
ORIGINAL RESEARCH
published: 02 March 2022

doi: 10.3389/fpsyt.2022.757961

Frontiers in Psychiatry | www.frontiersin.org 1 March 2022 | Volume 13 | Article 757961

Edited by:

Burkhardt Funk,

Leuphana University, Germany

Reviewed by:

Gorkem Yararbas,

Ege University, Turkey

Kim Mathiasen,

University of Southern

Denmark, Denmark

*Correspondence:

Zhi Yang

yangz@smhc.org.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Digital Mental Health,

a section of the journal

Frontiers in Psychiatry

Received: 13 August 2021

Accepted: 26 January 2022

Published: 02 March 2022

Citation:

Ding Y, Liu J, Zhang X and Yang Z

(2022) Dynamic Tracking of State

Anxiety via Multi-Modal Data and

Machine Learning.

Front. Psychiatry 13:757961.

doi: 10.3389/fpsyt.2022.757961

Dynamic Tracking of State Anxiety
via Multi-Modal Data and Machine
Learning

Yue Ding 1†, Jingjing Liu 1†, Xiaochen Zhang 1 and Zhi Yang 1,2,3*

1 Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of

Medicine, Shanghai, China, 2 Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai,

China, 3 Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China

Anxiety induction is widely used in the investigations of the mechanism and treatment of

state anxiety. State anxiety is accompanied by immediate psychological and physiological

responses. However, the existing state anxiety measurement, such as the commonly

used state anxiety subscale of the State-Trait Anxiety Inventory, mainly relies on

questionnaires with low temporal resolution. This study aims to develop a tracking model

of state anxiety with high temporal resolution. To capture the dynamic changes of state

anxiety levels, we induced the participants’ state anxiety through exposure to aversive

pictures or the risk of electric shocks and simultaneously recorded multi-modal data,

including dimensional emotion ratings, electrocardiogram, and galvanic skin response.

Using the paired self-reported state anxiety levels and multi-modal measures, we trained

and validated machine learning models to predict state anxiety based on psychological

and physiological features extracted from the multi-modal data. The prediction model

achieved a high correlation between the predicted and self-reported state anxiety levels.

This quantitative model provides fine-grained and sensitive measures of state anxiety

levels for future affective brain-computer interaction and anxiety modulation studies.

Keywords: state anxiety, machine learning, quantitative modeling, dynamic tracking, physiological feature,

psychological feature

INTRODUCTION

Anxiety is a mental state of elevated apprehension, arousal, and vigilance usually elicited by the
anticipation of threat (1, 2). The defensive response caused by anxiety enables the organism to
avoid or reduce harm to ensure its survival (3). But excessive or inappropriate anxiety can become
an illness and diminish life quality (4). Anxiety disorder ranks among the most prevalent mental
illnesses overall the world (5). A better understanding of the neural mechanism and biomarker of
anxiety may benefit the large anxious population (6).

Meta-analysis studies have suggested overlapping neurobiological mechanisms across induced
and pathological anxiety (7), allowing for investigations of anxiety by inducing state anxiety (8).
Through anxiety induction procedures, one can reproduce concrete transitory anxious states under
controlled conditions (9) by using particular situations or stimuli (10–12). Paradigms, such as
exposure to disturbing pictures (13, 14) or anticipatory threats [e.g., electric shock; (15)], and
experimental situations of failure (12) have been commonly used to induce anxiety. Regardless
of the paradigms, a convenient, timely, and objective marker to indicate state anxiety changes
is essential.
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There have been a series of self-report measures of anxiety
that are well-accepted in both clinical and research settings,
including the State-Trait Anxiety Inventory (STAI), the Beck
Anxiety Inventory (BAI), and the anxiety subscales of the
Hospital Anxiety and Depression Scale, etc. (16). Among them,
only the state anxiety subscale of STAI (STAI-S), evaluates the
current state of anxiety by asking how respondents feel “right
now”. STAI-S applies 20 items tomeasure respondents’ subjective
feelings of apprehension, tension, nervousness, worry, and
activation/arousal of the autonomic nervous system. However,
the measuring interval of STAI ranges from 1 h to 104 days
(16), lacking the capability of measuring transitory states in
a finer temporal resolution. Immediate Mood Scaler (IMS), a
newly proposed self-report tool, could capture current mood
states with 22 items but is designed for a daily report with
a maximum usage frequency being twice a day (17). Though
state anxiety is associated with transient sympathetic activation
and vagal deactivation (18), most anxiety-related indicators
were reported in discrete time points with long intervals (19,
20). There’s a lack of a dynamic and transient indicator of
state anxiety.

