding to K14Cre female (33) in which Cre
is constitutively expressed in oocytes and keratinocytes.
Cre deficient mice which show permanent reversion of
the luciferase were identified and backcrossed to Balb/c
to establish ROSAConL line.
All mice were bred and kept under standard pathogen

free conditions in the animal facility at the Helmholtz
Centre for Infection Research, Braunschweig (HZI).
Animal experiments were conducted either at HZI or at
the University of Ulm according to the guidelines of the
German Animal Welfare Law.

Tamoxifen administration to the mice. Mice were orally
administered with Tamoxifen by gavage using a special
feeding needle (Heiland Vet Gmbh). Tamoxifen tablets
(RatioPharm, 30mg/ml) were dissolved in Clinoleic
infusion solution (conc of 20mg/ml). An amount of
5–8mg of Tamoxifen was administered orally for 4 days
with feeding every alternate day. Mice were sacrificed 5–7
days after the last feed.

In vivo bioluminescence imaging using the Xenogen IVIS
200. Mice expressing the reporter gene, luciferase, were
analyzed using the Xenogen IVIS 200 imaging system.
For analyzing mice using this imaging technology,
the mice were first anaesthetized in a special induction
chamber with 2–2.5% isoflurane (Abbot). Upon
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Figure 1. Strategy to create a platform ES cell line for RMCE-based ROSA26 targeting. (A) Strategy to make ubiquitously expressed ROSA26 locus
RMCE accessible. Structure of the wild-type ROSA26 locus, the tagging vector harboring the heterospecific FRT sites and the targeted RMCE
compatible locus after homologous recombination (HR) is depicted in the above figure. SA, splice acceptor site; F, wild-type FRT site; F5, mutant F5
site; �neo pA; start-codon deficient neomycin phosphotransferase gene with polyadenylation signal; Rosa50/30, ROSA26 genomic flanking sequences;
PAC, puromycin N-acetyltransferase gene; LUC, luciferase; L, wild-type loxP sites (inversely oriented); HR, homologous recombination; X, XbaI
restriction site; DTA, Diphtheria toxin A gene. Shaded boxes indicate the exons. (B) Targeted integration of expression cassettes of choice into
RMCE compatible ES cells via Flp-mediated cassette exchange. The above figure depicts the ‘tag and target’ strategy to integrate different expression
cassettes of choice in the ROSA26 chromosomal background. In the RMCE permissible ROSA26 locus, the two non-interacting FRT sites flank the
entire expression cassette followed by a 50-truncated, ATG start codon defective neomycin phosphotransferase gene. The tagged parental ES cells are
G418 sensitive. Co-transfection with the Flp recombinase expression plasmid and the targeting vector harboring the corresponding identical
heterotypic FRT sites will lead to site-directed recombination via F and F5 as indicated by the crosses. After recombination, the defective �neo
gene is complemented by the IRES element and the ATG start codon positioned in-frame thereby rendering the cells undergoing the correct exchange
event G418 resistant. The gene of interest (for example the ovalbumin antigen) is also inversely oriented flanked by oppositely oriented loxP sites.
GOI, gene of interest; Flp, Flp recombinase; RMCE, recombinase mediated cassette exchange; L, wild-type loxP site (inversely oriented); IRES,
encephalomyocarditis IRES. (C) Activation of the floxed GOI/LUC in presence of Cre. Here the gene of interest (GOI) was placed in the reverse
orientation with respect to ROSA26 transcription and flanked by loxP sites oppositely oriented to each other. Hence this makes the GOI Cre
activatable.
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intra-peritoneal (i.p) injection with 100ml of luciferin
(30mg/ml in PBS, Synchem OHG) the mice were placed
in the acquisition chamber equipped with a charge
coupled device (CCD) imaging camera. All the images
acquired were analyzed using the Living Image 2.60.1
(Igor. Pro 4.09A) software.

Isolation of hepatocytes and coculture with OT-I
CD8 T cells

Hepatocytes were isolated as described earlier (34).
In brief, the liver was perfused and digested, removed
and gently pressed through a mesh. The parenchymal
cells were separated from the non-parenchymal cells by
centrifugation (500 rpm, 5min). CD8+ T cells were
purified from spleen of TCR transgenic OT-I B6 mice
using the CD8+ T-cell MACS isolation kit (catalogue
No. 130-090-859; Miltenyi Biotec). A total of 1� 105

purified CD8+ T cells were cocultured in 200 ml
flat-bottom microwells with 1� 104 hepatocytes.
Supernatants were collected from these cocultures at the
indicated time-point. IFN-g were detected in the super-
natants by conventional enzyme linked immunosorbent
assay (ELISA) as described earlier (34).

