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ABSTRACT Soil salinization is a growing environmental problem caused by both
natural and human activities. Excessive salinity in soil suppresses growth, decreases
species diversity, and alters the community composition of plants; however, the ef-
fect of salinity on soil microbial communities is poorly understood. Here, we charac-
terize the soil microbial community along a natural salinity gradient in Gurbantung-
gut Desert, Northwestern China. Microbial diversity linearly decreased with increases
in salinity, and community dissimilarity significantly increased with salinity differ-
ences. Soil salinity showed a strong effect on microbial community dissimilarity,
even after controlling for the effects of spatial distance and other environmental
variables. Microbial phylotypes (n � 270) belonging to Halobacteria, Nitriliruptoria,
[Rhodothermi], Gammaproteobacteria, and Alphaproteobacteria showed a high-salinity
niche preference. Out of nine potential phenotypes predicted by BugBase, oxygen-
related phenotypes showed a significant relationship with salinity content. To ex-
plore the community assembly processes, we used null models of within-community
(nearest-taxon index [NTI]) and between-community (�NTI) phylogenetic composi-
tion. NTI showed a significantly negative relationship with salinity, suggesting that
the microbial community was less phylogenetically clustered in more-saline soils.
�NTI, the between-community analogue of NTI, showed that deterministic processes
have overtaken stochastic processes across all sites, suggesting the importance of
environmental filtering in microbial community assembly. Taken together, these re-
sults suggest the importance of salinity in soil microbial community composition
and assembly processes in a desert ecosystem.

IMPORTANCE Belowground microorganisms are indispensable components for nu-
trient cycling in desert ecosystems, and understanding how they respond to in-
creased salinity is essential for managing and ameliorating salinization. Our
sequence-based data revealed that microbial diversity decreased with increasing
salinity, and certain salt-tolerant phylotypes and phenotypes showed a positive
relationship with salinity. Using a null modeling approach to estimate microbial
community assembly processes along a salinity gradient, we found that salinity
imposed a strong selection pressure on the microbial community, which resulted
in a dominance of deterministic processes. Studying microbial diversity and com-
munity assembly processes along salinity gradients is essential in understanding
the fundamental ecological processes in desert ecosystems affected by saliniza-
tion.
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About 1/10 of the total dry land surface on the earth suffers from salinization (1), and
salinized areas are increasing due to low precipitation, high surface irrigation, and

poor agricultural management. Soil salinity acts as an influential environmental stressor
coupled with limitation of water availability and high intracellular concentrations of
ions that are toxic to metabolic activities (2). High salinity in soil suppresses plant
growth, decreases plant photosynthetic capacities (3), and poses a strong influence on
the composition, distribution, and diversity of plant communities (4). Belowground
microorganisms are crucial for carbon decomposition and nutrient cycling, but the
potential effect of soil salinity on belowground microbial communities is poorly un-
derstood.

Initially, the effect of salinity on soil microorganisms was studied using traditional
approaches, such as soil respiration, microbial biomass, and microbial enzymatic activ-
ities (5). Most field and laboratory experiments showed an adverse effect of salinity on
soil microbial biomass, respiration (6–9), and enzymatic activities (1). However, a
microcosm experiment demonstrated that total microbial biomass and bacterial bio-
mass evaluated by phospholipid fatty acid (PLFA) were not affected by soil salinity (10),
and a field study with a relatively modest salinity range in tidal wetlands showed that
the activities of carbon-degrading extracellular enzymes and alkaline phosphatase
activities were stimulated by salinity (11). The inconsistent responses probably came
from the pools of microbial phylotypes present in different experiment sites and their
differences in salt tolerance. With the development of next-generation sequencing
technologies, several studies have recently investigated the shifts in community struc-
tures of microbial phylotypes associated with salinity in saline sediments and soils (2,
12–14). However, the extent to which the changes in salinity levels are the main driver
for microbial community divergence is still debatable. For example, a study explored
both soil and sediment samples collected along a 140-m transect from the hypersaline
lake La Sal del Rey, and the variance of the microbial community was shaped by
oxygen, carbon substrates, and pH rather than salinity (12), while sediment samples
collected in Qinghai-Tibetan lakes showed that salinity was a key factor in shaping
microbial diversity and community structure (13). A better understanding of how
microorganisms respond to a natural salinity gradient is important in predicting the
vulnerability of desert ecosystems to environmental change.

