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Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis
and prognosis in cancer patients. Cell death or active release from various cell types,
including immune cells can result in the release of DNA into the extracellular milieu.
Neutrophils are important components of the innate immune system, controlling
pathogens through phagocytosis and/or the release of neutrophil extracellular traps
(NETs). NETs also promote tumor progression and metastasis, by modulating
angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a
supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells
such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and
lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating
possible multiple origins of extracellular DNA in cancer. In this review, we summarize the
pathomechanisms of ET formation generated by different cell types, and analyze these
processes in the context of cancer. We also critically discuss potential ET-inhibiting
agents, which may open new therapeutic strategies for cancer prevention and treatment.
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INTRODUCTION

Extracellular deoxyribonucleic acid (DNA) can be detected in extracellular environments, including
serum, urine, spinal fluid, amniotic fluid, cerebrospinal fluid, lymph, bile and milk. In 1948, Mandel
and Métais described for the first time the presence of DNA in the plasma of cancer patients (1).
Extracellular DNA comprises nuclear or mitochondrial DNA associated with proteins or
extracellular vesicles (2). Pioneer studies by Leon et al., described that patients with cancer have
elevated levels of extracellular DNA, and its reduction following radiotherapy could significantly
improve the clinical conditions (3). Follow-up studies provided evidence that extracellular DNA
levels are elevated in many cancer patients, especially with invasive metastatic cancer (3–5). Liquid
biopsy-based diagnostic and prognostic approaches including the analysis of circulating tumor cells,
ribonucleic acids (RNAs), extracellular vesicles and extracellular DNA became powerful tools for
the therapeutic management of cancer patients (6–8). However, the variability of tumor-specific
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markers in extracellular DNA sequences and alterations in levels
of extracellular DNA in cancer patients raised several questions
about their origin. Two different hypotheses explained the origin
of extracellular DNA; extracellular DNA is the product of cellular
breakdown or generated by an active release mechanism (9).
Cellular breakdown induces DNA release from dividing cancer
cells, or products of cell lysis, apoptosis or necrosis following
cancer treatments (10, 11). The theory of active release
mechanism was supported by studies describing neutrophil-
extracellular traps (NETs) as a process of immune defense
inducing extracellular DNA release together with histones,
radical oxygen species (ROS), peroxidases to trap and eradicate
pathogens (12). Clinical and experimental studies highlighted the
pivotal role of neutrophils in inflammation, thrombosis and
cancer (13). NETs were found in liquid and tissue biopsies of
cancer patients (14–18). Over the last years, many studies linked
the process of NETosis to oncogenic transformation,
angiogenesis, cancer development and metastasis (19, 20). In
different pathological contexts (thromboinflammation,
atherosclerosis, systemic lupus erythematosus, infection,
sepsis), it became also evident that other blood, immune and
specialized cells could also generate extracellular traps (ETs) (21,
22). In this review, we provide a detailed analysis of extracellular
DNA function in cancer and also discuss the different sources
and origins of ETs and provide the hypotheses on their possible
impact on tumor cells and tumor microenvironment.
NEUTROPHIL EXTRACELLULAR TRAPS

Under physiological conditions, polynuclear neutrophils represent
the main subpopulation of white blood cells, approximately 50-70%
of circulating leukocytes (23). Neutrophils are produced in the bone
marrow and differentiate from hematopoietic stem cell precursors
(24). Their number oscillates in the peripheral blood and is
regulated by the circadian rhythm (25). Neutrophils play an
important effector role in innate immunity, constantly patrolling
the organism against microbial infections and invading pathogens
(26). Neutrophils respond to pathogens in several ways:
phagocytosis (27) and release of granular contents (28) and NETs
(12). Neutrophils express many inflammatory mediators, such as
complement components (29), receptors for Fc fragments of
immunoglobulins, integrins and cytokines, thereby regulating host
defense, inflammation and cell-cell interactions (30). Neutrophils
have polylobulated nuclei composed of 3-5 lobules (31), and
secretory granules in the cytoplasm (32). Neutrophil granules are
classified into 4 categories, based on their granule content (33);
primary or azurophilic granules, containing myeloperoxidase
(MPO), anti-microbial peptides (defensins), b-glucuronidase (34),
lysozyme and serine proteases (neutrophil elastase (NE), cathepsins
G, proteinases 3 (PR3), inducible nitric oxide synthase (iNOS) (35),
secondary or specific granules containing lactoferrin, matrix
metalloproteinase (MMP) 8 (36), tertiary or gelatinase granules
containing MMP9 (37), LL-37 (38), NADPH oxidase and
mobilizable secretory vesicles containing various surface
membrane receptors (39). The granular content of neutrophils
plays an important role in NETosis (12). Consistently, immature
Frontiers in Oncology | www.frontiersin.org 2
neutrophils with reduced granular content from acute myeloid
leukemia patients had a lower potential to induce NETosis after
phorbol 12-myristat 13-acetate (PMA) stimuli (40).

In 2004, research groups of Zychlinsky and Brinkmann
demonstrated that neutrophils in response to pathogens generate
extracellular fibers composed of decondensed DNA, decorated with
anti-microbial peptides and other proteins from different cell
compartments, and later this process was defined as NETosis (12,
41). NETosis was induced by stimulation of neutrophils with
pathogens (fungi, bacteria, protozoa, parasites), bacterial
lipopolysaccharide (LPS), interleukin 8 (IL8) or chemical
stimulation with protein kinase C (PKC) activator PMA,
indicating that NETs are involved in inflammatory and infectious
processes (12, 42, 43). Endothelial cell-derived cytokines, such as IL8
also act on neutrophils, thereby inducing NET formation (44). NETs
have been found in the blood of septic patients (45–47). Platelet-
derived Toll-like receptor 4 (TLR4) appeared to play an essential role
in the NET formation through binding to the bacterial LPS (48).

Depending on the stimulation of ET release, neutrophils become
apoptotic (lethal NETosis) or can still survive (vital NETosis). The
process of lethal NETosis is often induced by pharmacological,
autoimmune or metabolic compounds or bacterial peptides (49–
51). In contrast, vital NETosis is preferentially induced bymolecules
associated with pathogen-associated molecular pattern molecules
(PAMPs), which are recognized by TLRs of the innate immune
system and also by bacterial peptides (48, 52–54).

NET webs and granular proteins can eradicate a wide range of
pathogens by ensuring their capture, providing a scaffold for
protein binding, degrading pathogen toxins and by providing a
high local concentration of anti-microbial molecules (43).
MOLECULAR MECHANISMS OF
NEUTROPHIL EXTRACELLULAR
TRAP FORMATION

At the molecular level, NETosis is regulated by MEK (MAPK/ERK
kinase) or ERK (Extracellular-signal Regulated Kinase) (55), IRAK
(IL1 Receptor-Associated Kinase) (56), PKC (57), Phosphoinositide
3-kinase (PI3K) (58) and AKT (59) pathways, inducing ROS
production in response to the inflammatory mediators (60, 61),
PMA (62), microorganisms (63, 64) and immune complexes (62, 65,
66). Terminally differentiated neutrophils undergo NETosis followed
by the reactivation of cyclin-dependent kinase 6 (CDK6).
Consequently, inhibition or knock-out of CDK6 function leads to
reduced ability of neutrophils to induce NETosis (67). Some of these
pathways are highly dependent on the NADPH oxidase 2 (Nox2),
and ROS production (59). Nox2 is a multidomain complex enzyme,
and its activity is regulated by protein PKC-dependent activation of
p47phox, p67phox and p21rac subunits which form complex with
b558 (68, 69). ROS production in neutrophils generates an optimal
pH (7.5-8.5) for NE and MPO which are essential for NETosis (70).
Consistently, neutrophils isolated from MPO-deficient patients
display impaired bacterial killing and NETosis upon stimulation
with PMA (71). The increase in pH level stimulates ROS production
and induces histone H4 cleavage (70). In PMA-stimulated
neutrophils hypochlorous acid (HOCl) disassembles the
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azurosome, leading to the release of NE into the cytoplasm (72).
Later, NE degrades F-actin and translocates into the nucleus and
breaks histone H1 (73). NE and MPO facilitate chromatin
decondensation and the loss of lobular structure of the nucleus.
Following this process, the nuclear envelope disassembles into
vesicles thereby mixing both the cytoplasm and nucleoplasm. In
the cytoplasm, decondensed chromatin binds granular and
cytoplasmic anti-microbial proteins such as NE and MPO, before
rupturing the cytoplasmic membrane for NET formation (49, 74).
Interestingly, NET formation upon stimulation with PMAor crystals
(nano- and microparticles) can also involve receptor-interacting
serine/threonine-protein kinases (RIPK1 and RIPK3) and mixed
lineage kinase domain-like pseudokinase (MLKL)-dependent
pathway of necroptosis (75–77).

NETs can also form independently of Nox-signaling. This
occurs through an influx of extracellular calcium (Ca2+) through
Ca2+ ionophores, such as ionomycin and A32178 which are
secreted by the gram-positive bacteria (78–80). Although Nox-
induced ROS production is not involved in this type of NETosis,
Frontiers in Oncology | www.frontiersin.org 3
Ca2+ ionophores can induce ROS production using an alternative
pathway in the mitochondria (81). Nox-independent NETosis
needs potassium (K+) influx through the activation of small-
conductance Ca2+-activated K+ SK3 channels. In this pathway,
ERK and Akt signaling are activated at low or moderate levels,
compared to Nox-dependent NETosis, and similar levels of p38
activation were found in both pathways (82).
TUMOR-ASSOCIATED NETS

NET formation was detected in different phases of tumor
progression and metastasis (14, 17, 83–85), (Figure 1). At the
early phase of cancer, NETosis supports the epithelial-mesenchymal
transition. Treatment of gastric and breast cancer cells with NETs
induces an aggressive mesenchymal phenotype, thereby increasing
cancer progression (86, 87). NETs induce gene expression of cancer
stem cell marker CD24, and proinflammatory factors, such as IL1b,
IL6, IL8, CXC motif chemokine receptor 1 (CXCR1), MMP2,
FIGURE 1 | Multiple roles of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Neutrophils are mobilized from bone marrow, enter into the
circulation and migrate towards proangiogenic and proinflammatory gradients. Neutrophils are recruited to the primary tumor site through various cytokines and
chemokines such as CXCL1, IL6 or CCL3, ultimately leading to neutrophil activation and NET release. Cancer cell-derived exRNA can also induce NETs which in turn
amplify the release of exRNA. In growing tumors, NETs enhance cancer progression by enhancing thrombin activity, increasing the expression of stem cell markers and
inflammatory chemokines and cytokines and promoting epithelial-mesenchymal transition. NET formation is also enhanced by the uptake of exosomes transporting
oncogenic mutations to the tumor sites. NETs regulate cancer cell migration and tumor growth by directly interacting with T cells, inducing the exhaustion of cytotoxic T
cells and differentiation of naïve T cells into regulatory T cells, thereby promoting an immunosuppressive environment. During their transit in the circulatory system, cancer
cells are captured by the chromatin web network of NETs and this physical and functional interaction provides shielding thereby protecting cancer cells from cytotoxic
effects of immune cells. NETs also provide an “anchor” to the cancer cells, facilitating their adhesion and extravasation into the secondary tumor sites to form distant
metastasis. CCDC25 is expressed by cancer cells and can serve as a NET-DNA receptor that senses NETs and recruits invasive cancer cells to the metastatic sites.
During inflammation, NETs can activate dormant tumor cells and stimulate them to migrate and form metastasis by cleaving basement membrane components (laminins).
NETs also induce thromboinflammation leading to ischemia and injury in organs, such as the heart and kidney. Cancer cell-derived G-CSF predisposes circulating
neutrophils to form NETs through the recruitment of blood platelets. Interactions between platelets and neutrophils play an important role in cancer progression and
metastasis by inducing platelet activation and NETosis and consequently enhancing tumor-associated coagulation and thrombosis.
April 2022 | Volume 12 | Article 869706
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MMP9 in cocultured luminal breast cancer cells (86). NETs also
promote epithelial-mesenchymal transition in pancreatic ductal
adenocarcinoma (PDAC). In clinical settings, increased levels of
NETs were correlated with epithelial-mesenchymal transition
markers in patients diagnosed with PDAC (88). At a later phase,
the primary tumor starts to express many factors to stimulate
NETosis. Systemic inflammation and hypoxia in the tumor and
tumor microenvironment are important factors to induce
neutrophil infiltration and NETosis (89–91). Hypoxia increases
the levels of b2 integrin on the neutrophil surface in a hypoxia-
inducible factor-1a (HIF1a)-dependent manner, and consequently,
pharmacological blockade or knock-down of HIF1a in neutrophils
inhibits NET formation (92, 93). HIF-2a also contributes to the
recruitment of neutrophils to colon tumors, enhancing colon cancer
progression through enhancing CXCL1 chemokine expression (94).
Several other chemokines and cytokines are involved in the
regulation of cancer-associated NETosis, regulating diverse
signaling pathways. In human and mouse breast cancer, recent
studies reported the role of tumor cell-secreted protease cathepsin
C-mediated signaling in neutrophil recruitment and NET
formation. In this pathological context, cathepsin C activates
neutrophil membrane-bound proteinase 3 (PR3), thereby
facilitating IL1b and Nuclear Factor kappa-light-chain-enhancer
of activated B cells (NF-kb) activation, which in turn enhances
neutrophil recruitment through the upregulation of IL6 and C-C
Motif Chemokine Ligand 3 (CCL3) (95). Cancer cells also release
exosomes to stimulate neutrophil chemotaxis and NET formation.
Colon cancer cells transfer mutant KRAS to the neutrophils through
exosomes, thereby promoting NETosis through the upregulation of
IL8 which subsequently induces tumor growth, invasion and
migration (96). It has been shown that neutrophils isolated from
peripheral blood of mice bearing chronic myeloid lymphoma, lung
and breast carcinoma tumors are more prone to generate NETs
compared to the neutrophils isolated from healthy mice (97). In
cancer models, neutrophil depletion and or DNAse I injection
restored vascular perfusion and prevented vascular leakage (98).
NETs were also shown to enhance endogenous effector functions of
thrombin in plasma, thereby inducing cancer cell migration,
invasion and angiogenesis (16, 99–101).