Detection of alanine aminotransferase activity

Blood from the retro-orbital sinus of mice was collected in
tubes containing anticoagulant (Heparin). The tubes were
centrifuged (10 000rpm, 10min) and resulting plasma was
used for detecting alanine aminotransferase (ALT)
activity. ALT activity was determined using the
Reflotron� test (cat.no.745138; Roche, Mannheim,
Germany).

Histology

Thin slices of liver tissue (<4mm) were fixed in 4%
formalin (pH 7.4) for 24 h and subsequently embedded
in paraffin. Paraffin sections, 3mm thick were stained
with hematoxylin and eosin (H&E).

RESULTS AND DISCUSSION

Strategy to obtain strictly controlled expression of
gene of interest

We constructed a Cre dependent cassette for regulated
luciferase expression. This cassette was targeted into the
ROSA26 locus by homologous recombination
(ROSALUC in Figure 1A). To facilitate re-engineering
of this locus in ES cells, the cassette was flanked with
FRT sites and a non-functional neomycin resistance gene
according to a strategy previously shown to be highly
efficient for various cell lines (28,35,36). Flp mediated tar-
geting of FRT tagged loci is achieved upon transfection
with vectors carrying corresponding FRT sites and a
cassette that activates the neomycin resistance gene
according to Figure 1B and C. To evaluate the efficiency
of RMCE in these cells various expression cassettes
encoding different transgenes and promoters were
introduced into the targeting vector pEMTAR (28) and
employed for RMCE. As shown in Figure 2, targeting of

the ROSALUC ES cells proved to be efficient and highly
specific with all tested vectors. Three of the targeted cells
were employed to establish transgenic mice and proved
to be germ-line competent. Together, ROSALUC cells
represent a platform that allows subsequent efficient
exchange for cassettes and transgenes of interest and
rapid generation of transgenic mice.
In ROSALUC, the luciferase gene was placed in the

reverse orientation with respect to ROSA26 transcription
and flanked by loxP sites oppositely oriented to each
other. Cell lysates obtained from targeted ROSALUC
mES cells as well as from in vitro differentiated cell popu-
lations generated thereof were tested for basal luciferase
expression. As shown in Table 1, without Cre, luciferase
expression of 68 and 23RLU/mg of total protein was
observed in ROSALUC for the ES cells and the in vitro
differentiated cells, respectively. A value of 20RLU/mg
of total protein corresponds to about three molecules of
luciferase per cell (data not shown). At the same time, the
wild-type ES cell negative controls showed values ranging
from 1 to 7RLU/mg of total protein which is considered as
experimental background. For the following evaluations,
we considered luciferase expression levels >15RLU/mg of
total protein as real expression.
The activation of the reporter gene by Cre mediated

inversion (Figure 1C) was evaluated upon stable transfec-
tion of Cre recombinase. Luciferase activation was
monitored before and after in vitro differentiation.
As shown in Table 1, an �600-fold induction in luciferase
expression was observed before differentiation and a
400-fold induction seen after differentiation in the
presence of Cre. This indicates that the luciferase gene in
ROSALUC is under strict control of the recombinase and
hence activatable. The ROSALUC mES cell clone was
subsequently used to establish a transgenic mouse line.

In vivo activation of Cre-dependent luciferase expression
in ROSALUC transgenic mice