Anxiety is an emotion (21). Emotional states can be
described by valence, arousal, and dominance (VAD), ranging
from unpleasant to pleasant, from calm to agitated, and
from submissive to dominant, respectively (22). In the classic
emotional theoretical model, anxiety features high arousal, low
valence, and low dominance (23, 24). But to our knowledge,
the quantitative relationship between VAD and state anxiety
remains unclear.

Apart from self-report tools, physiological responses
accompanying anxiety include sweating, heart palpitations,
faster and shallower breathing, etc. (25, 26). Studies have
revealed several qualitative cardiovascular, electrodermal,
and respiratory features associated with anxiety (27), such as
increased heart rate, decreased heart rate variability (28, 29),
increased skin conductance response and increased skin
conductance level (28, 30), increased respiratory rate, as
well as decreased tidal volume (30, 31). By combining
these physiological features, researchers have been able to
differentiate anxiety from other emotional states, such as
relaxation, excitement, and fun (32), or identify discrete
anxious levels (33). However, the quantitative representations
of state anxiety based on the psychological and physiological
response are still lacking, limiting the dynamic tracking
of the continuously changing anxious levels in anxiety
induction paradigms.

The current study aimed to bridge the gap between
psychological and physiological response and state anxiety
by building regression models of state anxiety based on the
combination of dimensional emotion scales and physiological
data. We measured the STAI-S among healthy participants
discretely before and after emotion induction tasks while
recording VAD, electrocardiogram (ECG), and galvanic
skin response (GSR) dynamically throughout the whole
experiment. We examined whether state anxiety levels
can be quantitatively and dynamically evaluated using
multi-modal measures.

METHODS

Participants
Thirty graduate students (15 females, mean age = 24.37 ± 2.16
years) participated in the study. All participants were recruited
from colleges and universities, and with normal hearing, normal
or corrected-to-normal vision, while without any history of
mental disorders or severe physical illnesses. Before the formal
experiment, we also collected participants’ BAI (mean score =

26.07± 5.34, ranging from 21 to 39), a common clinical scale for
the diagnosis of anxiety disorder, to ensure that no subclinical
patient was included. The study was conducted in accordance
with the Declaration of Helsinki and approved by the local ethics
committee (SMHC-IRB: 2018-46). Participants gave their written
informed consent and received monetary compensation for their
participation. Two participants were excluded from the analysis
because of lost behavioral data. Another three participants were
excluded from the regression analysis because of incomplete
physiological data due to technical issues.

Experimental Procedure and Data
Recording
An overview of the experimental procedure is shown in
Figure 1A. The participants completed three tasks, including two
anxious-mood-induction conditions and one control condition.
The three tasks were arranged in pseudo-randomized orders
across participants. One possible order, in which the control
condition located in the middle of the two anxious-mood-
induction conditions, was avoided to ensure a fair comparison
of the two anxious-mood-induction conditions. The task blocks
were padded with 5-min resting blocks.

In the control condition, 65 neutral pictures with medium
arousal and valence from the International Affective Picture
System [IAPS; (34)] were used as the stimuli. The mean valence,
arousal, and dominance ratings of the neutral pictures were
5.53, 4.69, and 5.67, respectively. Each picture was paired with
a brief text in simplified Chinese describing the content of the
picture (e.g., a picture of people around a market was described
as: “People make purchases in the crowded market”). In each
trial, the description of a particular picture was presented to
participants first and lasted for 6 s, and then the picture appeared
while the description remained on the screen for another 6 s
(Figure 1B). After every five trials, participants’ instantaneous
mood in terms of VAD was recorded. The task was referred to
as “Neutral IAPS” in the following text.