NET formation was also detected in the metastatic niche and
plays an important role in different steps of metastasis, including
tumor cell adhesion (19, 102, 103), dissemination (14) and
extravasation at the distant organs. Several proteases and
adhesion molecules are present on NETs and facilitate tumor
cell extravasation and metastasis (14, 104). It was proposed that
NETs have a strong ability to trap circulating tumor cells, thereby
protecting them from immune system-mediated destruction and
promoting tumor cell dissemination and adhesion at distant
organs (105, 106). The premetastatic niche formation in the
omentum is supported by increased neutrophil mobilization and
NET formation, creating a conducive environment for the seeding
of ovarian cancer cells (20). In an orthotopic model of ovarian
cancer, depletion of IL8, granulocyte colony-stimulating factor (G-
CSF), CXCL chemokine growth regulated oncogenes (GROa/
CXCL1 and GROb/CXCL2) in primary tumor cells incompletely
decreased NET formation and chemotaxis, thereby inhibiting
subsequent omental metastasis (20). NETs were also shown to
Frontiers in Oncology | www.frontiersin.org 4
enhance cancer metastasis by activating tumor-intrinsic TLR4/9-
cyclooxygenase 2 (COX2) inflammatory pathways (107).
Altogether these results suggest that cytokines cooperate with
many factors to optimally regulate neutrophil recruitment and
NET formation, which in turn enhance the inflammatory
landscape of tumor, thereby contributing to tumor metastasis.

The metastasized liver tissues isolated from breast or colon
cancer contain a high number of NETs. If NETs are detected in the
serum of cancer patients, this could be a predicting factor for the
occurrence of liver metastases at very early stages. NETs can attract
cancer cells from established distant metastases. This cellular
motility was mediated by the cancer cell-resident transmembrane
NET-DNA receptor coiled-coil domain containing 25 (CCDC25)
which activates the integrin-linked kinase (ILK)-b-parvin pathway
and thus senses extracellular DNA release (18).

NETs are also involved in dormant cell reactivation thereby
increasing metastatic events in distant organs (108). During
chronic pulmonary inflammation, NETs awake dormant breast
cancer cells and promote metastasis. Degradation of
thrombospondin 1 (TSP1) and remodeling laminin-based
extracellular matrix are important steps to awake the dormant
cells. Consistently, activation of laminin receptor integrin a3b1
and transcriptional regulator yes-associated protein (YAP)
signaling is required for NET-dependent activation of dormant
tumor cells. Furthermore, integrin b1 is involved in the
activation of FAK-ERK-MLC2-YAP signaling pathway, which
also contributes to tumor survival and growth (108).

Cancer cells can also induce NETosis through other
alternative mechanisms. Lewis lung carcinoma (LLC) cancer
cells release a high amount of RNAs, which accumulate in the
extracellular space and activate epithelial cells, thereby inducing
NETosis mediated by proinflammatory cytokines, such as IL1b.
NETs reduce the lung epithelial barrier, induce necrosis and the
release of extracellular RNAs (17).

NETs can directly interact with T cells and suppress the anti-
tumor immunity through metabolic and functional exhaustion,
emphasizing the deleterious effect of NETs during all the
evolutionary stages of the tumor process, including tumor growth,
angiogenesis and tumor metastasis. Blockade of NETosis in
combination with programmed death-ligand 1 (PD-L1) immune
checkpoint inhibitors enhance the response rates of colorectal
cancer metastasis by improving the function of exhausted CD8+
cells (109). NETs also modulate regulatory gene profiles in naïve
CD4+ T cells, promoting their differentiation into regulatory T cells
(Tregs). This crosstalk between NETs and Tregs was shown to
contribute to liver carcinogenesis in non-alcoholic steatohepatitis
(110). NETs are also observed in bladder tumors of patients who did
not respond to radiotherapy and persistent disease post-
radiotherapy, wherein an elevated neutrophil-CD8+ ratio was
associated with worse overall survival (111).
CANCER-ASSOCIATED
THROMBOINFLAMMATION AND NETOSIS

NETs provide a physical scaffold for thrombus formation by
capturing platelets and red blood cells. Platelets are associated
April 2022 | Volume 12 | Article 869706
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with NETs through binding of von-Willebrand Factor (vWF),
fibronectin or immobilized fibrinogen (112). Interestingly, DNA
was detected on the platelet surface of patients with systemic
lupus erythematosus (113), indicating that platelets can directly
bind DNA with histones in NETs, linking immune response to
thrombosis. Growing tumors activate platelets by inducing
uptake of tissue factor (TF)-derived extracellular vesicles (114,
115). Upon platelet activation, P-selectin is exposed to the
surface which interacts with neutrophil-derived P-selectin
glycoprotein ligand 1 (PSGL1), thereby promoting neutrophil-
platelet interaction, subsequent neutrophil activation and
NETosis (116). Thrombin-activated platelets primed
neutrophils to NETosis in different in vitro and in vivo
experimental conditions (116–118). Similar effects were
observed when neutrophils were incubated with soluble P-
selectin (116). In contrast, genetic or pharmacological blockade
of P-selectin decreases NETosis (116). In clinical studies,
increased P-selectin exposure on the activated platelet surface
and increased soluble form of P-selectin are associated with
venous thromboembolism (VTE) in cancer patients (119). Clark
et al. showed that platelet-derived TLR4 induced platelet
activation, platelet-neutrophil interaction and NETosis in the
murine sepsis model (48). Platelet-derived high mobility group
box 1 (HMGB1) can also activate neutrophil-resident TLR4 or
binds to the receptor for advanced glycation end products
(RAGE) on neutrophils, thereby inducing NETosis (118, 120).
Furthermore, collagen and thrombin-activated platelets could
also stimulate NETosis through HMGB1 (118). Thrombin-
stimulated platelets also trigger MLKL-dependent necroptosis
of neutrophils accompanied by NET release (121).

In the late stages of the breast carcinoma model, NETosis
occurred concomitantly with the appearance of venous thrombi
in the lung (97). Although this phenotype can be multifactorial, it is
also closely linked to the role of neutrophils and platelets in the
tumor microenvironment. Cancer predisposes neutrophils to
generate NETs thus increasing platelet reactivity and
hypercoagulability, thereby promoting primary tumor growth
and stimulating tumor metastasis (97, 122, 123). NET formation
is systematically correlated with the hypercoagulability state of
cancer and thrombotic complications (16, 124, 125). During cancer
progression, circulating DNA possibly induces the generation of
thrombin, thereby activating the coagulation cascade (126). In an
orthotopic mouse model of PDAC and human patients with
PDAC, NET formation induces hypercoagulability by enhancing
platelet aggregation responses through RAGE, DNA and TF
release. Neutrophils isolated from RAGE-deficient mice had a
lower ability to form NETs and circulating biomarkers of tumors
and NETs were strongly reduced (127). Pancreatic cancer cells can
stimulate NETosis through direct interactions with neutrophils or
by priming platelets (128). Although blood clotting factors regulate
neutrophil function (129), hypercoagulation was associated with
the appearance of N2 protumoral neutrophils undergoing
NETosis (130).

ApcMin/+ (multiple intestinal neoplasia) mouse has a point
mutation at the adenomatous polyposis coli (Apc) gene, and it is
considered to be a model for human familial adenomatous
Frontiers in Oncology | www.frontiersin.org 5
polyposis (131). In this intestinal tumorigenesis model,
hypercoagulation was associated with neutrophil recruitment
and NETosis and these observed effects were dependent on the
engagement of the complement 3a receptor (C3aR) (130). In other
transgenic mouse tumor models (RIP1-Tag2 insulinoma and
MMTV-PyMT breast cancer models), neutrophil recruitment
and vascular leakage were observed in the kidney. Furthermore,
platelet-neutrophil conjugates were accumulated in the kidney of
tumor-bearing mice, which consequently generated NETs. The
accumulation of NETs in the vasculature increased the levels of
proinflammatory molecules, such as intercellular adhesion
molecule 1 (ICAM1), vascular cell adhesion molecule 1
(VCAM1), E-selectin, IL1b, IL6 and CXCL1 (98).

Neutrophils of patients with myeloproliferative neoplasms
characterized with a constitutively activating mutation of janus
kinase 2 (JAK2) are also primed to generate NETs. Inhibition of
constitutively active JAK2 could abolish NET formation and
decreased thrombosis, suggesting an important role of platelet-
associated NET formation in cancer-associated thrombosis
(132). Tumor cells can synthesize G-CSF which stimulates the
proliferation of circulating neutrophils, and consequently
increases NET formation in the growing tumors (97, 133).
High levels of G-CSF and NET-associated thrombi were found
in patients with ischemic stroke and underlying cancer (134),
indicating the link between systemic NET formation and arterial
thrombosis. Heparin-induced thrombocytopenia (HIT) immune
complexes induce NETosis via interaction with Fcg receptor
FcgRIIa on neutrophils and through neutrophil-platelet
association (135). On another hand, neutrophil FcgRs can
reprogram neutrophils into antigen cross-presenting cells
thereby inducing acquired anti-tumor immunity (136).