To investigate the control of Cre-mediated activation
in vivo, ROSALUC transgenic mice were established and
mated to the conditional Cre deleter mouse strain,
ROSA26-CreERT2 (37). In ROSA26-CreERT2 mice, the
CreERT2 fusion gene is under the control of the
ROSA26 promoter and hence ubiquitously expressed in
all organs. However, only the presence of the synthetic
ligand, Tam, leads to its activation.
ROSALUC mice were mated to ROSA26-CreERT2 mice

and the resulting bitransgenic progeny was analyzed for
Tamoxifen (Tam) inducible activation of the luciferase
gene by non-invasive bioluminescence imaging (BLI).
Luciferase expression was undetectable in bitransgenic

mice in the absence of the inducer (Figure 3A-a).
Similarly, lack of bioluminescence was confirmed for the
two single transgenic controls, i.e. the ROSA26-CreERT2

and ROSALUC mice, respectively. Importantly, lumines-
cence was undetectable even when applying an exposure
time of 5min. This suggests that in ROSA26-CreERT2, the
activity of the CreERT2 fusion is strictly regulated by the
inducer and does not show detectable background recom-
bination in the absence of Tam. To study the in vivo
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activation, the mice were induced with Tam. As shown in
Figure 3A-b, ubiquitous luciferase expression was
detected in the induced double transgenic mouse whereas
no background luciferase expression was observed in the
non-induced mice. Similarly, no signal was detected in the
ROSA26-CreERT2 and ROSALUC single transgenic
control mice. These results show that upon Tam induc-
tion, the ubiquitously expressed CreERT2 fusion protein
mediates recombination between the inversely oriented
loxP sites, resulting in the activation of luciferase.
Also, no detectable luciferase expression in the single
transgenic ROSALUC control mouse by BLI further
proves that in the absence of Cre recombinase, there is
no background luciferase expression.

For quantitative evaluation, bitransgenic ROSALUC X
ROSA26-CreERT2 mice (induced and non-induced) were
sacrificed. Luciferase was assayed in various tissue
samples. As shown in Figure 3B, ubiquitous luciferase

Targeting vectors G418 resistant clones
Analysed / correct

targeting
Targeting efficiency %

50 2/2 100

11 11/9 82

9 9/8 89

8 5/5 100

3 3/3 100

4 4/4 100

11 11/11 100

50 12/10 83

21 21/21 100

6 6/6 100

6 6/5 83

12 12/12 100

LUC rTA
Tet

rTA

LUC eGFP
Tet

rTA

HBsAG

OVA

rTA
Tet

LUC

TAg rTA
Tet

rTA

eGFPrTA
Tet

TAg

LUC

Tet
rTA LUC

CAGGS
eGFP

TetrTA LUC

eGFP LTRLTR

rTA
Tet

TAK

IRES
ATG

F F5

pEMTAR

Figure 2. Targeted integration of different antigen/gene cassettes into the parental FRT tagged ROSALUC mES cells via RMCE. The above figure
gives a summary of the efficiency of integrating different targeting constructs into the tagged ROSA26 locus by Flp-mediated cassette exchange.
Different expression cassettes were cloned into the pEMTAR backbone vector (28) harboring the heterotypic FRT sites along with the IRES element
and the ATG start codon. These targeting vectors were used for subsequent cassette exchange in the RMCE compatible ROSA26 locus. Correct
targeting was proven by PCR and/or Southern blot. LUC, luciferase; rTA, reverse tetracycline dependent transactivator; Tet, tetracycline dependent
promoter; eGFP, enhanced green fluorescent protein; HBsAg, Hepatitis B surface antigen; OVA, ovalbumin; TAg, SV40 large T antigen; CAGGS,
chicken b-actin promoter with cytomegalovirus enhancer; LTR, long terminal repeat; TAK, TAK protein; F, wild-type FRT site; F5, mutant F5 site;
filled arrow head, wild-type loxP site; open arrow head, mutant loxL3 site.

Table 1. Evaluation of luciferase expression in Cre-activatable

ROSALUC before and after in vitro differentiation of ES cells

Cre Luc RLU/mg of
total proteina

Fold
induction

IB10 ES cell state � � 1 N/A
+ � 2

IB10 differentiatedb � � 1 N/A
+ � 7±4

ROSALUC ES cell state � + 68±24 612
+ + 41 609±3434

ROSALUC differentiatedb � + 23±5 433
+ + 9955±510

P< 0.001 (Student’s t-test comparing values in presence and absence of
Cre in the ES cell state as well as after in vitro differentiation,
respectively).
aMean values from five individual experiments along with the standard
deviation are shown in the above table.
bDifferentiated, after in vitro differentiation.
N/A, not applicable.
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expression was detected in all investigated tissue samples
obtained from induced ROSALUC X ROSA26-CreERT2

mice. The values obtained for the non-induced
bitransgenic mice were <2RLU/mg which is comparable
to the values obtained from the single transgenic
ROSALUC and ROSA26-CreERT2 control mice (not
shown). These quantitative luciferase data thus confirm
the observations made by non-invasive BLI.