One of the anxious-mood-induction tasks adopted the same
paradigm as the Neutral IAPS but used 65 negative pictures with
high arousal and low valence from the IAPS as the stimuli. The
mean valence, arousal, and dominance ratings of the negative
pictures were 1.99, 6.06, and 3.38, respectively. The brief text
description emphasized the lack of control over the anxious
scene presented in the pictures [e.g., a picture of a dying person
in the bed with a weeper beside was described as: “No one is
immune from illness or death, and worse, there may be no one
to accompany you.”; (14)]. The task was referred to as “Negative
IAPS” in the following text.
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FIGURE 1 | Experimental procedure. (A) Overall experimental procedure. The gray blocks represent rest conditions and the black blocks represent task conditions,

including Neutral IAPS, Negative IAPS, and SST. The blocks indicated with diagonal lines represent STAI-S sessions and the blocks marked with grids represent VAD

rating sessions. (B) Experiment design of Neutral/Negative IAPS. The upper panel shows the temporal structure of a block and the bottom panel shows the temporal

structure of a trial. (C) Experiment design of the SST task. The upper panel shows the temporal structure of a block and the bottom panel shows the temporal

structure of a go or stop trial.

The other anxious-mood-induction task was the stop-signal
task (35, 36) with electric shock punishment. Two kinds of trials,
go trial and stop trial, were randomized evenly in the total 90
trials. As shown in Figure 1C, each trial began with a fixation
cross in a white circle presented on a black background in
the center of the screen with a duration of 200–400ms. In the
go trials, a left/right green arrow then appeared in the circle.
Participants were instructed to respond as quickly and accurately
as possible within 500ms according to the left/right arrows by
pressing the left/right buttons (Instruction: “You’re going to see
an arrow in each trial pointing to left or right. When it occurs,
press left or right button correspondingly as soon as possible.”).
In the stop trial, the white circle turned red within a variable
delay of 50–450ms after the left/right green arrow appeared. The
participants were told that when seeing the white circle turning
red, they should not press the button (Instruction: “When the
white circle around the arrow turns to red, you’re not allowed
to press any button.”). Wrong responses (too slow, failed to stop,
or wrong key) would cause a warning text in the circle as well
as an electric shock. During the task, after every minute, the
VAD ratings were recorded. The task was referred to as “SST”
in the following text. Before starting the SST, the participants
must complete 20 consecutive practice trials, where they solely
needed to press the left/right buttons as quickly and accurately as
possible within 500ms according to the left/right arrows without
stop signs or electric shock punishment.

The intensity of the electric shocks was individually
determined before the experiment. The participants rated their
uncomfortable feelings from 1 to 9 (a higher score means more

unbearable feeling) when they received electric stimulation. The
current intensity started from 300 µA and increased in steps of
200 µA until the participant’s rating was equal to or larger than
8 or the current intensity reached 5mA. Then the personalized
intensity range was divided evenly into 15 current intensity
levels and presented to the participants in randomized orders.
The participants again assessed how they felt under these levels
of stimulation. After fitting the ratings to the current intensity
linearly, the intensity level corresponding to each participant’s
rating of 7 points was used as the individual’s stimulation
intensity (intensity= 2,516± 1,269 µA).

In the resting blocks, the participants were asked to look at
the fixation and rest for 5min. The first resting block was at the
beginning of the experiment, followed by a STAI-S and VAD
rating. In the other three resting blocks, the STAI-S and VAD
ratings were conducted before the rest period.

Assessment Tools
The experiment was carried out in a laboratory environment. The
stimuli were displayed on an LCD monitor (15.6-inch) with a
60Hz refreshing rate, placed at a distance of around 60 cm from
participants. Presentation of the stimuli and the rating procedure
were programmed inMATLAB (TheMathworks, USA) using the
Psychophysics Toolbox 3.0 extensions (37).

The psychological data, including STAI and VAD, was
recorded by custom MATLAB programs. STAI is a commonly
used measure of anxiety via self-reporting the presence
and severity of current symptoms of anxiety (STAI-S) or
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a generalized propensity to be anxious (STAI-T). Test-
retest reliability coefficients on the initial development of
STAI ranged from 0.31 to 0.86, and the internal consistency
alpha coefficients ranged from 0.86 to 0.95 (38). The validity
of STAI-S was initially derived from testing in situations
characterized by high state stress (16). Aligned with classic
emotional studies (23, 24), the variance in emotional
assessments was accounted for by three major dimensions:
affective valence, arousal, and dominance (39), by a series
of the Self-Assessment Manikins (SAM) scales using 9-point
scales (1–9).