Recent studies implicated neutrophils and NETs as central
players in coagulation, organ injury and thromboinflammation
that were detected in severe cases of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV2) infection (137). SARS-
CoV2 was able to induce ROS and IL8 secretion and activate
NETosis in human neutrophils (138). The angiotensin-
converting enzyme (ACE2) and active transmembrane serine
protease 2 (TMPRSS2) are also involved in this process (137).
EOSINOPHIL EXTRACELLULAR TRAPS

Eosinophil extracellular trap (EET) formation was detected in
different human diseases (Figure 2). EETs were observed in
chronic obstructive pulmonary disease (COPD) sputum (139),
and also in skin biopsies from patients with skin diseases such as
Wells syndrome and bullous pemphigoids (140). In mouse
models of atherosclerosis, eosinophils enhanced thrombus
stability during arterial thrombosis (141). EET formation was
detected in ruptured human atherosclerotic plaques and arterial
thrombi (142). EETs were also observed in bronchial sections of
a patient with allergic bronchopulmonary aspergillosis, which
displayed eosinophil infiltrates in the mucus together with
chromatolysis (143). Depending on the pathological
conditions, EET formation is stimulated by different factors,
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released by pathogens, immune cells or cancer cells. In 2008,
Yousefi et al., demonstrated that in vitro stimulation of
eosinophils with LPS, C5a and or eotaxin/CCL11, by interferon
gamma (IFNg) and IL5-priming, induces the release EETs in a
ROS-dependent manner. Interestingly, the majority of exposed
EET DNAs are of mitochondrial origin (144). In vitro treatment
of human eosinophils with thymic stromal lymphopoietin
(TSLP) derived from epithelial cells induces the release of
mitochondrial DNAs as well, and this process did not trigger
cell death and was also dependent of Nox and b2 integrin
functions (145). When eosinophils were primed with GM-CSF
and activated with C5a, LPS or PMA, mitochondrial DNAs in
EET were also observed, again excluding nuclear DNA and cell
death in this process (146). However, EETs could be formed in
the presence of cell death as well, involving extruded nuclear
DNA and histones, indicating an alternative mechanism of EET
formation (147). When eosinophils are exposed to
Staphylococcus aureus, cells undergo nuclear disruption and
cell death, leading to the release of nuclear DNAs and
chromatin (145, 148). A similar process was observed when
human eosinophils were stimulated with immunoglobulin IgG,
Frontiers in Oncology | www.frontiersin.org 6
IgA, a lipid mediator - platelet-activating factor (PAF), Ca2+

ionophore or PMA. In these experimental conditions, EETs were
associated with histones and nuclear DNA. The release of
nuclear EETs is mainly triggered by Nox-induced ROS
production (147). However, depending on the experimental
conditions, a ROS-independent mechanism was also observed
when EET formation was induced by lysophosphatidylserine
(LysoPS) through peptidyl arginine deiminase (PAD4)-mediated
histone citrullination (149). Fungal species could also induce
EET formation independently of ROS production, which
occurred through CD11b binding and activation of Syk
tyrosine kinase (143).

Eosinophils are specialized cells of the immune system, playing
effector functions in allergic diseases, such as asthma (150). The
percentage of EET-generating eosinophils was negatively correlated
with lung function (151). Eosinophils express many receptors,
adhesion molecules and integrins that allow their transit from the
bone marrow to the blood (152–155). Eosinophil peroxidase
activates and recruits dendritic cells to lymph nodes (156). The
increased levels of eosinophil peroxidase and membrane-bound
eosinophil granules in asthmatic patients lead to sputum rich in
FIGURE 2 | Pathophysiological functions of eosinophil extracellular traps (EETs). Upon IFNg, GM-CSF or IL5 priming, eosinophils are activated by C5a, LPS, eotaxin/
CCL11, PMA, Th2 alarmin or pathogens which trigger oxidative burst and the release of mitochondrial DNA into the extracellular environment. This process can be
mediated by ROS-dependent and cell death-independent pathways. In response to IgG, IgA antibodies, PAF, Ca2+ ionophore, PMA and gram-positive bacteria
Staphylococcus aureus eosinophils form ETs, which ultimately induce cell death in Nox-dependent manner. Along with the chromatin, various proteins are released
from activated eosinophils such as citrullinated histone 3 (orange), major basic protein (MBP, green), eosinophil cationic protein (ECP, grey) and eosinophil
peroxidase (EPX, red). EETs were observed in patients with respiratory diseases, such as eosinophilic asthma, COPD and allergic aspergillosis. Eosinophil EPX
triggers the production of sputum anti-EPX and anti-nuclear autoantibodies in patients with severe eosinophilic asthma, inducing resistance to the anti-asthmatic
treatments. In skin diseases, EET function was often associated with host defense thereby preventing bacterial dissemination and sepsis. EETs were also observed
in ruptured arterial thrombi and atherosclerotic plaques. Upon interaction with blood platelets, eosinophils form EETs and eosinophil-specific MBP released together
with chromatin web-like structures activate platelets, thereby inducing the formation of thrombi. Eosinophils infiltrate various tumor types and influence tumor growth
and metastasis through the interactions with endothelial cells, macrophages, fibroblasts and T cells. EETs together with NETs have been found in patients with
Hodgkin’s Lymphoma displaying fibrotic and thromboinflammatory tumor microenvironment.
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autoantibodies, such as anti-eosinophil peroxidase IgG, anti-
nuclear, anti-double-stranded DNA and anti-histone antibodies
(157). In allergic asthmatic diseases, peripheral blood eosinophils
generate more EETs, when cells were challenged with LPS or IL5 in
vitro (151). Challenging IL5 transgenic mice in a model of post-
caecal ligation and intestinal puncture strongly enhanced eosinophil
infiltration and EETs were observed in the intestinal tissues,
protecting mice against sepsis (144). The authors found that in
the colon and caecal tissues of mice and patients with Crohns
disease, schistosomiasis and spirochetosis, extracellular DNA fibers
were decorated with granular proteins such as major basic protein
(MBP) and eosinophil cationic protein (ECP) (144). Besides these
direct contacts, eosinophil MBP also enhances platelet activation
inducing the release of bioactive molecules from a and d granules
or delivering activated TF, thereby contributing to the thrombus
formation (141, 158, 159). Platelet-eosinophil interaction can
induce EETs, triggered by IL5 release (141). EETs have also
proinflammatory effects, subsequently activating epithelial cells to
release proinflammatory cytokines such as IL6 and IL8 (151). In
response to the opsonized Escherichia coli, activated eosinophils can
release EETs, which had a strong bactericidal effect through a
phagocytosis-independent mechanism (144).

Eosinophils and EETs were detected in the tumor tissues of
patients with Hodgkin’s lymphoma (160). These patients had also
increased expression of protease-activated receptor 2 (PAR-2) and
nuclear p-ERK staining in cancer cells, which was detected together
with abundant NETosis, fibrosis and TF-positive endothelium,
pointing out the presence of tumor-associated inflammation and
procoagulant phenotype (160). Eosinophils are also enriched in the
circulating blood and tumor tissues in patients with other cancer
types, such as colorectal, breast, ovarian, cervical, oral squamous
Frontiers in Oncology | www.frontiersin.org 7
and prostate cancer (161, 162). Eosinophils can transmigrate into
the tumor microenvironment, following the interactions with
endothelial cell-resident VCAM1 and ICAM1 (163). Cellular
interactions of cancer cell-derived CCL24 and macrophage,
fibroblast and eosinophil-derived CCL11 promote eosinophil
recruitment to the tumor microenvironment (164–166). Cancer
cell-derived chemokines (CCL3, CCL5) further support eosinophil
migration (167, 168). Eosinophil-resident ST2, RAGE and TLR4
support migration towards the response to tumor necrotic cell
alarmin mediators, IL33 and HMGB1 (163, 169–171).
Furthermore, microbiota-released factors induce infiltration of
eosinophils into the tumor microenvironment (172).

In summary, these results suggest that EETs play an important
role in the activation and regulation of innate and adaptive
immunity and are also involved in thromboinflammation.
Based on EET DNA staining with eosinophil-specific markers,
future studies are necessary to distinguish different sources of
EETs. Precise, clinically relevant diagnostic tools will help to
understand the phenotypic landscape of different cancers that are
particularly enriched with eosinophils and propose more
adequate therapeutic modalities.
DENDRITIC CELL EXTRACELLULAR TRAPS

Dendritic cells can also form ETs (Figure 3). It has been shown
that a subset of dendritic cells, such as plasmacytoid dendritic
cells, can recognize the hyphae of Aspergillus fumigatus through
Dectin-2 and this interaction induces ET formation (DCETs)
with anti-fungal activity and release of cytokines such as TNFa
and IFNa. DCETs contain nuclear DNA with citrullinated
FIGURE 3 | Molecular mechanisms of dendritic cell extracellular trap (DCET) formation and potential implications in cancer. A subset of dendritic cells, plasmacytoid
dendritic cell-resident Dectin-2 interacts with the filamentous structure of pathogens (hyphae of Aspergillus fumigatus), thereby inducing ETs. These DCETs induce
the release of cytokines such as TNFa and IFNa, eradicating pathogens. NETs may also activate dendritic cells, thereby triggering the production of IFNg, which
contributes to the pathogenesis of autoimmune diseases (diabetes). T cell priming by dendritic cells may contribute to the immunosuppression in the tumor
microenvironment. The role of DCET in cancer remains elusive.
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histone H3, which shows similar structures as NETs (173).
Interestingly, NETs can activate dendritic cells and trigger
IFNg production, driving autoimmune pathologies (173–175).
In diabetes and cancer, dendritic cells also prime T cell immunity
(175, 176). However, only limited information is available to
dissect the role of DCETs in this pathology. Therefore, further
studies are necessary on whether dendritic cells may influence
cancer progression by forming DCETs and acting on T cell-
mediated immunosuppression.
MONOCYTE AND MACROPHAGE
EXTRACELLULAR TRAPS

Monocytes andmacrophages are critical components of the innate
immune system, and play a key role inmany pathological contexts,
accumulating rapidly in the inflamed tissues (177). Monocyte and
macrophage-extracellular traps (MoETs and METs) were
visualized first time using scanning electron microscopy and
immunofluorescence staining, detecting DNA fibers with specific
dyes, such as DAPI, Hoechst, SYTOX, PicoGreen or TOPRO (49,
178, 179). ETs are generated from human peripheral blood
monocytes (180, 181), human primary macrophages (182),
human primary microglia and BV2 microglia (183), human
placental macrophages (184), RAW 264.7 murine and U937
human monocyte-macrophage cells (50), THP-1 macrophage-
like cells (184, 185), human glomerular macrophages (186),
mouse J774A.1 macrophage-like cells (187), bovine (178, 179,
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188) and caprine (189) monocytes. ETs in these cell types are
composed of nuclear origin DNA fibers with MPO, citrullinated
histone H3, elastase, MMP9,MMP12 and lysozyme (142, 180, 182,
187, 190). Besnoitia besnoiti is a cyst-forming apicomplexan
protozoan parasite that causes bovine besnoitiosis which is
traditionally endemic in Africa and Asia and also spreads in
Europe. METs were detected when bovine or other mammalian
species were exposed to pathogens tachyzoites of Besnoitia besnoiti
(188). A highly pathogenic coccidian parasite Eimeria
ninakohlyakimovae causes severe hemorrhagic typhlocolitis and
in vitro exposure of caprinemonocytes to sporozoites, sporocysts or
oocysts could also induce MoETs (189). Non-infected monocytes
derived from human peripheral blood can also form ETs.

Similar to the induction of NETosis, ET formation in monocytes
can be triggered by PMA, A23187, PAF, or zymosan (180),
(Figure 4). MoETs contained MPO, lactoferrin, citrullinated
histone H3, and elastase. The mitochondrial and nuclear origin of
DNAswas confirmedwithPCRand immunofluorescence stainingof
ETs. Although blockade of Nox activity in monocytes could inhibit
MoETosis, this process was not affected upon treatment with MPO
inhibitor 4-aminobenzoic acid hydrazide (ABAH), indicating that
MoETosis is ROS-dependent, but MPO-independent in this
experimental condition (180). In another study, exposure of
macrophages to the yeast and bacteria-induced MET formation in
J774A.1 mouse macrophages or primary mouse peritoneal
macrophages, such an effect was not observed upon treatment with
PMA, H2O2 and IFNg, indicating an alternative way of ROS-
independent METosis (187), (Figure 5). However, others
FIGURE 4 | Pathophysiological functions of monocyte extracellular traps (MoETs). During inflammation, ETs can be induced in activated monocytes, which occurs in
Nox-dependent manner. Monocyte can release DNA from the nucleus and mitochondria, containing similar ET components such as histone 3, MPO, lactoferrin and
elastase. During infectious and inflammatory processes, MoETs entrap pathogens, stimulate phagocytosis and also accelerate the thrombin generation, thereby
enhancing procoagulant phenotype. During male genital tract infections and inflammation, spermatozoa induce ET formation in monocytes, which in turn inhibit their
motility and reproductive system function. Crystal-induced MoETs have been suggested to contribute to a dysfunction of the intestinal barrier and intestinal epithelial
cell necrosis ultimately leading to systemic inflammation.
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contrarily showed that the proinflammatory substances stimulate
ROS, which subsequently induces the formation ofMETs (178, 182).
Heme is one of the strong inducers of ROS production in immune
cells (191). Elevated heme production and METs were frequently
detected in patients with liver and kidney ischemic injury. In mice
challenged with rhabdomyolysis-induced kidney injury, heme-
activated platelets could induce METosis by increasing ROS
production and histone citrullination (185). A follow-up study
showed that hemin interacts with platelet-resident C-type lectin-
like receptor 2 (CLEC-2) and Glycoprotein VI (GPVI), thereby
inducing platelet activation and consequent MET formation (192,
193). Hemin interaction with platelets could enhance the enzymatic
activity of Sykkinase andphospholipaseCg (PLCg).This conceptwas
proved by using knockout mice with CLEC-2 or FcRg deficiency in
which attenuated renal dysfunction, tubular injury, and reduced
METosis were observed, highlighting an important role of platelet
(hem)ITAM-signaling in METosis (193). In atherothrombotic
plaques isolated from patients with coronary thrombosis, both
Frontiers in Oncology | www.frontiersin.org 9
METs and NETs were detected. METs were more robust in intact
lipid plaques and associated thrombi. Although NETs were also
detected at the early step of thrombosis, METs were observed at the
advanced stage in the organized thrombi (142). METs can generate
thrombin and increase procoagulant activity, implying an important
thrombogenic function (180).