The fact that Cre induced expression is detected in brain
is different from previous studies employing the lacZ
reporter, where no expression in brain could be detected
upon Tam administration (37). This indicates that the
luciferase reporter is more sensitive and can monitor

even a low Cre activity in brain, which is probably
impaired due to the inefficient transfer of Tam across
the blood–brain barrier. Such a limitation might be
overcome in optimized feeding protocols.
As a control, we evaluated the luciferase expression in

ROSAConL mice which constitutively express luciferase
from the ROSA26 promoter. ROSAConL were obtained
from ROSALUC upon mating to K14Cre mice (33) and
screening the progeny for permanent inversion of the
luciferase cassette and absence of Cre. As shown in
Figure 4, generally, more homogenous expression of
luciferase was detected. Also, lower levels of luciferase
were monitored in ROSAConL mice if compared to

Luc + + - +

+ + + -

Tam - - - -

+ + - +

+ + + -

+ - + +

Luc

CreERT2CreERT2

Tam

(a) (b)
A

B

Figure 3. In vivo activation of Cre-dependent luciferase expression in bitransgenic ROSALUC X ROSA26-CreERT2 mice. (A) In vivo non-invasive
bioluminescent imaging (BLI) of ROSALUC X ROSA26-CreERT2 offsprings. (a) BLI image of non-induced animals. Four-weeks-old bitransgenic
ROSALUC X ROSA26-CreERT2 mice along with single transgenic ROSA26CreERT2 and ROSALUC as controls are indicated. (b) BLI image of
animals after Tam induction. Image was acquired 5 days after the last Tam feed. Color bar indicates photons/cm2/s/steradian with the minimum and
maximum threshold values. (B) Monitoring luciferase expression in the different organs isolated from double transgenic ROSALUC X
ROSA26-CreERT2 mice. The 4–8-weeks-old bitransgenic ROSALUC X ROSA26-CreERT2 mice (induced and uninduced) were sacrificed and
various organs were isolated. Tissue lysates obtained were subjected to a luciferase assay. The luciferase activity observed in RLU was normalized
to micrograms of total protein present in the tissue sample. Figure depicts induced ROSALUC X ROSA26-CreERT2. Non-induced ROSALUC X
ROSA26-CreERT2 as well as the control single transgenic ROSALUC and ROSA26-CreERT2 mice showed an average of<2 RLU/mg of total protein
and are not depicted in the figure. For each group four mice were analyzed.

PAGE 7 OF 13 Nucleic Acids Research, 2011, Vol. 39, No. 1 e1



ROSALUC X ROSA26-CreERT2 as shown in Figure 3.
We attribute strain specific properties for the various
levels of ROSA26 activity in the two mice since the
ROSAConL mice have been backcrossed to Balb/C
to higher generations, while the ROSALUC X
ROSA26-CreERT2 animals display a mixed background
of 129/OLA, Balb/C and C57/Bl6. The impact of the
genetic background on expression of (trans-)genes and
promoter activity has been observed in other studies
(38–40).
We also evaluated Cre mediated activation of luciferase

mRNA by RT–PCR. Lung and liver were used for this
purpose. As shown in the Supplementary Data, inversion
of the luciferase cassette was observed for the Tam treated
double transgenic animals as well as for ROSAConL
control mice, while tissues from non-induced mice did
not show any band after 30 cycles of amplification.
Thus, the RT–PCR results confirm tight regulation of
the cassettes.
Together, the results obtained by BLI, quantitative

luciferase expression and RT–PCR indicate a strict
Tam-inducible Cre-mediated activation of the luciferase
reporter gene. Moreover, the data provided in Figure 3A
and B clearly exclude any Cre-independent activation of
the cassette (e.g. due to chromosomal read-in from
30-promoter (41) and expression of luciferase from an
antisense transcript). Thus, the design of the Cre
reporter construct as shown in Figure 1 allows for tight
regulation.