Although salinity had been demonstrated to be the most important factor to affect
microbial distribution at a global scale (15, 16), no previous study has focused explicitly
on microbial community assembly processes along natural salinity gradients. The
importance of understanding community assembly processes is broadly recognized in
microbial ecology (17–19), and the assembly of microbial communities is known to be
influenced by both deterministic and stochastic processes (20, 21). Deterministic pro-
cesses refer to habitat filtering or biotic interactions such as mutualism, commensalism,
and parasitism, while stochastic processes refer to random demographic changes in
mortality and passive dispersal (18, 22). By examining deviations from null model
expectations, changes in the relative importance of deterministic and stochastic pro-
cesses for microbial communities can be investigated (23). Recent studies investigated
community assembly processes along aridity (21) and pH (24, 25) gradients, but little is
known about microbial community assembly processes along a salinity gradient.

The Gurbantunggut Desert, part of the Dzungarian Basin in northern Xinjiang, is the
second largest desert in China. Because unfavorable environment conditions in deserts
limit plant growth (26, 27), soil microbial communities in this ecosystem are less
affected by plants. In addition, this region includes natural salinity gradients, which
could provide an ideal simplified environment to study the effects of salinity on soil
microbial communities. The goals of this study were to (i) determine how the diversity
and composition of the microbial community vary along natural salinity gradients in
desert ecosystems, (ii) investigate how salinity affects soil microbial phylotypes and
phenotypes, and (iii) explore how salinity affects soil microbial community assembly
processes.
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RESULTS

A total of 4,244,827 16S rRNA V4 region gene sequences were obtained across 120
soil samples. From the sequencing data, 15,147 operational taxonomic units (OTUs)
were annotated at 97% identity. The dominant microbial phyla included Actinobacteria
(�41.32%), Proteobacteria (�24.21%), Bacteroidetes (�5.08%), Chloroflexi (�5.38%), and
Firmicutes (�6.28%), accounting for more than 80% of the total sequences (see Fig. S2
in the supplemental material).

We first explored the relationship between microbial alpha diversity (observed OTUs
and Faith’s phylogenetic diversity) and 15 environmental variables (Table S1). Using
stepwise multiple-regression model analysis, we found that salinity was consistently the
best predictor for both observed OTUs and phylogenetic diversity, explaining 22.5%
and 18.2% of the variation in the number of observed OTUs and Faith’s phylogenetic
diversity, respectively (Table 1). Furthermore, salinity had a strong negative linear
relationship with observed OTUs and Faith’s phylogenetic diversity (Fig. 1).

Distance-based multivariate linear model (DistLM) analysis showed that salinity was
the most important factor that determined microbial community structure and ex-
plained 9.35% of the total variations in microbial community structure (Table S2).

TABLE 1 Results of stepwise multiple-regression models using observed OTUs and
phylogenetic diversity as response variablesa

Response
variable R2 (%)

Predictor
variable F P

Observed
OTUs

46.17 Salinity 53.14 �0.001
WC 26.36 �0.001
pH 18.59 �0.001
SOC 8.23 0.004
P 2.04 0.156
NO3

� 0.37 0.542
DTN 0.35 0.556

PD 43.71 Salinity 40.50 �0.001
WC 30.76 �0.001
pH 12.29 �0.001
P 7.01 0.009
SOC 6.87 0.01

aPD, phylogenetic diversity; WC, soil water content; SOC, soil organic carbon; DTN, dissolved total nitrogen;
P, available phosphorus.

FIG 1 Relationship between soil salinity and observed OTUs (A) and Faith’s phylogenetic diversity (B).
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Furthermore, multivariate regression tree (MRT) analysis was used to probe the effects
of environmental variables on microbial community structure. Even though all 15
measured environmental variables were included in the analysis, only salinity content
split the tree and divided samples into three salinity gradients (Fig. S3). Microbial
Bray-Curtis dissimilarity also showed a significant negative relationship with differences
in soil salinity (R2 � 0.336; P � 0.001) (Fig. 2), which indicates that the larger the salinity
difference between two sites, the more dissimilarity between the microbial community
structure in those two sites. As geographic distance is also an important factor to elicit
variation in microbial community structure, a partial Mantel test was used to estimate
the effect of salinity distance on microbial community structure after controlling for
spatial distance and other environmental distances, excluding salinity. Even though
both salinity and geographic distance had significant effects on microbial community
structure, the effect of salinity was stronger than that of geographic distance (Table 2).
Together, these observations strongly suggested that salinity was a key factor in
shaping the structure and diversity of a desert soil microbial community.