The physiological data, including ECG andGSR, was recorded
throughout the whole experiment with the NeuSen W system
(Neuracle, China) at a sampling frequency of 1,000Hz. To
measure ECG, self-adhesive and disposable ECG electrodes
with conductive gel attached were placed onto the inside of
wrists on both sides. The analog ECG signals recorded by
the operational amplifier (OPA precision operational amplifier,
TI.) were converted into digital signals through a 16-bit A/D
converter (ADS analog-to-digital converter, TI.). The acquisition
of GSR was obtained by applying a constant voltage (≤3.3V)
to record the change of skin impedance (40) through two
Ag/AgCl electrodes pasted on the middle phalanges of the
index and middle fingers of the non-dominant hand, to get the
digital skin electrical signals. The digital skin electrical signals
were then converted from voltage value to micro Siemens by
GSR recorder 2.0 (Neuracle, China). The measurement range
is 10 kΩ-5.0 MΩ (0.2–100 µS), while the frequency range
is DC to 15.9 Hz.

Data Preprocessing and Feature Extraction
Data were segmented into epochs before preprocessing. For
the rest condition, the data of each 5-min block was taken
as an epoch. For the Neutral and Negative IAPS tasks, the
data of every five pictures was regarded as an epoch, which
was about 1min long. For the SST task, the data between
every two VAD ratings was considered an epoch, lasting
about 1min. The multi-modal data was analyzed epoch-by-
epoch using custom MATLAB scripts. The preprocessing and
feature extraction of ECG was conducted using HRVTool, a
MATLAB toolbox for analyzing heart rate variability [HRV;
(41)], while GSR data was analyzed using another MATLAB
toolbox—Ledalab (42).

The raw ECG signals were filtered by a trimmed moving
average filter with the window length of 0.2 s and the trimming
percentage of 0.25 to remove the muscle artifacts that generally
come from hands or arms movements. The filtered signals were
Z-scored before computing the beat annotations. The heartbeats
between 50 and 220 beats per minute were taken as valid beats,
and the R-R intervals of QRS waves were calculated based on
these signals (Figure 2A). Relative R-R intervals were calculated
to remove artifacts from the R-R sequences. After removing
the artifacts, fifteen HRV features were extracted, including: (1)
the mean and (2) the standard deviation of R-R intervals; (3)
the median and (4) the interquartile range (annular intensity)
of the Euclidean distance to the center point of the return
map of relative R-R intervals (43); (5) the root mean square

of successive differences of R-R intervals (RMSSD); (6) the
probability of the successive R-R differences exceeding 50ms;
(7) the reciprocal of the probability of the highest bin of the
histogram of R-R intervals with bin size 1/128, known as the
triangular index (TRI); (8) the width of the triangular function,
which has the best fit to the sample histogram, known as the
TINN value; (9) short-term HRV (SD1) and (10) long-term HRV
(SD2), in terms of standard deviations along the identity line
and its perpendicular axis of the return map of R-R intervals,
also known as Poincare map (44), and (11) SD1-SD2 ratio;
Spectral density function of interpolated R-R tachogram, which
is basically divided into two bands, low frequency band (LF)
and high frequency band (HF): (12) LF (0.04–0.15Hz) has
been contributed from vagal and sympathetic modulation
of R-R intervals, (13) HF in HRV (0.15–0.40Hz) represents
a pure vagal efferent signal that is modulated by respiratory
sinus arrhythmia, (14) the LF/HF ratio gives an index of
autonomic balance, whose high values indicate sympathetic
nervous system predominance and low values indicate
parasympathetic nervous system predominance; and (15)
approximate entropy.

The raw GSR signals were filtered by a Butterworth lowpass
filter with a cutoff frequency of 5Hz and a filter order of 10
(40). The filtered signals were smoothed using the adaptive
Gaussian window with a window width no larger than 3 s. The
tonic component of one trial was then estimated by Continuous
Decomposition Analysis (42). The average mean of the tonic
component was taken as the skin conductance level (SCL) and
used as the feature of GSR. The four subplots of Figure 2B show
the overall skin conductance (SC) data in black and the extracted
SCL in gray for the four conditions, respectively. Together with
the three-dimensional features of VAD, 19 different features in
total were used in the current study.