Tight control in ROSALUC mice expressing high levels
of CreERT2

The absence of expression in ROSALUC single transgenic
mice clearly excludes any leakiness due to the reporter
cassette per se. However, accidental activation of the
transgene cassette could also occur due to leakiness in
the Cre control, in fusion proteins of Cre and the
hormone receptor moieties (42–44). It is discussed that
proteolytic cleavage of the fusion protein is the molecular
cause of this (22,37,42,44). Alternatively, CreERT2 might

enter the nucleus upon cell division. For both mechanisms
the expression level of CreERT2 would affect basal
activity and thus leakiness. Indeed, Imayoshi et al. (42)
demonstrated that the expression level of CreERT2 is a
crucial factor for obtaining Tam-mediated regulation.
Thus, the tight control of our system as depicted in
Figure 3 might be associated to limited CreERT2 expres-
sion as a consequence of the moderate expression level
mediated by the ROSA26 promoter.

We tested if our system would still confer strict regula-
tion in presence of high level expression of CreERT2. For
this purpose ROSALUC was crossed to Alb-CreERT2 mice
in which the CreERT2 coding sequence is inserted into the
serum albumin locus (45). Alb-CreERT2 mice were shown
to selectively express CreERT2 in almost all hepatocytes in
the adult liver (45) and activate Cre upon Tam adminis-
tration. Moreover, the albumin promoter is highly
expressed in hepatocytes (46).

In a similar approach as described earlier, double trans-
genic ROSALUC X Alb-CreERT2 mice were imaged for
bioluminescence in the non-induced state (Figure 5A-a).
No bioluminescent signal was detected in the liver or any
other tissue. To investigate the liver-specific activation of
the floxed luciferase gene in vivo, the mice were induced
with Tam. As it can be seen in Figure 5A-b, activation of
the luciferase gene was detected in the central area of the
induced bitransgenic mouse. Quantitative luciferase data
were also obtained from the different organs. As seen in
Figure 5B, in the absence of Tam a residual luciferase
expression level of �20RLU/mg of total protein was
observed in the livers of the double transgenic mice in
contrast to the single transgenic control mice.
This activity corresponds to approximately three
luciferase molecules per cell. Interestingly, a residual
expression level could not be detected by RT–PCR
(Supplementary Data). All other organs isolated from
these non-induced bitransgenic mice did not show any
background luciferase expression (data not shown).
A dramatic (244-fold) activation in luciferase expression
was seen selectively in the liver of the induced double
transgenic mice when compared to the expression data
obtained for the non-induced mice. This amount of
luciferase expression in the liver corresponds to approxi-
mately 700 luciferase molecules per cell. Also, no luciferase
expression was observed for the single transgenic control
mice. RT–PCR confirmed the tight regulation in this
model (Supplementary Data).

Previously, it was shown that efficiency of Cre mediated
recombination is affected by the nature and accessibility of
the chromosomal site of the recombination targets
(37,44,47). Here, we show that apart from this, a high
level of CreERT2 expression in a specific tissue can
account for leaky expression. The moderate expression
level of CreERT2 from the ROSA26 promoter does not
induce any background expression, but is sufficient to
activate the target gene. Expression from other regulatory
elements might differ and thus, lead to elevated back-
ground levels of the target gene, as it is the case for the
albumin promoter driven CreERT2.

Together, these data highlight the requirement for
careful evaluation of a specific combination of CreERT2

Figure 4. Monitoring luciferase expression in the different organs
isolated from ROSAConL mice. The 4–8-weeks-old ROSAConL mice
were sacrificed and various organs were isolated. Tissue lysates
obtained were subjected to a luciferase assay. The luciferase activity
observed in RLU was normalized to micrograms of total protein
present in the tissue sample. Number of mice analyzed=6.
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effector expression and the position of the loxP reporter
system to validate the performance. In this respect, more
advanced fusions of Cre with the estrogen receptor
moieties might help to overcome limitations due to Cre
mediated leakiness (23,48).