FIG 2 Relationship between Bray-Curtis dissimilarity and differences in soil salinity.

TABLE 2 Partial Mantel test results showing comparisons between microbial community
dissimilarity, �NTI, and a one-distance matrix while controlling for the other two distance
matrices

Test Parameter

Effect ofa:

Salinity.dist
controlling
for Env.dist
(excluding
salinity) �
Geo.dist

Env.dist
(excluding
salinity)
controlling
for Geo.dist �
salinity.dist

Geo.dist
controlling
for Env.dist
(excluding
salinity) �
salinity.dist

Bray-Curtis
dissimilarity

r 0.465 0.021 0.1524
P 0.001 0.332 0.001

�NTI r 0.072 �0.092 �0.084
P 0.057 0.967 0.999

aSalinity.dist, salinity dissimilarity based on Euclidean distance; Env.dist (excluding salinity), all the measured
variables except salinity distance based on Euclidean distance; Geo.dist, geographic distance.
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Salinity has been found to be a major driver of microbial diversity and composition
at the community level, which inspired us to investigate the effect of salinity on soil
microorganisms at finer taxonomic levels such as phylotypes. The balance tree ap-
proach showed well-defined niche differentiation of microbial OTUs along a salinity
gradient (Fig. 3A and B). The high-salinity OTUs (535 to 4,601 �S/cm) were gradually
overtaken by low-salinity OTUs (46.2 to 535 �S/cm) as the salinity increased, forming a
linear trend by the top balance of the tree (Fig. 3C). To extract taxon information from
the top balance of the tree, 270 taxa belonging to Halobacteria, Nitriliruptoria, [Rhodo-
thermi], Gammaproteobacteria, and Alphaproteobacteria were found to be more abun-
dant in high-salinity sites, while 3,136 taxa belonging to Alphaproteobacteria, Actino-
bacteria, Thermoleophilia, Bacilli, and Acidimicrobiia were more abundant in low-salinity
sites (Fig. 3D). Using BugBase, we predicted nine potential phenotypes, including
aerobic, anaerobic, containing mobile elements, facultatively anaerobic, biofilm form-
ing, Gram negative, Gram positive, potentially pathogenic, and stress tolerant. Among
all the phenotypes, the relative abundance of the anaerobic phenotype showed a
significant positive relationship with salinity, and the relative abundance of the stress-
tolerant phenotype showed a marginally significant (P � 0.1) positive relationship with

FIG 3 Balance tree estimated by genies analysis showing niche differentiation of soil microbial OTUs. (A) Heat map showing observed OTU proportions sorted
by salinity from 46.2 �S/cm to 4,601 �S/cm. (B) Heat map showing predicted OTU proportions from ordinary least-squares linear regression on balances sorted
by salinity. (C) Log ratio of proportions of OTUs with a low-salinity niche preference to proportions of OTUs with a high-salinity niche preference along a salinity
gradient. y0denominator represents low-salinity OTUs with salinity ranges from 46.2 �S/cm to 535 �S/cm, and y0numerator represents high-salinity OTUs with salinity
ranges from 535 �S/cm to 4,601 �S/cm. (D) Number of OTUs belonging to y0denominator and y0numerator sorted to the class level.
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salinity, while the relative abundance of facultative anaerobic and biofilm-forming
phenotypes displayed a significantly negative relationship with salinity (Fig. 4).

Furthermore, to figure out how salinity influenced microbial community assembly
processes, we used within-community (nearest-taxon index [NTI]) and between-
community (�NTI) null models. We found a significant negative relationship between
NTI and salinity (Fig. 5A), indicating that the increase in salinity decreased the extent of

FIG 4 Relationship between soil salinity and relative abundances of nine potential phenotypes predicted by
BugBase.

FIG 5 Relationship between soil salinity and within-community NTI (A) and between-community �NTI (B) of a microbial community.
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phylogenetic clustering in the microbial community. Even though there was no signif-
icant relationship between �NTI and the difference in salinity, almost all the �NTI values
were below �2, which implied a dominant role of environment factors in the microbial
community.