Regression Models and Prediction
Evaluation
The four rest epochs of 25 valid participants were used to build
the prediction model of state anxiety, where STAI-S scores were
regarded as the ground truth of state anxiety. Both the extracted
features and STAI-S of the first epoch were regarded as the
baseline of each participant. The features and STAI-S of the
remaining three trials were normalized to the baseline and then
Z-scored within each participant for each feature. The latter three
resting trials of the 25 participants were used in the correlation
analysis and regression, ending with 75 observations in total.

A small portion (<2%) of data failed to reflect valid features
for two reasons: SCL being out of the measuring range or too few
beats being recognized from ECG. Trimmed scores regression
was applied for the missing data imputation via Missing Data
Imputation Toolbox in MATLAB (45), with the number of
principal components being 3, maximum iteration being 5,000,
and tolerance being 10e-10.

The data fed into the regression models contained 75
observations with 19 features, and each observation had
a Z-scored STAI-S as the label. Four different regression
approaches were explored, including (1) linear regression, (2)
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FIGURE 2 | Preprocessing of ECG and GSR. (A) Example waveform of raw ECG (left) and filtered ECG (right), the red dots indicate detected beats. (B) Example

waveform of denoised skin conductance data (in black) and the tonic component of GSR (in gray) in rest (top left), Neutral IAPS (top right), Negative IAPS (bottom left),

and SST (bottom right).

support vector regression (SVR), (3) LASSO regression, and (4)
ensemble of trees. The regression performance was validated by
implementing a Leave One Subject Out (LOSO) scheme. Metrics,
including mean absolute error (MAE), root mean squared error
(RMSE), coefficient of determination (R2), and adjusted R2, were
recruited to evaluate the performance of the regression models.

RESULTS

Behavioral Results
To ensure the experiment successfully induced state anxiety, the
STAI-S scores, as the ground truth of transient anxiety level
in the current study, were examined. A one-tail paired t-test
was conducted to check whether the STAI-S scores increased
after tasks compared to before. In Neutral IAPS (Figure 3A),
there was no significant difference of STAI-S scores after (M =

40.6429, SD = 7.7038) watching pictures compared to before (M

= 44.4643, SD = 11.1471); t(27) = 2.3286, Bonferroni adjusted
p = 1. In contrast, in Negative IAPS (Figure 3B), the STAI-
S scores were significantly larger after (M = 50.1786, SD =

10.7464) watching pictures compared to before (M = 45.8571,
SD = 11.5461); t(27) = −2.2986, Bonferroni adjusted p =

0.0442. SST also successfully induced state anxiety (Figure 3C),
as reflected by higher STAI-S scores after the task (M =

53.7500, SD = 11.4362), compared to before (M = 45.2143,
SD = 12.7812); t(27) = −4.1105, Bonferroni adjusted p =

0.0008. Among the 28 valid participants, 11 in Neutral IAPS,
21 in Negative IAPS, and 22 in SST showed increased STAI-
S scores after the tasks. At the group level, both the anxious-
induction tasks successfully induced state anxiety. Even for the
participants with non-significant changes, the diverse STAI-S
scores throughout the experiment could still be used to explore
the relationship between state anxiety level and physiological and
psychological features.
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FIGURE 3 | Behavioral results. State anxiety level changes of Neutral IAPS (A), Negative IAPS (B), and SST (C). In each condition, the pink and red bars show the

mean value of STAI-S scores before and after tasks, the black error bars represent the standard deviation of STAI-S scores, and the gray lines indicate alteration from

pre-task to post-task for each participant.

The Correlation Between STAI-S and
Physiological and Psychological Features
To have a global view of the relationships between state anxiety
level and physiological and psychological features, Pearson’s
correlation was conducted to test the linear relationship between
individual features and the STAI-S scores. As shown in Figure 4,
the three-dimensional features of VAD significantly correlated
with SAI scores. Consistent with the classic emotion theory,
arousal scores were positively correlated with STAI-S [r(73)
= 0.5936, FDR-adjusted p < 0.001], while valence [r(73) =

−0.5417, FDR-adjusted p < 0.001] and dominance [r(73) =

−0.5751, FDR-adjusted p < 0.001] were negatively correlated.
SCL also significantly increased with the increasing of STAI-
S [r(73) = 0.4418, FDR-adjusted p < 0.001]. Among the 15
HRV features, three of them were significantly correlated with
STAI-S, including approximate entropy [r(73) = −0.3571, FDR-
adjusted p = 0.0063], short-term HRV [r(73) = 0.2868, FDR-
adjusted p = 0.0399], and RMSSD [r(82) = 0.2790, FDR-adjusted
p = 0.0417]. Though the rest features didn’t show significant
correlation coefficients (p > 0.05), they still might help with the
prediction of STAI-S, therefore all the features would feed into
the following regression models.