Adipose tissues isolated from obese patients contain a high
number of macrophages which are infiltrating around dead
adipocytes and forming a macrophage trap-like structure (194,
195). This tissue structure is frequently associated with increased
levels of inflammatory cytokines, such as tumor necrosis factor a
(TNFa), IL1b, and COX2 (196, 197). Exposure of RAW 264.7
macrophages to TNFa increased the levels of PAD2 and
extracellular chromatin scaffold formation, indicating that
inflammatory mediators released from adipocytes may
stimulate METosis in the mammary fat pad environment.
Interestingly, NET-specific PAD4 was absent in METs in the
mammary fat pad (198). Macrophage activation is often
FIGURE 5 | Pathophysiological functions of macrophage extracellular traps (METs). Macrophages emit ETs following exposure to the pathogens (yeast, bacteria)
and inflammatory mediators (glucose oxidase, dopamine, i.e. IFNg, IL8, TNFa and HOCl). During organ injury, heme-activated platelets induce METosis by
increasing the levels of ROS and histone citrullination. Heme binds to platelet receptors CLEC-2 and GPVI, and activates the (hem)ITAM-signaling pathways,
triggered by Syk kinase and PLCg activation, which ultimately promote METosis. METs are composed of mitochondrial or nuclear DNA and different proteins,
amongst them are citrullinated histone 3, MPO, elastase, MMP-9, MMP-12 and lysozyme. Although METs display various bactericidal proteins, exposure to
bacterial pathogens such as Mycobacterium massiliense triggers MET release and capture of bacteria, METs can also enhance bacterial growth. METs are
also involved in the progression of coronary atherosclerosis and thrombosis as they are abundant components of late or organized thrombi and may contribute to
the thrombus growth along with ETs released from other immune cells. Proinflammatory cytokines derived from adipocytes may also induce MET formation,
indicating the potential implication of METs in obesity. METs are also found in solid tumors, such as pancreatic neuroendocrine and colon cancer. Tumor cell-derived
growth factors and cytokines prime and activate macrophages to release ETs. In their turn, METs interact with cancer cells, further increasing their motile, migratory
and invasive potential.
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correlated with a bad prognosis in many cancer types, including
breast cancer, implying inflammation, accelerated tumor
progression and metastasis (199). Furthermore, adipose tissue
inflammation and obesity are also associated with an increased
risk of breast cancer recurrence. MET formation may possibly
correlate with these pathological signs and the severity of breast
cancer. Recently Xu et al., identified several sources of NETs and
METs in tumor tissues isolated from patients with pancreatic
neuroendocrine cancer (200). The patients with high levels of
NETs and METs have a postoperative cancer recurrence (200),
indicating that these ETs may generate anti-cancer resistance
mechanisms, leading to the cancer relapse.

Recent studies demonstrated METs could enhance in vitro
invasion of HCT16 and SW480 colon cancer cells (201).
Interestingly, exposure of macrophages to the conditioned
cancer cell culture medium induced MET formation in a
PAD2-dependent manner, indicating a positive feedback
mechanism between MET and colon cancer cells. After PAD2
inhibitor treatment, the reduced MET formation was observed
and consequently, the number of liver metastases was also
decreased in mice, highlighting the contribution of METs to
the tumor metastasis (201). In line with this, increased levels of
tumor-associated METs were observed in human colon cancer
tissues, predicting the poorest prognosis for colon cancer
patients (201). Further studies are required to investigate how
METs may induce motility, migration and invasion of colon
cancer cells thereby leading to tumor metastasis.

Besides several experimental pieces of evidence showed that
METosis has similar features as NETosis (49, 180, 182, 202, 203).
Pathogens (bacteria, protozoa, fungi) and also spermatozoa, induce
both MoET and NET formations, triggered by IL8-mediated
activation of monocyte or neutrophils, respectively (12, 187, 202–
204). In line with this, exposure of intestinal cells to the crystals of
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sevelamer, polystyrene sulfonate or cholestyramine could induce
dysfunction of the epithelial cell barrier, associated with MoETosis
and NETosis (205). Imbalanced gut microbiota and disrupted
epithelial barrier represent an early subclinical phase of colitis-
associated cancer (206). It could be interesting to evaluate whether
the presence of MoETs or METs in these pathological conditions
may represent a prognostic and diagnostic marker, thereby helping
an earlier intervention.
MAST CELL EXTRACELLULAR TRAPS

Mast cells have limited phagocytic activity compared to other
immune cell types, therefore, the anti-microbial and anti-
bacterial activity of these cells is mainly ensured by degranulation
and release of anti-microbial peptides, such as defensins, proteases
and cathelicidins (207, 208). Following exposure to pathogens,
mast cells degranulate and release mast cell-extracellular traps
(MCETs) in a ROS-dependent manner (209). MCETs are
composed of classical components of ETs, such as DNA and
histones and had inhibitory effects on bacterial growth. In
contrast to other ETs, MCETs contain unique components such
as mast-cell granule proteins tryptase and cathelicidin-related anti-
microbial peptide (CRAMP/LL-37), (Figure 6). Therefore, effective
MCET degradation was possible using the mixture of DNAse I and
tryptase-degrading enzymes (209). Interestingly, HIF1a can induce
MCET formation thereby enhancing the anti-microbial activity
of mast cells (210). During tumor growth, mast cells infiltrate into
the growing tumors and remodel the tumor microenvironment by
regulating immune and inflammatory reactions. In the melanoma
cancer model, HIF1a together with histamine induces mast cell
migration by increasing vascular endothelial growth factor (VEGF)
production and consequent tumor angiogenesis (211). Tumor-
FIGURE 6 | Molecular mechanisms of mast cell extracellular trap (MCET) formation and potential implication in cancer. Another type of myeloid cells, mast cells also
form ETs (MCETs). This response can be induced by the pathogens (bacteria, fungi), PMA, H2O2, cytokines and chemokines and occurs in a ROS-dependent
manner. Although MCETs contain DNA and histones (orange), these ETs also entail granule derived tryptase (green) and anti-microbial peptide CRAMP/LL-37 (grey).
Potentially, MCETs could play a role in cancer, as mast cells infiltrate the tumor microenvironment and promote invasion and metastasis of tumors. Furthermore,
enhanced histamine levels activate and increase mast cell HIF1a and VEGF activity, contributing to tumor angiogenesis. HIF1a has been reported to enhance MCET
formation in response to appropriate stimuli. In line with this assumption, hypoxic conditions in the tumor microenvironment could increase HIF1a levels in mast cells,
thereby contributing to the mast cell activation and MCET formation and possibly contributing to the tumor progression and metastasis.
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infiltrating mast cells also potentiate tumor cell invasion and
metastasis by interacting with cells in the tumor stroma (212–
214). However, it is an open question whether mast cells can
generate MCETs in response to the tumor microenvironment and
how this process may influence cancer progression and metastasis.
BASOPHIL EXTRACELLULAR TRAPS

Basophils are associated with inflammation, infection, immune
defense and allergic response. Human basophils synthesize several
proinflammatory and proangiogenic factors such as VEGF,
angiopoietin and cysteinyl leukotriene C (215). Basophils also
release histamine and produce IL4 and IL13 when cocultured
with A549 lung carcinoma cells (216). Basophils produce ROS
and form ETs upon IL3 priming and activation of complement
factor 5a receptor or FcgRI (217). Although basophil extracellular
traps (BaETs) contain mitochondrial DNA but not nuclear DNA,
ET formation in basophils occurs in a Nox-independent manner
(218), (Figure 7). Basophils are present in the tumor
microenvironment of human pancreatic and lung cancers and
can induce inflammation-related skin tumor growth (219). Lung-
resident basophils contribute to pulmonary development and
promote M2 polarization of local macrophages (220). Besides
their protumor functions, basophils located in melanoma cancer
elicit anti-tumor properties by promoting tumor rejection via
chemotaxis and infiltration of CD8+ T cells (221). Although these
studies linked basophils to cancer development, the molecular
mechanisms of BaET formation in cancer tissues and the
consequent impact on tumor cell function have not been elucidated.
T CELL EXTRACELLULAR TRAPS

Th17 cells belong to the CD4+ T-cell subset characterized by the
production of IL17 and are considered an important mediator of
inflammation, tissue homeostasis and cancer development (222,
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223). Depending on their sensitivity to the microenvironmental
stimuli, including cytokines and transcription factors, Th17 cells
either enhance tumor growth and metastasis or promote anti-
tumor immunity (224, 225). Like neutrophils, Th17 cells also
play an important role in host defense against bacteria and
pathogens (226). Recently, T cell extracellular trap (TCET)
formation was observed, which was induced in this subset of
activated T cells, releasing histone-rich TCETs in conjunction
with anti-microbial proteins, thus trapping and killing bacteria
(227), (Figure 8). When peripheral blood T cells were isolated
from healthy individuals and stimulated with the serum of
patients with systemic lupus erythematosus, ET formation was
observed (228), as well as after stimulation with anti-CD3/ anti-
CD28 of CD8+ cells (229). Future studies are important to
evaluate whether T cells can also form TCETs in response to
tumor cells and tumor microenvironment and how TCETs may
influence tumor growth, progression and tumor immunity.
B CELL EXTRACELLULAR TRAPS

Only very limited results showed that B cells can also release
extracellular traps (BCETs), (Figure 8). Similar to TCETs, B cells
were stimulated with the serum from patients with systemic
lupus erythematosus and BCET formation was detected (228). It
was hypothesized that BCETs could be a constant source of self-
antigens for autoreactive B cells stimulating the production of
antibodies (230).
OTHER SOURCES OF
EXTRACELLULAR DNA

Endothelial Cell-Derived Extracellular DNA
DNA structures extruded from endothelial cells were observed
during arterio-arterial embolization, a pathological condition
FIGURE 7 | Basophil extracellular traps (BaETs). Basophils synthesize several proinflammatory and proangiogenic factors such as VEGF, angiopoietin and cysteinyl
leukotriene C. Basophils also produce inflammatory cytokines, such as IL3 and IL4 upon activation with cancer cells. Following activation with complement factor 5a
receptor or FcgRI basophils release ROS and form ETs, which are composed of mitochondrial DNA and generated in a Nox-independent manner. Besides
inflammation, basophils regulate T cell recruitment and anti-tumor immunity. Future studies are required to address the role of BaETs in several steps of tumor
progression, including primary tumor growth, angiogenesis and tumor metastasis.
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occurring following cholesterol crystal-induced embolism in the
kidney (231). Cholesterol crystal embolism is mobilized from an
atherosclerotic plaque, followed by vessel obstruction, ischemia
and organ failure (232). Studies by Shi et al., showed that
injection of cholesterol crystals into the artery of the mouse
kidney generates a thromboinflammatory environment with the
presence of intravascular thrombi, composed of platelets, fibrin,
neutrophils and extracellular DNA (231). Using in vitro cell
culture experiments, exposure of neutrophils to cholesterol
crystals or the supernatant of cholesterol crystal-activated
platelets induced neutrophil necrosis and the release of
chromatin and DNA to the cell culture supernatant (231).
Interestingly, exposure to increasing doses of cholesterol
crystals also induced necrosis of glomerular endothelial cells
and consequent DNA release (231).