DISCUSSION

The first objective of this study was to explore the effect of salinity on microbial
community diversity and community structure in a desert ecosystem. In this study, we
used amplicon sequencing to investigate the salinity effect on a microbial community
and found that observed OTUs and Faith’s phylogenetic diversity had significant
negative relationships with salinity (Fig. 1). The possible explanation for this negative
effect could be attributed to the fact that the accumulation of salt in soils elevates the
extracellular osmolarity (5, 28), and many microorganisms that fail to adapt to osmotic
stress may die or become inactive, thus reducing microbial alpha diversity. Variation in
soil microbial community structure was also mainly explained by salinity in this study,
which is consistent with the results found in estuarine and marine environments
(29–31). However, a study investigating soil and sediment microbial communities near
a hypersaline lake with salinity ranges from 34.2 mS/cm to 123 mS/cm found that shifts
in microbial community were highly related to the site water content, nutrient con-
centrations, and pH rather than salinity (12). The contrasting results reported in the
previous study might be due to local-scale sampling in an already salt-rich environ-
ment.

The variation in microbial community composition along the salinity gradient
reported in this study (Fig. 2) had implications for species sorting, with more-salt-
tolerant species replacing less-salt-tolerant ones. Those microorganisms that thrive in
high-salinity environments often apply two strategies to balance the osmotic potential
of the cytoplasm (28). One is the “salt-in” strategy, which involves taking up ions, such
as predominantly potassium ions. This strategy is often used by some halophiles, such
as Halobacteriaceae, Salinibacter, and fermentative Halanaerobiales. Hence, it was rea-
sonable to find more Halobacteria in soils with high salinity (Fig. 3D). Consistently,
Halobacteriaceae have been shown to be prevalent in saline soils (32), lake sediments
(33), and marine environments (34). The other strategy is the “low-salt-in” strategy,
which involves accumulating low-molecular-weight organic compounds (e.g., amino
acids and carbohydrates) within the cell to exclude salt from the cell (35). Previous
culture-independent studies detected dominant halophilic and halotolerant taxa affil-
iated with the bacterial phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Gem-
matimonadetes (36, 37). The microbial taxa belonging to Proteobacteria, Bacteroidetes,
Actinobacteria, and Halobacteria detected in this study have a high-salinity niche
preference (Fig. 3), and these taxa may act as potential biomarkers for a high-salinity-
tolerant community. Furthermore, to reveal the responses of functional traits to in-
creased salinity, BugBase was used to predict potential phenotypes. The oxygen-related
phenotypes showed a significant relationship with salinity (Fig. 4). High salinity has
been demonstrated to elicit dispersion of soil particles (38); thus, it was reasonable that
these oxygen-related phenotypes changed, as oxygen availability could be affected by
the dispersion of soil particles (39).

Salinity is not the only pressure for microorganisms in a desert, which is often
combined with low water availability and high pH (5). Soil moisture was found to be the
second important factor affecting both community diversity and structure in this study
(Table 1; see also Table S2 in the supplemental material). The microbial cell contains
nearly 70% water, and soil water content is an important factor that determines a
microbial community, as it exerts strong control over gaseous and liquid diffusion of
microbial resources within soil (40). A short-term microcosm experiment that combined
salinity and drying-rewetting processes together found that inhibition of bacterial
growth and respiration by reduced moisture was exacerbated by the accumulation of
salinity content (9), indicating a more-severe effect on the microbial community than
only high salinity.
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The dramatically low microbial diversity in high-salinity sites in the present study
indicates habitat filtering, which was supported by all positive NTI values (Fig. 5A). The
positive NTI values suggest that the communities were more phylogenetically clustered
than expected by chance (41), reflecting an environmental selection pressure on the
microbial community to form a nonrandom community pool (42). Even though salinity
had a strong selective pressure on the microbial community, it should be noted that NTI
decreased with increasing salinity, which means that microbial community assembly
was less phylogenetically clustered in more-saline soils. Knowing that salinity is a major
determinant of the microbial community and that only taxa well adapted to high salt
concentrations are able to prevail in high-salt environments (28), the strength of
phylogenetic clustering is expected to increase when the environment is suitable for
only a subset of microorganisms (43). In a previous study, it was found that the extent
of soil bacterial phylogenetic clustering was greater in more-acidic and more-alkaline
soils (25). The contrasting results obtained in this study could be explained in two ways.
First, although microorganisms live in high-salt environments, this does not necessarily
mean that only closely related taxa coexist in such peculiar environments. For example,
a previous review exploring the diversity of Archaea in hypersaline systems found that
this high-salinity habitat harbors a phylogenetically diverse group of Archaea possess-
ing different metabolic pathways (44). Second, the limited resource availability in
high-salinity sites because of sparse plant growth (5) could result in the competitive
exclusion of some closely related taxa, which acts as a signal for overdispersed
phylogeny (42). In this study, the strong effect of salinity on microbial community
structure and assembly could be explained by the higher relative importance of
deterministic processes, and the dominant role of deterministic processes was tested
by �NTI (Fig. 5B).