Prediction of STAI-S Using Multi-Modal
Data
Four different regression models were used to predict STAI-S.
The prediction performance using all the 19 features, the VAD
only or the physiological features only, was compared. Among
the four models, LASSO regression achieved superior prediction
performance regardless of feature types. When using all the
features, the performance of LASSO regression was the best in
terms of adjusted R2 (Supplementary Figure 1) as well as the
other three metrics (Supplementary Table 1).

As shown in Figure 5A, when using all the 19 features, the
correlation coefficient between the predicted STAI-S and actual
STAI-S was 0.5528 (Bonferroni adjusted p < 0.0001). Among
all the 19 features, arousal ratings in VAD contributed most to
the prediction in terms of the absolute value of Beta, followed
by SCL. The other two dimensions of VAD also contributed
more than the features of HRV. Among the 15 features of HRV,
eight features, including RMSDD, short-term HRV, LF HRV,
annual intensity, approximate entropy, the median and mean
of RR intervals, helped with the prediction, but with minor
contribution (Figure 5B). When using VAD only, the correlation
coefficient between predicted STAI-S and actual STAI-S was
slightly worse than using all features (r = 0.5523, Bonferroni
adjusted p < 0.0001).

When excluded VAD, the correlation coefficient between
predicted STAI-S and actual STAI-S was 0.4748 (Bonferroni
adjusted p < 0.0001), as shown in Figure 5C. Among the
physiological features, eight features were contributing to the
LASSO regression, including major contribution of SCL, TINN
approximate entropy, and LF HRV, as well as minor contribution
of the mean of RR intervals, short-term HRV, TRI, and LF-HF
ratio (Figure 5D). That is, STAI-S could be predicted byHRV and
SCL with or without VAD.

DISCUSSION

The present study aims to build a dynamic tracking model of
state anxiety. By eliciting diverse state anxiety levels via classical
anxious-mood-induction tasks, multi-modal data, including
ECG, GSR, and VAD ratings, was fed into a regression model to
predict the state anxiety level with high temporal resolution. By
applying machine learning approaches, state anxiety levels can be
predicted by combining these multi-modal data. This study not
only demonstrates the statistical evidence of the psychological
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FIGURE 4 | The correlation between STAI-S and physiological and psychological features. (A) Correlation between arousal (left), valence (middle), dominance (right)

ratings, and STAI-S scores. (B) Correlation between SCL and STAI-S scores. (C) Correlation between 15 HRV features and STAI-S scores. The circle points are

samples and the red lines are the linear fitting lines. The non-significant correlations were shadowed in gray.

and physiological characteristics of the state anxiety but also
proposes a state anxiety prediction model with higher temporal
resolution than the traditional measurement, thus providing a
practical solution for tracking the dynamic changes of the state
anxiety level.

In line with the classical emotion theory (23, 24), the
current study confirms that the state anxiety evoked by the
anxiety induction tasks has higher arousal, lower valence, and
lower dominance. This can be supported by the positive or
negative correlation coefficients of these VAD features in the
correlation analysis (Figure 4) and the signs of their regression
coefficients in the regression model (Figure 5B). Similarly, the
findings that SCL, RMSSD, and short-term HRV positively
correlated with state anxiety levels and that the approximate
entropy of HRV negatively correlated with state anxiety levels

echo the existing knowledge (26, 46, 47). The replication of
established relationships supports the validity of the current
study. Methodologically, the data were divided into a training set
and test set, and the prediction capability was validated by “leave
one subject out” to ensure the generalization of the prediction
model. Although Z-score had been applied to multiple sampling
points within participants to diminish the individual difference,
“leave one subject out” instead of “leave one sample out” was used
in the current study to avoid data leakage by ensuring that the
samples from the same participant would be either in the training
set or test set. These approaches help to enhance the reliability
and generalizability of the findings.