Immunological assay to evaluate the tightness of gene
regulation

The results obtained from the luciferase reporter mice con-
firmed tight regulation of the transgene. Still, a low basal
luciferase activity was detected in the liver. This residual
activity however, was accompanied with a high statistical

variation. If this basal activity is due to intrinsic fluctu-
ation of expression in the mice or to experimental errors is
not clear.
The immune response to antigens is an extremely sen-

sitive in vivo assay that monitors any accidental activa-
tion by rendering the animals tolerant towards the
respective antigen. We and others have shown that
when low expressed protein are not detectable using
sensitive biochemical methods, these little expression
levels could provide a strong immune response (49).
We decided to make use of this highly sensitive biologic-
al activity to challenge the tightness of the above
described system. To test the strictness of gene

Luc + + - +

+ + + -

Tam - - - -

Luc + + - +

CreERT2CreERT2 + + + -

Tam + - + +

(a) (b)A

B

Figure 5. In vivo activation of Cre-dependent luciferase expression in bitransgenic ROSALUC X Alb-CreERT2mice. (A) In vivo non-invasive bio-
luminescent imaging (BLI) of ROSALUC X Alb-CreERT2 mice offsprings. (a) BLI image of animals not induced with Tam. Four-weeks-old
bitransgenic ROSALUC X Alb-CreERT2 mice along with single transgenic Alb-CreERT2and ROSALUC as controls are indicated. (b) BLI image
of animals induced with Tam. Image was acquired 5 days after the last Tam feed. Color bar indicates photons/cm2/s/steradian with the minimum and
maximum threshold value. (B) Monitoring luciferase expression in the different organs isolated from ROSALUC X Alb-CreERT2 mice. The
4–8-weeks-old bitransgenic ROSALUC X Alb-CreERT2 mice (induced and uninduced) were sacrificed and various organs were isolated. Tissue
lysates obtained were subjected to a luciferase assay. Figure depicts induced and non-induced ROSALUC X Alb-CreERT2. Hash sign indicates values
<1RLU/mg of total protein. Brain tissue sample from induced and non-induced mice showed values <1RLU/mg of total protein and is not shown in
the figure. Values above dashed line are considered as luciferase expression. Tissues from control single transgenic ROSALUC and Alb-CreERT2

mice showed an average of <2 RLU/ mg of total protein and are not depicted in the figure. Number of mice analyzed for each group=5. Student’s
t-test, comparing values to induced liver results in **P< 0.01.
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regulation we integrated the Ovalbumin gene (OVA) as
a model antigen into the ROSA26 locus via RMCE.
The OVA antigen was flanked with inverse loxP sites
and placed in antisense orientation according to the
reporter gene configuration (Figure 1). ROSAOVA
subclones obtained upon correct exchange event were
confirmed by Southern blot as well as PCR analysis
(data not shown). A transgenic mouse line was estab-
lished and subsequently mated to the Alb-CreERT2 mice
(45) to obtain double transgenic ROSAOVA X
Alb-CreERT2 progeny.
Cre-activatable OVA expression and presentation of the

OVA epitope by MHC-I in hepatocytes isolated from
ROSAOVA X Alb-CreERT2 mice was tested. For this
purpose, an in vitro coculture assay was performed
(Figure 6). Hepatocytes were isolated from six male
double transgenic mice of which three were induced with
Tam and three were non-induced. The hepatocytes were
then cocultured with CD8+ T cells from OT-I T cell
receptor transgenic mice for 72 h. OT-I CD8+ T cells
express T cell receptor specific for the OVA peptide
which would get activated upon recognition of OVA
epitope in context with MHC-I. This activation, in turn,
can be monitored by IFN-g release by the T cells. As can
be seen in Figure 6, the OT-I CD8+T cells cocultured with
hepatocytes isolated from the three induced mice showed
proliferation and activation with IFN-g release of as high
as 1ng/ml whereas for the non-induced mice, no prolifer-
ation was observed similar to the single transgenic
controls. The result from this experiment confirms the
strict Cre-dependent and inducible activation of the

transgene-encoded antigen expression in the hepatocytes
of ROSAOVA X Alb-CreERT2 mice. Importantly, when
subjecting the non-parenchymal cell fraction from the
livers of these mice to this assay, no IFN-g release was
detected, clearly excluding unintended presentation of
OVA from these cells (data not shown). This indicates
that the OVA antigen expression and presentation of its
epitope is strict hepatocyte-specific.