In conclusion, we characterized a soil microbial community by sequencing the 16S
rRNA genes in a desert ecosystem along a natural soil salinity gradient. Our results
provide strong evidence for a salinity effect on microbial community composition and
assembly, which will shed light on how desert ecosystems may respond to ongoing
salinization. To move forward our understanding of the dynamics of ecosystems under
these severe salinization conditions, future effort should be made to build extensive
data sets that can be used to explore the general rules of how microbes respond to
increasing salinity.

MATERIALS AND METHODS
Soil sample collection. The sampling sites were along an east-to-west transect in the Gurbantung-

gut Desert, Xinjiang, Northwestern China, at 44.21°N to 45.51°N and 83.16° to 91.77°E (see Fig. S1 in the
supplemental material). This region has a temperate continental arid climate, with a mean annual
temperature range from 6.4°C to 7.7°C and mean annual rainfall from 102 to 167.4 mm during 2011 to
2013 (45). Twenty-four sampling sites were selected along the 682.8-km transect in 5 to 13 May 2016. At
each sampling site, five 1-m by 1-m quadrats were selected as replicates within a 500-m by 500-m
quadrat, and the five plots were about 300 m apart from each other within the 500-m by 500-m quadrat.
To reduce the effects of soil heterogeneity, we also collected five soil samples within the 1-m by 1-m
quadrats and composited them to make one soil sample per quadrat (Fig. S1). A total of 120 topsoil (0-
to 15-cm) samples were collected by drill, and all samples were stored on ice in the field and immediately
transported to the laboratory. After sieving through a 2-mm mesh, each soil sample was divided into two
parts, with half stored at 4°C for soil biogeochemical property analyses and half stored at �20°C for DNA
extraction. In addition, for each sampling site, we collected data on average air temperature (TEM),
rainfall, and the enhanced vegetation index (EVI) on May 2016 from the meteorological data platform of
China (http://data.cma.cn/site/index.html).

Analysis of soil biogeochemical properties. Soil pH was measured by using an E20-FiveEasy pH
meter (Mettler Toledo, Germany), and soil electrical conductivity, the indicator of soil soluble salt, was
determined by using an electric conductometer. Both soil measurements were made using a soil-water
suspension (5:1 mixture of deionized water-fresh soil) after shaking for 30 min. Soil moisture was
determined gravimetrically at �105°C for 6 h. Dissolved total nitrogen (DTN), nitrate (NO3

�-N), and
ammonium (NH4

�-N) were extracted by adding 5 g fresh soil to 50 ml of a 2 M KCl solution, and dissolved
organic carbon (DOC) was extracted with 50 ml of deionized water. After shaking for 1 h and standing for 1 h,
the supernatant was filtered through glass fiber filters (Fisher G4, 1.2-�m pore space). The concentrations of
NO3

�-N, NH4
�-N, and DTN were determined using a continuous-flow analytical system (San�� system; Skalar,

Holland). DOC was determined by using a carbon nitrogen analyzer (Multi N/C 3000; Analytik Jena, Germany).
Available phosphorus (P) was extracted with a 0.5 M NaHCO3 solution and measured by the Mo-Sb colori-
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metric method. Available potassium (K) was extracted with 1 M ammonium acetate (NH4OAc) and measured
by the flame spectrophotometry method. Soil organic matter (SOM) was measured by the K2Cr2O7-H2SO4

oxidation method, and total nitrogen (TN) was measured by the Kjeldahl method.
Soil DNA extraction and 16S rRNA sequencing. For each sample, DNA was extracted from 0.5 g

fresh soil using a Fast DNA spin kit for soil (MP Biomedicals, Santa Ana, CA) according to the manufac-
turer’s instructions. DNA was then quantified using a Nanodrop 1000 spectrophotometer (Thermo
Scientific, Wilmington, DE) and stored at �20°C before sequencing. Primers 515F (GTGCCAGCMGCCG
CGG) and 806R (GGACTACHVGGGTWTCTAGGTWTCTAAT) were used to amplify the V4 hypervariable
region of the 16S rRNA gene in both bacteria and archaea (46). PCR was carried out in a 30-�l reaction
mixture volume with 15 �l Phusion high-fidelity PCR master mix (New England Biolabs), 0.2 �l forward
and reverse primers, and �10 ng template DNA. Thermal cycling was carried out at 98°C for 1 min,
followed by 30 cycles at 98°C for 10 s, 50°C for 30 s, and 72°C for 30 s. High-throughput sequencing was
performed on an Illumina HiSeq platform (Illumina, Inc., USA), and 250-bp paired-end reads were
generated.