The vasculature of metastatic organs is frequently damaged
and metastases can induce cell death (233). Necroptic cell death
and subsequent DNA release occur in endothelial cells, involving
RIPK1, RIPK3 and MLKL cell death signaling pathways. Tumor
cell-induced endothelial necroptosis was shown as an important
mediator of tumor cell extravasation and subsequent tumor
Frontiers in Oncology | www.frontiersin.org 12
metastasis (234). Further experiments need to be performed
whether under certain conditions endothelial cells may also
undergo ETosis.

Platelet-Derived Extracellular DNA
Platelets lack nuclear DNA and the amount of mitochondrial
DNA is very limited, due to the few numbers of mitochondria
per platelet (235). Theoretically, accumulated platelets at the
injury sites may release mitochondrial DNA upon platelet
activation (236, 237). This extracellular DNA may be
contributed to immune cell-derived ETs, and further amplify
cancer-associated thrombosis, thromboinflammation and tumor
progression. Further studies are important to establish the role of
platelet-derived ETs in these processes.

Cardiomyocyte-Derived Extracellular DNA
Cancer is associated with cachexia, vascular and metabolic
dysregulation of the heart (238, 239). Cardiomyocytes possibly
are a major source of extracellular DNA in patients with
myocardial infarction (240, 241). Microvesicles and exosomes
released from cardiomyocytes also contain extracellular DNA
FIGURE 8 | T and B cell extracellular traps (TCETs and BCETs). Under certain experimental and pathophysiological conditions, ie stimulation with ionomycin or
systemic lupus erythematosus patient serum, T cells can release ETs. A similar phenomenon was observed in CD8+ cells following the stimulation with anti-CD3/
anti-CD28 antibodies, engaging T cell receptors. In presence of TGFb and IL6, the naïve CD4+ T cells differentiate to the IL17 producing T cells (Th17 cells), which
are associated with chronic inflammation and autoimmune diseases. In response to bacterial infection, this T cell population releases ETs, which are composed of
DNA, histones and bactericidal proteins, leading to the entrapment of bacteria. Depending on the pathophysiological conditions Th17 cells can either promote or
attenuate tumor development and metastasis. Further studies are required to understand whether cancer cells and tumor microenvironment may induce TET
formation, which in turn can modulate tumor growth, metastasis and cancer immunity. B cells can release extracellular traps upon stimulation with PMA and
ionomycin. BCETs were also observed after treatment with serum isolated from a systemic lupus erythematosus patient, indicating that soluble factors in the serum
induce the DNA release and possibly BCETs could be involved in the pathogenesis of the disease. BCETs may serve as self-antigens that are recognized by other B
cells, followed by autoantibody production and disease progression. Their role in cancer remains elusive.
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(242). Due to the limited experimental evidence, further studies
are necessary to investigate the role of cardiomyocyte-derived
extracellular DNA, analyze metabolic and DNA contents in
patients with cancer and establish the contribution of ETs in
myocardial infarction and cancer-associated heart dysfunction.

Tumor Cell-Derived Extracellular DNA and
Horizontal Transfer of DNA
The blood plasma levels of extracellular DNAs are increased in
human patients with breast, melanoma, pancreatic and colon
cancers, which are directly extruded by cancer cells (4, 10, 243).
Circulating extracellular DNA can interact with several
molecules, exposed on the surface of blood cells, leading to the
penetration of DNA (244, 245). Histones and complement
factors directly bind and capture DNA (246–248). DNA can
also be transferred to the exosomes and microparticles and
secreted to the circulation. Indeed, circulating microvesicles
isolated from the blood cancer patients contain fragments of
mutated genes, such as phosphatase and tensin homolog
(PTEN), p53 and KRAS (249–251). Cai and colleagues found
that BCR/ABL hybrid genes can be transferred from chronic
myeloid leukemia cells to the HEK293 and neutrophils,
increasing DNA coding mRNA and protein levels (252).
Similar results were observed with vascular smooth muscle
cells and leukocyte-derived extracellular vesicles delivering the
angiotensin receptor type 1 (AT1R) gene DNA to HEK293 cells
and sex-determining region Y (SRY) DNA into the endothelial
cells (253, 254).

Endogenous DNAse
DNAse enzymes are divided into two major families, DNAse I
and DNAse II. Although DNAse I is found in exocrine gland
secretions and blood, DNAse II derives from lysosomes/
phagolysosomes (255). Regarding the sources of circulating
DNA, it was assumed that tumor cells in cancer patients shed
and release DNA into the bloodstream and this correlated with
the pathogenesis of the disease (5, 256). In line with this, DNAse
I levels in cancer patients are elevated during remission, and after
successful interventions and decreased during cancer
progression and metastasis. Furthermore, failure of DNAse
levels to increase in response to treatment was correlated with
poor prognosis (257, 258). However, DNAse activity in the blood
was found to differ between healthy subjects and cancer patients
and also varies between cancer types and stages of cancer (257–
261). Indeed, decreased DNAse activity was found in patients
with malignant lymphoma, gastrointestinal and prostate cancer
(260, 262, 263), while the levels of DNAse activity were higher in
breast cancer patients compared to the control (264). The
physiological relevance of DNAse function in NETosis was
proved in knockout mouse models. Mice with DNAse I and
DNAse I like-3 enzyme deficiencies developed NETosis with
intravascular clots and obstructed blood vessels which resulted in
tissue damages of vital organs, such as the lung, liver and kidney
(265). In humans, genetic mutations of DNAse are associated
with autoimmune diseases such as systemic lupus erythematosus
(266). DNAse X/Apo10 antibodies were found in patients with
oral squamous cell carcinoma, indicating gene inactivation of
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DNA X in this type of tumor (267). A therapeutic strategy based
on the delivery of transgenic vectors expressing DNAses was
proposed to target DNA destruction or apoptosis. In 2011, Karli
Rosner suggested an anti-cancer therapeutic approach based on
human recombinant DNAse I. According to his approach, the
replacement of apoptosis-activated endogenous DNAses with
human recombinant DNAse I might help to bypass cancer
defense mechanisms, increasing the killing efficiency of chemo
and radiotherapy-resistant tumor cells (268). Since the
inactivation of endogenous DNAse X gene was found in many
tumor cells types, the strategies to restore the levels of DNAse X
in cancer cells could be an important targeted therapy (267, 269).
Delivery of vectors encoding several DNAses under one
common promoter into the cancer cells could successfully
induce apoptosis (268, 269).

Based on these findings, gene therapy was developed in a
mouse model of colorectal cancer in which an adeno-associated
virus (AAV) vector was used to express DNAse I in the liver,
thereby suppressing the development of hepatic metastases.
After AAV-DNAse I treatment, NETosis was inhibited in the
tumor tissues with restored local immune responses by
increasing the percentage of CD8+ T cells (270).

Exogenous DNAse I
Recombinant DNAse I has been successfully used as an anti-
cancer agent and studied as a prognostic/diagnostic marker during
cancer therapy. In 1961, de Lamirande determined the effect of
DNAse and RNAse in mice bearing Ehrlich ascites carcinoma for
the first time (271). After tumor cell implantation, daily injection
of DNAse I could increase the survival rate of treated mice, but
RNAse treatment did not affect mouse survival. A hypothesis was
proposed, which included the uptake of DNAse into cancer cells,
followed by necrosis and digestion of nuclear DNA (271). In other
studies, the daily injection of RNAse and DNAse alone or in
combination could enhance nuclease activity of blood plasma of
tumor-bearing mice, and decrease the levels of extracellular DNA,
back to the levels of control animals. Degradation of DNAs in the
blood plasma was associated with reduced metastasis of LLC and
hepatoma A–1 (HA-1) cancer cells (272–274). In the model of
LLC, exogenous DNAse treatment not only inhibited metastasis
but also increased DNAse activity in the blood, destroying
extracellular DNA in the circulation of tumor-bearing mice by
targeting tumor-associated DNA fragments such as short and long
interspersed retrotransposable elements (SINEs and LINEs) and
also oncogenic sequences (274, 275). Furthermore, daily
intramuscular injection of bovine pancreatic DNAse I in LLC
tumor model could also strongly decrease metastasis (276). In
mouse models of melanoma, lymphosarcoma or pancreatic
cancer, DNAse I treatment had also strong anti-tumor and anti-
metastatic effects by destroying extracellular DNA (275, 277, 278).
Bovine pancreatic DNAse also displayed anti-metastatic effects
inhibiting the number of lymph nodes and lung metastasis in
mouse models of leukemia and lymphoma cancers. Although
bovine pancreatic DNAse I could inhibit the proliferation of
several cancer cell types (Calu-1, SK-MES-1, HeLa, HEp-2 and
L-929), it did not affect the peripheral blood mononuclear cells
and fibroblasts (279). Combined treatment of DNAse I with
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proteases such as papain, trypsin or chymotrypsin led to a
significant decrease of DNA content in the blood serum of rats,
and no anti-tumor effects were observed in mice treated with
proteases alone (280).

Pancreatic cancers belong to the group of diseases which affect
both the endocrine and exocrine functions of the pancreas (281).
The tumor microenvironment is instrumental in pancreatic tumor
growth and metastasis. Although some mechanisms reflect tumor
cell-autonomous processes, most require the interaction of tumor
cells with tumor microenvironment, including endothelial cells,
fibroblasts, and immune cells (282). In addition, chronic
inflammation, thromboembolism and hypercoagulability are
known as key features of PDAC (283, 284). Interestingly,
DNAse I treatment of pancreatic cancer cells could strongly
decrease tumor cell adhesion and migration, although tumor cell
proliferation was not affected. In the orthotopic pancreatic cancer
model, DNAse I treatment also strongly inhibited tumor burden
and tumor metastasis to the liver and diaphragm, confirming the
important pathological role of extracellular DNA in pancreatic
cancer. Elevated CXCL8 secretion was detected in the medium of
pancreatic cancer cell lines derived from liver metastases, in
comparison with immortalized pancreatic ductal epithelial cells.
Furthermore, the treatment of pancreatic cancer cells with
recombinant CXCL8 could strongly increase extracellular DNA
production (285). CXCL8 also induces ET formation in
neutrophils, thereby enhancing cancer malignancy (14, 44, 96).
DNAse I treatment strongly reduces ETs, and also the percentage
of polymorphonuclear neutrophils that released observable ETs
(286). Pancreatic tumor-bearing mice had also increased levels of
NETs, andmore rapid thrombotic occlusion in the injury model of
jugular vein. DNAse I did not affect thrombotic occlusion in
control mice, but protected tumor-bearing mice from enhanced
venous thrombosis (287). These results suggest that enhanced
NETosis contributes to thrombosis in pancreatic cancer.

Interestingly, DNAse I can also inhibit thrombosis independently
of neutrophils. In the mouse model of cholesterol crystal embolism,
in vivo depletion of circulating neutrophils in the peripheral blood
did not influence the severity of disease, but DNAse I treatment
significantly inhibited the numbers of obstructed vessels, decreased
ischemic organ failure and kidney infarction. Preincubation of
washed platelets with DNAse I inhibited platelet activation, P-
selectin exposure, aggregation response to collagen, collagen-
related peptide or thrombin. In addition, DNAse I-treated platelets
formed less fibrin. DNAse I treatment also reduces the levels of
secreted adenosine triphosphate (ATP) in human and mouse
platelets, which strongly inhibits platelet aggregation, and ATP-
dependent neutrophil activation (231, 288). Earlier, it was
proposed that neutrophils are required for thrombosis in the laser-
induced arterial injury model (289). Although DNAse I treatment
induced the hydrolysis of ATP and adenosine diphosphate (ADP),
decreasing fibrin formation and inhibiting thrombosis, scanning
electron microscopy did not reveal classical NET structure in this
thrombosis model (288).

Polyphosphate (polyP) is synthesized enzymatically from
ATP and this metabolic conversion is fully reversible. PolyP is
stored in dense granules of platelets, and secreted upon platelet
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activation. Extracellular polyP accelerates the coagulation
cascade by factor V activation, promotes factor XI activation
through thrombin and blocks the anti-coagulant activity of tissue
factor inhibitor (TFI), thereby enhancing blood clotting (290).
Interestingly, DNAse I could decrease ATP and polyP levels in
vitro (231, 288, 291), indicating that DNAse I may inhibit ATP
metabolism, or enhance ATP degradation or conversion of ATP
to adenosine monophosphate (AMP). Altogether, these results
suggest that the anti-thrombotic effects of DNAse I treatment in
platelets may occur in an ATP/polyP-dependent manner.