Unlike trait anxiety, state anxiety represents the transient
psychological and physiological response to potential threats, and
a dynamic tracking system would provide valuable information
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FIGURE 5 | Prediction of STAI-S using multi-modal data. (A) Correlation between predicted STAI-S and actual STAI-S using all the features in the LASSO regression

model. (B) Sorted predictor importance estimates of the LASSO regression model when using all the features. (C) Correlation between predicted STAI-S and actual

STAI-S using only physiological features. (D) Sorted predictor importance estimates of the LASSO regression model when using only physiological features. The error

bars represent standard deviation across participants in the “leave one subject out” validation.

for anxiety-related studies. The evident convergence between
subjective psychological and objective physiological measures,
referred to as emotional coherence, has been confirmed in
anxiety-related paradigms (26, 48). In our anxiety induction
paradigms, anxious emotion coherence across physiological and
psychological responses also appeared. Such coordination across
physiological and psychological responses relies on the central
and peripheral nervous system to a great extent, where the
vegetative nervous system accounts for the majority of anxious
bodily symptoms. The human body can react to adverse events
with a temporary increased sympathetic nervous system to
protect itself from harm, exhibiting symptoms like palpitation,
sweating, and trembling (49). The interplay between the two
subsystems of the autonomic system, namely the sympathetic
(SNS) and parasympathetic nerve systems (PNS), cooperates on
the stress response to threatening events and forms a central
component of state anxiety. Notably, the interplay occurs rapidly
to allow the mental states to adapt to the constantly changing
environment. Therefore, a time-resolved measure of state anxiety
is essential for investigating the anxiety dynamics responding to
various environmental factors.

Considering the overlapping neurobiological mechanisms
between induced and pathological anxiety (7), inducing state
anxiety has been widely used to investigate anxiety (8). Previous

studies have provided theoretical evidence that physiological
measurement could reflect the changes from before to after
the induction (14, 50). That’s a statistical foundation for
constructing the quantitative prediction model as proposed
in this study. In addition to distinguishable physiological
characteristics, the prediction model could provide a more
quantitative mapping between physiological measurements and
state anxiety levels. The mapping relationship has the potential to
act as an objective measure for individualized anxiety monitoring
and brain-computer interface. In detail, the prediction model
proposed in the current study shows that objective physiological
features measured in the resting state would help predict the
state anxiety levels (Figure 5C). Therefore, for the traditional
block design in the anxiety induction experiment (51, 52),
as long as padding a resting state to each induction or
modulation block, the state anxiety can be objectively tracked
by combining the SCL and HRV features during resting state.
Considering the development of portable recording devices of
the physiological signals, the dynamic detection of state anxiety
based on ECG and GSR can provide a more quantitative and
scientific application of human anxiety-inducing models (53).
Accompanied with dynamic physiological tracking, the model
can enhance the efficiency and sensitivity of anxiety-related
studies. By applying the prediction model on the multi-modal
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data during the tasks, it’s possible to reconstruct the dynamic SAI
changes (Supplementary Figure 1B) to quantify state anxiety
with minute-level temporal resolution.

There are several limitations to this study. Introducing self-
reported VAD measures achieved better prediction performance
but reduced the objectiveness of the prediction model, although
removing the subjective measures still allowed the model to
work well. Future works that take high-dimensional central
nervous system response, such as EEG, into consideration may
help separate emotional response from those due to physical
stimulation so as to develop a fully objectively tracking model of
state anxiety levels. Moreover, pathological anxiety populations
should be examined to confirm the generalization of the
proposed prediction model. Besides, some emotions, such as
anger, also feature high arousal and low valence. There’s a chance
the proposed predictionmodel could also predict these emotions.
As the current study aimed to build amonitor tool of state anxiety
with a quantitative mapping relationship between measurements
and STAI-S, we only included state anxiety inventory as the
dependent variable. This leads to the lack of the examination of
the specificity of the model; thus, future studies are needed to test
the discriminative validity of the model. Another limitation is the
relatively small sample size. A more extensive population study
would improve the reliability of the results to further validate
the ability to use these physiological parameters as a quantitative
model to evaluate anxiety levels for future studies. Future studies
are needed to solve these challenges.

CONCLUSION

We present a dynamic tracking model of state anxiety
based on psychological and physiological data, which reflects
time-resolved dynamic changes of an individual’s state anxiety.
The model is capable of accurately measuring state anxiety
during resting state, only using objective and easy-to-acquire
physiological signals.
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