Data analysis. The barcoded forward and reverse reads of 16S rRNA genes were merged by using
FLASH (47). Paired-end reads were assigned to each sample based on unique barcodes and analyzed in
QIIME1.9.0 using default settings (48). Sequences were clustered into operational taxonomic units (OTUs)
by UCLUST with a 97% similarity threshold using QIIME’s pick_open_reference_otus.py script and the
Greengenes database (13-8 release) as a reference (49). Low-abundance OTUs were eliminated from the
OTU table when the number of counts across all samples was �10. QIIME’s core_diversity_analyses.py
script was used to compute alpha and beta diversity values, and all samples were rarefied to 27,000
sequences per sample.

Stepwise multiple-regression analysis was conducted to identify the main predictors of microbial
diversity (observed OTUs and phylogenetic diversity) among the measured environmental variables. The
distance-based multivariate linear model (DistLM) was also used to test the correlation between
environmental variables and microbial community structure based on Bray-Curtis distance. The contri-
bution of each environmental variable was assessed using DISTLM_forward3 (50). Multivariate regression
tree (MRT) analysis was also performed to detect relationships between microbial community structure
and all measured environmental variables (51). A total of 1,000 cross-validations using the “lse” method
were used to decrease the complexity of the tree to identify the main predictors of microbial community
structure. MRT analysis was conducted using the mvpart package in R. Niche differentiation of microbial
phylotypes was detected by a more precise method, gneiss in QIIME2 (52). The method uses the concept
of a balance tree to infer changes of microbial subcommunities to evaluate niche differentiation rather
than changes in individual species based on proportion. Gradient clustering was applied to group
microbes into their preferred habitat, ilr-transform was used to compute the isometric log ratios between
groups, and ordinary least-squares analysis was used to calculate the balances of microbial community
profiles. OTUs with fewer than 120 reads were filtered in the gneiss analysis to avoid clustering errors.
BugBase, an organism-level prediction algorithm, can be used to predict biologically interpretable
phenotypic traits, such as Gram status, oxygen requirements, and biofilm formation (53). A Web
application version of BugBase (http://bugbase.cs.umn.edu) was used to obtain phenotypic information
based on 16S rRNA gene sequences in this study.

The nearest-taxon index (NTI) were used to evaluate the phylogenetic community assembly on a
within-community scale, and high or positive values represent clustering of taxa across the overall
phylogeny, while low or negative values indicate overdispersion of taxa across the phylogeny (41). The
value of NTI is equivalent to �1 times the standardized effect size of MNTD (mean nearest-taxon
distance), and the standardized effect size of MNTD was calculated by comparing observed phylogenetic
relatedness to the expected pattern under the “taxa.lables” null model with 999 randomizations in the
“picante” R package. The abundance-weighted �MNTD was calculated to infer community phylogenetic
turnover between communities using Phylocom software (54). Next, a between-community null mod-
eling approach was applied to infer community assembly processes by calculating the �-nearest-taxon
index (�NTI). �NTI represents the deviation between the observed �MNTD and the expected �MNTD. As
the expected �MNTD represents the dominance of stochastic processes, the value of �NTI can be used
to infer the dominance of stochastic and deterministic processes. �NTI pairwise comparisons falling
within the null distributions (�2 � �NTI � 2) indicate a dominance of stochastic processes, whereas
proportions of pairwise comparisons for which the �NTI is more than 2 or less than �2 indicate a
dominance of deterministic processes (55). A partial Mantel test with Pearson correlation was used to
estimate the relationship between �NTI, microbial community dissimilarity (Bray-Curtis distance), and a
one-explanation matrix (such as soil salinity distance based on Euclidean distance, spatial distance, or
environmental distance, excepting salinity based on Euclidean distance) after controlling for the other
two matrices.

Data availability. All sequencing data associated with this study have been deposited at the NCBI
Sequence Read Archive (SRA) under project accession number SRP112798.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00225-18.
FIG S1, PDF file, 0.4 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.1 MB.
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TABLE S1, XLSX file, 0.03 MB.
TABLE S2, XLSX file, 0.03 MB.
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