Several experimental studies using cancer and thrombosis mouse
models suggested that targeting extracellular DNA with DNAse I
may offer a potential anti-cancer and anti-thrombotic strategy (278,
280, 292). However, only limited clinical studies with DNAse I
treatment have been reported so far. In patients with cystic fibrosis,
nebulized recombinant human DNAse treatment could reduce
sputum viscosity and improve pulmonary function (293, 294).
Therefore, recombinant human DNAse treatment is recommended
in patients with cystic fibrosis and also in patients with other
moderate or severe suppurative lung diseases. Further investigation
is necessary whether DNAse I treatmentmay be effective in cancer or
cancer-associated thromboinflammation.

OTHER PHARMACOLOGICAL
APPROACHES

Aspirin
Aberrant arachidonic acid metabolism is involved in the
inflammatory and carcinogenic processes (295). Aspirin
(acetylsalicylic acid) irreversibly acetylates and thus inhibits the
enzymatic activity COXs, thereby blocking the conversion of
arachidonic acid to thromboxane A2 (TxA2) (296). In mouse
models, aspirin treatment prevents NET-induced injury of the
lung endothelium by inhibiting platelet activation and NETosis
(297). A higher bacteria count in the blood was detected in
aspirin-treated mice after infection, indicating that aspirin may
interfere with NET functionality. However, this action of aspirin
may be independent of platelet-resident COX activity, since
aspirin-treated neutrophils had impaired NETosis (297, 298).

Prostaglandin E2
Prostaglandin E2 (PGE2) is a prostanoid fatty acid metabolic
product of arachidonic acid. PGE2 inhibits PMA-induced
NETosis through prostanoid receptors of EP2 and EP4 (299).
Studies by Domingo-Gonzalez et al., showed that murine bone
marrow transplant neutrophils which overexpress COX2 induce
defective bacteria clearance (300). When these neutrophils were
stimulatedwith PMAor rapamycin, NETosis was strongly reduced
compared to control. After bone marrow transfer, NET formation
was rescued usingCOX inhibitors. The same effectwas achieved via
EP2 receptor antagonist (PF-04418948) or EP4 antagonist (AE3-
208) in neutrophils from bone marrow transplant mice and
hematopoietic stem cell transplant patients (300).

In mice and healthy donors, NETosis was also inhibited by
exogenously injected PGE2 which was dependent on the cAMP-
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PKA pathway (299, 300). Consistently, incubation of neutrophils
with cAMP analog dibutyryl-cAMP, rolipram or butaprost could
also inhibit NETosis (299).

Chloroquine
Chloroquine and hydroxychloroquine are anti-malarial drugs,
which appeared as promising treatments also for cancer (301).
Chloroquine inhibits autophagy in different cell types including
neutrophils (127). Several groups have shown that autophagy
promotes NETosis (62, 118, 302–304). However, studies using
pharmacological inhibitors of autophagosome acidification and
neutrophil- and eosinophil-autophagy‐related 5 (ATG5)
conditional knock-out mice could not confirm these results (146).
Chloroquine treatment reduces the severity of acute pancreatitis in
mice, thereby improving survival (305). In cell culture assays,
chloroquine could not diminish NETosis, indicating an indirect
mechanism (306). Hydroxychloroquine is also known as an anti-
inflammatory drug, which can block TLR/COX2 pathway-
dependent NET formation and consequent metastasis in
hepatocellular carcinoma (2, 107, 307). In the mouse model of
PDAC, chloroquine treatment reversed hypercoagulability by
reducing NET-mediated platelet aggregation and the release of
circulating TF. Patients treated with hydroxychloroquine on a
randomized protocol of preoperative chemotherapy showed a
reduction in pre-operative VTE rate (127). Although several
clinical trials showed the benefits of chloroquine as an anti-tumor
drug (308), the precise molecular mechanisms of chloroquine-
mediated effects has not been established. It was proposed that
chloroquine may influence autophagy (309). Chloroquine in
combination with other chemotherapeutic drugs could increase
the efficiency of drug treatment, although it can accelerate
chemotherapy-associated organ injury (301). Therefore, it is
important to further investigate the effects of chloroquine on
cancer-induced NETosis, thromboinflammation and organ injury.

Staphylokinase
Bacterial infection of host tissues activates neutrophils and induces
NET formation, thereby activating the innate immune system,
including macrophage phagocytosis. Interestingly, Staphylococcus
aureus can escape from NETs, thus converting NETs to
deoxyadenosine, thereby inducing immune cell death by caspase-
3-mediated mechanism. Staphylococcus aureus can secret nuclease
and adenosine synthase which modifies the structure of NETs,
thereby destroying the NET-mediated immune defense system
(310). Staphylococcus aureus also produces a plasminogen
activator staphylokinase, which is a fibrin-specific thrombolytic
biomolecule (311). Staphylokinase was proposed for the therapy of
stroke and myocardial infarction. However, it has a short life-time
in the blood, which limits the clinical application. Strategies based
on thePEGylation (attachmentofpolyethylene glycol)mayprolong
the half-life time of staphylokinase, thereby improving its
bioactivity in disease conditions (312).

Peptidyl Arginine Deiminase Inhibitors
Cl-amidine and F-amidine target all peptidyl arginine deiminase
(PAD) isoforms were actively applied in many preclinical models
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to study NETosis. Various tumors are associated with the
overexpression of PAD and increased citrullination. In 1958,
Rogers and Simmonds were the first to describe protein
citrullination in an animal protein as the process of converting
peptidyl arginine into peptidyl citrulline. Since citrulline cannot
be encoded in vivo, it only occurs after translation (313). Peptidyl
arginine deiminases (PADs, also called PADIs) are an enzyme
family which can convert protein arginine residues to citrulline
in a Ca2+-dependent manner. This enzyme family comprises 5
isoforms (including PAD1, 2, 3, 4 and 6) which are highly
conserved, have tissue-specific distribution and target
substrates respectively (314).

PAD2-mediated histone citrullination is proposed as a
potential therapeutic target for prostate and colon cancer (201,
315). PAD2 also regulates genes expression related to lactation
through histone citrullination (316). The gonadotropin-releasing
hormone (GnRH) agonist can stimulate PAD2-mediated histone
H3 citrullination which epigenetically regulates the expression of
gonadotropin genes such as luteinizing hormone b (LHb) and
follicle-stimulating hormone b (FSHb) in gonadotropes (317).
Recent studies have identified that PAD2 inhibition can reduce
inflammatory cytokine production and NET formation in
endotoxemia (318). PAD4-mediated citrullination promotes
chromatin decondensation and DNA fragmentation, thereby
affecting chromatin structure. PAD4 is critical for NET-
mediated anti-microbial function (319). Furthermore, PAD4
can also regulate the transcriptional activity of p53 in tumor
progression (320). Additionally, PAD4 promotes the metastasis
of gastric tumors by regulating the expression of CXCR2, keratin
K14 (KRT14) and TNFb, which can accelerate angiogenesis, cell
proliferation, migration and tumor immune microenvironment
establishment (321). Inhibition of PAD4-mediated NETosis was
also possible using an antagonist miR-155, which inhibits PAD4
mRNA synthesis and NET formation in response to PMA (322).
In the experimental model of systemic lupus erythematosus, Cl-
amidine treatment strongly inhibits NET-induced vascular
damages, endothelial dysfunction and kidney injury. Inhibition
of PAD4 also strongly decreased the expression of IFNg, reduced
proteinuria and immune complex attachment to the kidney
tissues and in addition, protected from skin disease (323).
Interestingly, PAD4-deficient mice had accelerated diabetic
wound healing compared to wild-type mice (324). Although
these irreversible inhibitors inactivate Ca2+-bound PAD4, they
lack specificity and also interact with other isoforms of the PAD-
family. Lewis et al., generated two reversible inhibitors GSK199
and GSK484 which are highly specific for PAD4 and can inhibit
NETosis in murine and human neutrophils (325). Removal of
NETs with DNAse I or pharmacological inhibition of PAD4 with
GSK484 inhibitor prevent cancer-associated kidney injury in
mice (326). However, in recent studies, GSK484 also enhanced
irradiation-induced damages in triple-negative breast cancer
cells, which subsequently had inhibitory effects on cell
proliferation, migration and invasion (327). In mouse models
of sepsis, deficiency of PAD4 or DNAse I treatment strongly
reduced intravascular thrombin activity, inhibited platelet
aggregation and improved microvascular perfusion (328).
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Patients with acute thrombotic microangiopathies displayed low
plasma levels of DNAse I compared to the healthy subjects (329).
In mouse models of HIT, genetic deficiency or GSK484-mediated
inhibition of PAD4 abolishes thrombus formation (135). In vitro,
DNAse I/GSK484 strongly inhibited the epithelial-mesenchymal
transition-promoting ability of NETs in gastric cell cultures (87),
indicating multiple effects of exogenous DNAse I in cancer.

Other effects may also result from PAD-mediated inhibition of
ET formation. PAD1 and PAD3 target keratin K1, filaggrin and
myelin, thus playing a specific role in epidermis differentiation
(330). PAD enzymes are also positively associated with diffuse
inflammation in the brain (331). In macrophages, PAD2 becomes
activated due to increased levels of Ca2+ and can induce apoptosis
by citrullinating vimentin (332). PAD2 citrullinates many proteins
such as actin and vimentin in dendritic cells and dendritic cell-
derived osteoclasts and in brain tissues (333, 334). Furthermore,
overexpression of PAD2 in T cell line was shown to induce
vimentin citrullination and apoptosis (335). Recently, PAD3 was
found to be necessary for apoptosis-inducing factor (AIF)-
mediated apoptosis in human neural stem cells (336). In
comparison to other PAD family members, PAD4 has more
catalytic substrates. PAD4 is involved in cell apoptosis and
differentiation and deiminates nonhistone proteins such as p300,
nucleophosmin (NPM1), an inhibitor of growth protein 4 (ING4)
and Lamin C, which are involved in cell apoptosis or DNA
damage (337). Moreover, PAD4-mediated citrullination
participates in the regulation of human 40S ribosomal protein
S2 (RPS2) and ribosome assembly (338). PAD4 targets collagen
and decreases the adhesion of synovial fibroblasts and
mesenchymal stem cells (339). DNA methyltransferase
DNMT3A can be citrullinated by PAD4, which provides a novel
mechanism for controlling de novo DNA methylation (340).

Cyclosporine A
Cyclosporine A suppresses immunocompetent T cells reversibly
and is applied for the treatment of autoimmune diseases such as
rheumatoid arthritis, and further viral, fungal and parasitical
infections (341). Cyclosporine A binds to cyclophilin, thereby
downregulating the nuclear factor of activated T cells (NFAT)
signaling, thus further inhibiting the calcineurin pathway (342).
Efficient induction of NETosis requires cytoplasmic Ca2+

increase, linking the cyclosporine A-induced calcineurin
pathway to NETosis. IL8-induced NETosis is reduced by
combining treatment of ascomycin and cyclosporine A (343),
suggesting a possibility to develop a therapeutic approach
of NETosis.

Heparin
Heparin is an anti-coagulant, extensively used in different therapies
for the prevention of blood clotting during heart surgery, kidney
dialysis, as well as for the treatment of VTE, heart attacks and
angina (344). Heparin also inhibits many hallmarks of cancer, such
as cancer cell survival, angiogenesis and migration (345). Moreover,
heparin treatment can induce HIT, which is a life-threatening
process, based on a severe immune reaction to heparin,
characterized by thrombocytopenia and severe thrombosis. In
patients with HIT, antibodies are produced against heparin-
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platelet factor 4 (PF4) complexes. Interestingly, this immune
complex can directly activate neutrophils and enhance NET
formation, which is sufficient for the development of thrombosis
(135). PF4 binds to NETs, which renders NETs more compact. The
complex then binds HIT antibodies, thereby protecting NETs from
DNAse degradation (346). In the mouse model of HIT, inhibition
of NET formation through PAD4 inactivation can reduce venous
thrombus formation but not thrombocytopenia (346), suggesting
that other alternative molecular mechanisms are involved in this
process. HIT-induced NETosis is further enhanced by ROS
production and NE. Interestingly, heparin derivatives, such as low
molecular weight heparin, fondaparinux and heparan sulfate
cannot induce profound NETosis (347). Altogether these results
suggest that heparin induces neutrophil activation and NETosis
contributes to venous thrombosis in HIT, which is triggered by
PF4-NET-HIT antibody complexes.