Finally, we tested if upon induction of antigen (OVA)
expression in hepatocytes, OVA would be recognized as a
newly expressed protein (neo antigen) and thus results in
an immune response. For this purpose, we bred the mice
to OT-I mice (50). In the resulting triple transgenic OT-1
X ROSAOVA X Alb-CreERT2 mice, OT-I CD8+ T cells
were not deleted and were detected at levels comparable to
control OT-I mice mice (data not shown). Moreover, the
mice displayed normal levels of ALT, a serum enzyme that
is released upon killing of hepatocytes (Figure 7A). This
indicates that in the non-induced state the T cells are not
activated.

Upon induction of OVA expression by Tam we moni-
tored the ALT. A massive increase of ALT was detected 2
days upon induction (Figure 7A). The mice were sacrificed
and liver samples showed infiltration of mononuclear cells
and dying hepatocytes (Figure 7B). Together, this shows
that the OVA antigen is recognized as a neo antigen and is
thus strictly controlled in this model.

Together, we show that the strategy of inverse integra-
tion of a floxed transgene into the ubiquitously active
ROSA26 locus provides tightly controlled transgene
expression. Due to the availability of this locus via

OVA CreERT2 Tam

+ + +

+ + -

- + +

+ - +

21
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Figure 6. In vitro coculture assay to evaluate Cre-activatable OVA expression in hepatocytes from ROSAOVA X Alb-CreERT2 mice. The above
figure depicts the OVA antigen cassette as integrated in the ROSA26 locus in ROSAOVA mice via RMCE. ROSAOVA mice were mated to
Alb-CreERT2. Eight-weeks-old double transgenic mice were used to evaluate activation of OVA expression. Hepatocytes were isolated from six
male double transgenic ROSALUC X Alb-CreERT2 mice of which three were induced with Tam (mice Nr 1–3) and three non-induced (mice Nr 4–6);
these cells were cocultured with OT-I CD8+ T cells. As negative controls single transgenic Alb-CreERT2 mice (Nr 7–9) and ROSAOVA mice Nr
(10–12) mice were used. Activation of OT-I T cells was monitored via IFN-g cytokine secretion in the supernatants by conventional ELISA.
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RMCE, this strategy represents a flexible platform for the
establishment of transgenic mouse models in which tight
regulation of the transgene is crucial.

The strength of target gene activation depends on its
accessibility towards inversion and on the strength of its
expression. In the experimental design presented here,
wild-type loxP sites were employed. As a consequence
continuous ‘flipping’ (repeated inversion) will occur as
long as Cre recombinase is present. Hence, theoretically
only 50% of the cells will express luciferase. For certain
applications, however, 100% expressing cells maybe
required whereby this system could then be exploited by

using mutant loxP sites for effecting a permanent switch
(51–53). Thus, by choosing appropriate expression condi-
tions for CreERT2 and the target gene, maximal gene
activation with minimal background/basal expression
can be reached.
As immunological assays are exquisitely specific and

sensitive (far beyond the resolution of most biochemical
assays), the data presented exclude biologically relevant
leakiness. We cannot exclude that for some applications
such as activation of an oncogene in a tumor initiating
cell, stochastic gene activations could lead to conse-
quences even in this experimental setting. The flexibility

OT-I X ROSAOVA X Alb-CreERT2

+Tam
OT-1 X ROSAOVA

+Tam
C57BL/6

OT-1 X ROSAOVA 

Alb-CreERT2

Tam

+ + + +

- - + +

- + - +

**A

B

(a) (b) (c)

(d) (e) (f)

Figure 7. Induced hepatitis upon Tam treatment in OT-I X ROSAOVA X Alb-CreERT2 mice. (A) Determination of ALT activity in blood of OT-I X
ROSAOVA X Alb-CreERT2 mice. The 8-weeks-old OT-I X ROSAOVA X Alb-CreERT2 were induced with Tam and blood was collected for ALT
analysis at Day 2. Number of mice analyzed for each group=4. **P< 0.01 (student’s t-test). (B) Histology of mouse liver tissue. Paraffin embedded
liver tissue section was stained with H&E. Liver histology of OT-I X ROSAOVA X Alb-CreERT2 (a and d), control OT-I X ROSAOVA (b and e) and
C57BL/6 (c and f) is shown with different magnifications �100 (a–c) and �200 (d–f). Arrow indicates mononuclear cell infiltration.
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of the described system however allows for rapid testing of
various cassette designs and has hence a unique advantage
to facilitate easy access to mouse models that address such
questions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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