The effects of unfractionated heparin, low-molecular-weight
heparin (LMWH), e.g., parnaparin and non-anti-coagulant
heparin were studied in histone-induced diseases. Heparin was
able to protect mice and rats from organ and tissue damage, as
well as death by antagonizing histones in the blood (348–351). In
a mouse model of sepsis, heparin pretreatment could
significantly decrease the level of NETs in serum and lung
tissues (352). NET formation promotes cancer cell migration,
invasion and angiogenesis, which were inhibited by heparin or
other histone-binding agents (16). NETs also contributed to a
variety of cancer or cancer-associated thrombosis (97). LMWH is
currently the preferred treatment for prophylaxis and cancer-
associated thrombosis (353). However, more experimental
evidence is necessary to understand the effects of heparin in
NET formation of cancer patients. Heparin derivatives may be a
promising tool to cure diseases with high levels of plasma
histones, thereby potentially inhibiting NETosis without
dramatic changes in hemostasis.

Metformin
Metformin was originally used in diabetic patients to normalize
blood glucose levels. The anti-diabetic effects of metformin are
due to the inhibition of hepatic gluconeogenesis, which is
possibly associated with an insulin-mediated increase in
glucose uptake in skeletal muscle cells (354). Metformin acts
by inducing adenosine monophosphate-activated kinase
(AMPK), an enzyme regulating energy metabolism through
activation of glucose or oxidation of fatty acids (355). High
glucose and hyperglycemia increase the release of NETs and
circulating markers of NETosis, respectively (356). Although
metformin inhibited NETosis in vitro by reducing proteinase-3,
histones and extracellular DNA, it did not affect insulin
synthesis. In neutrophils, metformin prevented membrane
translocation of PKCbII and activation of Nox, thereby
decreasing NETosis in response to PMA and Ca2+. In line with
this, metformin also decreased NET components in the plasma
of patients with type 2 diabetes before and after treatment with
insulin or dapagliflozin (357).

Circulating neutrophil levels are often increased in patients with
a polycystic ovarian syndrome which is associated with an increased
risk to develop ovarian cancer (358–360). Ibanez et al., reported that
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metformin can reduce neutrophil count in polycystic ovarian
disease (360). These studies support the idea that metformin can
prevent the increased neutrophil levels and NETosis that are
associated with aggressive forms of ovarian cancer.

NET-independent mechanisms of metformin have also been
observed. Metformin could impair tumor growth when
administered during fasting-induced hypoglycemia. The anti-
tumor effects of metformin were mediated by glycogen synthase
kinase 3b (GSK3b) activation and PP2A-B56d complex
formation (361). Metformin inhibited the growth of a variety
of breast cancer cells by inducing cell cycle arrest and apoptosis
(362). Similar to other cell lines, metformin also induces AMPK
activation, reduced the phosphorylation of epidermal growth
factor receptor (EGFR), mitogen activated protein kinases
(MAPKs) and Src and lowered the levels of cyclins D1 and E
in breast cancer cells (362). Metformin also inhibits signal
transducer and activator of transcription 3 (STAT3) activation
and thereby reduced cell proliferation (363). Furthermore,
metformin also activates p53 by activating AMPK, ultimately
stopping the cell cycle (357, 364).

Metformin inhibits the proliferation of breast cancer cells
with aberrant expression of human epidermal growth factor
receptor 2 (HER2). Translational suppression of HER2
expression was observed after metformin treatment and this
effect was triggered by the inhibition of the mTOR-S6K1
signaling pathway (365). Besides breast cancer, metformin can
inhibit the proliferation of prostate, endometrial and brain
cancer cells. Similar effects induced by metformin, inducing
cell cycle arrest and suppressing the mTOR signaling pathway
(366–368). In vivo experimental conditions, metformin
treatment significantly reduced the primary tumor size of
mammary adenocarcinomas and prolonged the lifespan of
MMTV–Her2/Neu mice (369). Heterozygote mice of the
tumor suppressor gene PTEN develop tumors in different
organs, and metformin delayed tumor onset by 25% (370).

Many inhibitory effects of metformin on tumor growth
through AMPK and mTOR signalings were confirmed using
different mouse models of cancer (371–375). Metformin was also
effective in reducing the growth of intestinal polyps in tumor
suppressor Apc-mutant mice (376) by reducing mTOR/S6K/S6
signaling in the epithelium of the intestine. Of note, in this
intestinal tumorigenesis model, tumor growth was shown to be
associated with increased neutrophil infiltration and NETosis
(130), raising the possibility that metformin may also inhibit
NET-dependent tumor growth.

Although numerous preclinical, clinical and epidemiological
studies proposed that metformin treatment inhibits tumor
growth compared to other hypoglycemic treatments, it is still
an open question whether metformin can be a potential
candidate for the treatments of cancers predisposing tumor
microenvironment to the release of ETs.

Thrombomodulin/Activated
Protein C Complex
Thrombomodulin is an endothelial receptor, playing an important
role in vascular homeostasis and regulation of coagulation.
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Thrombomodulin forms a complex with thrombin, thereby
inactivating the coagulant activity of thrombin which activates
protein C and thrombin activatable fibrinolysis inhibitor (TAFI)
(377). Besides thrombin, thrombomodulin also regulates the
inactivation of complement 3b (378). Recombinant
thrombomodulin is given to the patients with disseminated
intravascular coagulation, thereby protecting them from tissue
injury (379). Recombinant thrombomodulin neutralizes damage-
associated molecular patterns (DAMPs), including histones and
HMGB1, inhibits aberrant activation of the complement system,
protecting the endothelium (380). Using in vitro platelet-neutrophil
coculture models, Shimomura et al., demonstrated that
recombinant thrombomodulin may inhibit LPS-induced NETosis
(381). Later, Helms et al. found that treatment of rats with
recombinant thrombomodulin during septic shock limits
excessive neutrophil activation and rescues a balanced coagulation
and immunothrombosis response (382). This promising
therapeutic tool would be important to follow in the future using
mouse models of cancer.

Activated protein C (APC) is a serine protease with anti-
coagulant and anti-inflammatory effector functions. Activation
of the blood coagulation cascade by TF induces thrombin
generation and the formation of a fibrin network. In addition,
thrombin binds to thrombomodulin, and activates protein C in
complex with endothelial protein C receptor (EPCR). Zymogen
protein C is cleaved by thrombin to generate functionally active
APC. After protein cleavage, APC forms a complex with protein
S, and inactivates coagulation factors (Va, VIIIa) and as a
negative feedback loop, inhibits thrombin generation (383).
Therefore, long-term APC treatment could potentially increase
the risk of bleeding complications (384). Besides this function,
APC binds and activates PAR1 thereby enhancing vascular
barrier integrity through sphingosine-1-phosphate receptor 1
(S1P1)-VE-cadherin signaling (385, 386).

The anti-inflammatory effects of APC involve the inhibition
of neutrophil activation, NET formation and cell death. APC can
effectively inhibit PI3K-PKC-dependent NET formation and this
process is strongly dependent on the functional crosstalk
between the macrophage-1 antigen (Mac-1), EPCR, and
protease-activated receptor 3 (PAR3). APC can cleave PAR3 at
a different site than thrombin, thereby inhibiting NET formation.
Consequently, antibodies of EPCR, PAR3 and Mac-1 can reverse
APC-mediated inhibition of NETosis (387).

Due to the multiple roles of APC in hemostasis and
inflammation, it is difficult to predict the positive or negative
effects of APC treatment in cancer progression. Increased levels of
APC in the blood may limit metastasis by protecting the vascular
barrier through VE-cadherin, but it may stimulate the metastatic
potential of cancer cells (386). It has been shown that APC
signaling enhances cancer cell migration, invasion and
angiogenesis and also inhibits apoptosis (386, 388, 389). APC
treatment could enhance breast cancer cell invasion in a dose-
dependent manner (389). Cancer patients require long-term APC
treatment which may induce severe bleeding complications (386),
due to the hemostatic effects of APC on thrombin generation and
factor Va/VIIIa functions. Although APC has a strong anti-
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inflammatory potential for the treatment of human patients, it is
necessary to test recombinant mutant forms of APC with selective
anti-inflammatory function in experimental models of cancer,
without affecting thrombin generation and hemostasis.

Diphenyleneiodonium Chloride
Diphenyleneiodonium chloride (DPIC) is a hypoglycemic agent,
identified as an inhibitor of NADH/Nox with highly potent anti-
microbial activity against Mycobacterium tuberculosis and
Staphylococcus aureus (390, 391). However, DPIC can also inhibit
nitric oxide synthase (392), xanthine oxidase (393) and NADPH
cytochrome P450 oxidoreductase (394), thereby inhibiting ROS
production. Furthermore,DPIC inhibits oxidativephosphorylation
(OXPHOS) and consequently reduces ATP production, thereby
switching energy production to the lactic acid energy system (390).
DPIC treatment strongly inhibits mitochondria function, thus
leading to metabolic senescence (395). Interestingly, the effects of
short-term DPIC treatment on cancer cells were independent of
p53. However, long-term treatment showed that p53 expression
facilitates a prolonged cell cycle arrest andprotects cancer cells from
apoptosis, while p53 deficiency could induce apoptosis with poly
ADP-ribose polymerase (PARP) cleavage andDNA fragmentation
in cancer cells (396). Altogether, these results suggest that DPIC
treatment can reduces tumor growth by the inhibition of cancer cell
proliferation and activation of the immune system through factors
secreted by senescent cancer cells.

DPIC inhibits extracellular DNA release in PMA-stimulated
neutrophils, although the degree ofDPIC-inhibitedNET formation
was strongly dependent on the dose of external stimuli (49, 80). In
different lung epithelial cells, NET formation is significantly
increased by the secretion of CXCL8, IL8 and IL6 and this
process was inhibited by DPIC (397). In the model of in vitro
cigarette smoke extract-induced NETosis, DPIC treatment also
inhibited this process (398). In mice, tobacco smoke increases
lung metastasis by sustaining lung inflammation and thereby
inducing NETosis which subsequently awake dormant cancer
cells (108). Further investigation is necessary to show the effects
ofDPIC in long-term treated tumors and tumormicroenvironment
in vivo, focusing on the context of mitochondria dysfunction and
senescence, as well as the distribution of NETs in cancer and
lung metastasis.

High Mobility Group box-1 Antagonists
High mobility group box-1 (HMGB1) is a nonhistone chromatin-
associated protein, and as a nuclear cofactor in transcription
regulation, interacting with many transcription factors and
histones, supporting gene expression in the cells (399). However,
HMGB1 is also secreted into the extracellular milieu, thereby
initiating several interactions with receptors on the cell surface or
with extruded DNA, triggering various signaling mechanisms and
NETosis (399, 400). HMGB1 has a cytokine-like activity, thus
regulating immune cell functions, including chemotaxis and
immune modulation (401). In monocyte/macrophage-infiltrating
disease condit ions , HMGB1 faci l i tates macrophage
reprogramming towards a proinflammatory phenotype through
TLR4 activation (402). Interestingly, exposure to HMGB1 strongly
increases the amountof extracellularDNAand citrullinatedhistone
Frontiers in Oncology | www.frontiersin.org 18
3 in wild-type neutrophils, however, this effect was not observed in
TLR4-deficient neutrophils (403). In mouse models treated with
LPS, HMGB1 antibody treatment could decrease the levels of
citrullination of histone 3 (403). Altogether, these results suggest
that HMGB1 is a potential target for the development of anti-
inflammatory therapies against TLR4-mediated NETosis.

Interestingly, metformin as a potential inhibitor of NETosis
directly binds to the C-terminal tail of HMGB1 (357, 404). In the
acute liver damage model, HMGB1 was released from damaged
liver cells and metformin treatment could inhibit this process,
protecting the liver cells (404). In another mouse model,
metformin can significantly inhibit HMGB1 secretion and
consequently reduce LPS-induced macrophage inflammatory
responses, thereby improving the survival of endotoxemic mice
(405). Altogether, these results suggest that metformin would be
a potential drug to inhibit HMGB1-induced inflammation
and NETosis.

Platelets are the major reservoirs of HMGB1, and it is released
by activated platelets (400). HMGB1 binds TLR4 receptors on
the platelet surface, thereby inducing recruitment of myeloid
differentiation primary response 88 (Myd88) and guanylyl
cyclase to the plasma membrane, leading to the activation of
cGMP-dependent protein kinase I (400, 406). In a mouse model
lacking HMGB1 in platelets, decreased thrombosis, lung
inflammation and NETosis were observed indicating
pleiotropic effects of HMGB1 in thromboinflammation (406).

Cancer cell-derived HMGB1 can modulate platelet-resident
TLR4 receptors, thereby increasing platelet-dependent tumor
metastasis. Although NETosis was not addressed in this study,
blocking HMGB1 function in tumor cells was effective to inhibit
tumor metastasis (407). HMGB1 is also expressed in keratinocytes.
HMGB1-deficient keratinocytes displayed a marked reduction in
NET formation, and subsequently delaying wound healing and
promoting tumorigenesis in mice (408). Using anti-HMGB1
antibody treatment, HMGB1-mediated NETosis was strongly
inhibited (403). It is tempting to investigate whether HGMB1
may also trigger DNA release from other inflammatory immune
cells in proinflammatory tumor microenvironment.
Purinergic P2Y12 Receptor Blockers
Purinergic P2Y12 receptor (P2Y12) blockers (clopidogrel,
ticagrelor, cangrelor, prasugrel) are widely used in patients
with cerebrovascular, coronary artery, cerebrovascular and
peripheral vascular diseases (409). The thienopyridine-derived
metabolite irreversibly inhibits the binding of ADP to the
receptor P2Y12, resulting in decreased platelet activation and
aggregation responses, and reducing inside-out activation of
platelet integrin aIIbb3 integrin (410). Neutrophil-mediated
platelet activation was suggested to be dependent on ADP
(411, 412), therefore ADP blockers consequently attenuate
platelet-neutrophil interactions and NETosis. In a mouse
model of cholesterol crystal embolism, extracellular DNA has
been exposed from NETs and damaged endothelium and
activated platelets from emboli and vascular occlusion, leading
to tissue infarction and kidney injury (231). In this model, P2Y12
blockade similarly to the DNAse I treatment strongly inhibited
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platelet function, consequently inhibiting extracellular DNA
release and associated ischemia and organ injury (231).

In ST-elevation myocardial infarction (STEMI), the
interaction between platelets and neutrophils results in
the secretion of polyP in the presence of thrombin (413).
In the infarct-related arteries, platelets release polyP,
stimulating neutrophils to form thrombogenic/TF-bearing
NETs (414, 415). Although ticagrelor significantly inhibited the
NETotic effect of coronary stents in vitro, this did not rely on the
P2Y12 receptor. These results indicated that ticagrelor may have
pleiotropic effects on NETosis independently of platelets (415).
The pancreatic cancer microenvironment is highly rich in
tumor-associated neutrophils, platelets and NETs (416).
Clopidogrel was shown to inhibit cancer growth and metastasis
in PANC02 pancreatic cancer model (417). In the future, it will
be important to analyse the effect of P2Y12 blockers on cancer-
associated neutrophil activation and NETosis.

Disulfiram
Disulfiram inhibits aldehyde dehydrogenase and is used to treat
alcohol dependence (418). Disulfiram is also a potent inhibitor of
gasdermin D in mouse and human macrophages and neutrophils
(419, 420). Gasdermin D is a pore-forming protein playing a
pivotal role in inflammatory cell death (419). In macrophages,
inflammasome activation by canonical and or non-canonical
pathways induces the cleavage of gasdermin D, which
translocates to the plasma membrane thereby forming
pores and inducing pyroptosis (421). In neutrophils,
cytoplasmic caspase was shown to be directly activated by LPS
or gram-negative bacteria independently of TLR4 (422). A recent
study by Silva et al., showed that during sepsis caspase-11
activation induces gasdermin D cleavage, resulting in NET
formation (420). Besides these mechanisms, gasdermin D
cleavage is also generated by NE, which is released from
neutrophils upon activation (423). Interestingly, inhibition of
gasdermin D with disulfiram abolished NET formation reducing
multiple organ dysfunction and sepsis-associated lethality (420).
These studies indicate that disulfiram could be an important
therapeutic agent to target gasdermin D, thereby preventing
organ injury.

Diethylcarbamazine
Diethylcarbamazine (DEC) is a derivate of piperazine, used as an
anti-parasitic drug (424). Although at low doses DEC improves
cytokine production, a high dose of this drug increases the
respiratory burst in neutrophils (425). In vivo, DEC reduces the
inflammatory granuloma formation in a bacterial infection model
(426). DEC also decreases NET formation of neutrophils isolated
from healthy subjects upon in vitro activation with PMA (427). In a
follow-up study, DEC in both healthy donors and diabetes mellitus
type 2 patients displayed an immunomodulatory effect inhibiting
and delaying the tendency toward NET formation by their
neutrophils (428). DEC in addition to inhibiting NETosis, also
inhibits COX2, NF-kB activation, iNOS, TNFa and IL1b (429),
indicating that the effects of DEC can be associated with many
immunomodulatory pathways.
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Glucuronoxylomannan
Glucuronoxylomannan (GXM), a polysaccharide, represents the
main capsular content of the opportunistic yeast Cryptococcus
neoformans, which has potent immunosuppressive properties. In
a mouse model of rheumatoid arthritis triggered by collagen type
II, GXM could improve the disease severity, by downregulating
the cytokine and growth factor (TNFa, IL1b, IL6 and TGFb)
levels, thereby inhibiting Th17 cell differentiation and
subsequent IL17 secretion (430). Furthermore, Rocha et al.,
showed that GXM treatment could abolish NET formation,
independently of the agonist and stimuli (431). Future studies
are required to validate whether GXM could be a potential
therapeutic tool in ET-mediated thromboinflammation and
cancer triggered by various cell types.
Anti-Citrullinated Antibodies
Anti-citrullinated protein antibodies (ACPAs), produced against
citrullinated proteins, are diagnostic and prognostic markers of
rheumatoid arthritis (432). Recent studies also provided evidence
for circulating autoantibodies against citrullinated tumor-
associated proteins in breast cancer patients (433). Anti-
citrullinated proteins specifically targeting citrulline at histone
2A and 4 positions were proposed as a direct approach to inhibit
murine and human NET formation (434).
CONCLUSION

Research studies during the last decade provided important
progress on better understanding of the pathophysiological
role of ETs (Table 1). Neutrophils release ETs in response to
proinflammatory stimuli and tumor cell and tumor
microenvironment. Cancer-mediated NETosis also induce
thrombosis, which leads to multiple organ failure. Dissolution
of NET structures by DNAse I may represent benefits, but side-
effects of such treatment may also result in secondary immune
responses and procoagulant environment triggered by
disseminated NET fragments circulating in the body.
Increasing experimental and clinical evidence indicates the
multiple sources of ETs in different pathological contexts, such
as intestinal inflammation, sepsis, thrombosis, autoimmune
diseases and diabetes. The proinflammatory and proangiogenic
landscape of tumor microenvironment can potentially trigger
activatory signaling pathways of ET formation, in different
immune cells, including eosinophils, dendritic cells, monocytes,
macrophages, basophils and lymphocytes. So far, only limited
experimental and clinical evidence is available to link non-
neutrophil ETs to the cancer progression and response to the
anti-cancer therapies. Therefore, studies evaluating localization
of extracellular DNA and traps, including immunohistological
detection of colocalized cell-lineage-derived proteins,
citrullinated histones, detection of extracellular DNA and traps
in serum and blood samples using flow cytometry are of
paramount importance. The analysis of citrullinome signature
associated with immune response and response to anti-cancer
treatments may offer potential diagnostic and prognostic
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TABLE 1 | Pathophysiological role of ETs in cancer.

Biological effect ET type Cancer model Underlying mechanism Ref.

Tumor growth NETs Colorectal cancer
In vitro: DKs-8, DKO-1 cells
In vivo: Apc-KRASG12D mouse model

Cancer cells transfer KRAS mutations through exosomes to neutrophils and induce
neutrophil recruitment and NETosis via upregulation of IL8, promoting cancer cell
proliferation.

(96)

Colorectal cancer
In vitro: MC38 cells
In vivo: syngeneic subcutaneous MC38
cancer model

NET-associated PD-L1 induces T cell exhaustion and enhances tumor growth. (109)

Hepatocellular carcinoma
In vivo: DEN-HFCD, STAM mouse
models

NETs enhance differentiation of regulatory T cells by promoting mitochondrial
oxidative phosphorylation in naive CD4+ T cells via TLR4, amplifying tumor burden.

(110)

Migration,
Invasion;
EMT

NETs Breast cancer
In vitro: MCF7 cells

NETs enhance the expression of EMT markers ZEB1, Snail and fibronectin, cancer
stem cell marker CD44, proinflammatory mediators, such as IL1b, IL6, IL8, CXCR1,
MMP2 and MMP9.

(86)

Gastric cancer
In vitro: AGS cells

NETs enhance cancer cell migration and induce EMT; downregulation of E-cadherin
and upregulation of vimentin expression.

(87)

Pancreatic cancer
In vitro: BxPC3, MIA, PaCa2, PANC1
cells
In vivo: subcutaneous MIA and PaCa2
xenograft cancer models
Ex vivo: human PDAC

Release of IL1b during NETosis activates EGFR/ERK pathway, leading to the EMT;
downregulation of E-cadherin and upregulation of Snail, N-cadherin and vimentin
expression.

(88)

Colorectal cancer
In vitro: DKs-8, DKO-1 cells
In vivo: Apc-KRASG12D mouse model

KRAS mutant exosomes from tumor cells induce NETosis via IL8, leading to the
enhanced cancer cell migration and invasion.

(96)

Breast cancer
In vitro: 4T1, 4T07, BT-549 and C3(1)-
Tag cells

Cancer cell-derived G-CSF primes neutrophils, resulting in lytic NETosis; cathepsin G
enhances NET-mediated cancer cell invasion among other NET-associated proteins.

(14)

Pancreatic cancer
In vitro: AsPC-1 cells

NETs induce cancer cell migration via TLR2 and TLR4. (16)

METs Colon cancer
In vitro: HCT116 and SW480 cells
Ex vivo: human colon cancer

Cancer cells promote MET formation via PAD2; METs interact with tumor cells and
enhance tumor cell invasion.

(201)

Metastasis NETs Breast cancer
In vitro: 4T1 series, AT3, MDA-MB-231
and sublines
In vivo: syngeneic orthotopic (4T1 series,
AT3), xenograft (MDA-MB-231 and
sublines) cancer models
Ex vivo: human breast cancer

Tumor-derived cathepsin C (CTSC) triggers CTSC-PR3-IL1b axis in neutrophils,
upregulating IL6 and CCL3 synthesis. CTSC-PR3-IL1b induces ROS production and
NET formation which degrade thrombospondin-1, thereby supporting metastatic
growth of lung cancer cells.

(95)

Breast cancer
In vivo: 4T1 experimental and
spontaneous breast cancer metastasis
models

NETs enhance lung metastasis. (14)

Breast cancer and colon cancer
In vitro: MDA-MB-231, MCF-7 and
HCT116 cells
In vivo: syngeneic (4T1) and xenograft
(MDA-MB-231) orthotopic and
intrasplenic (MMTV-PyMT mice and
E0771 cells) cancer models
Ex vivo: human breast and colon cancer

CCDC25 on cancer cell surface acts as a sensor and binding partner for NET-DNA;
binding leads to activation of ILK–b-parvin–RAC1–CDC42 cascade, cytoskeleton
remodeling and formation of distant metastases.

(18)

Breast cancer
In vitro: D2.0R, MCF7 cells
In vivo: syngeneic (D2.0R) and xenograft
(MCF7) experimental breast cancer
metastasis models

NET-associated NE and MMP9 cleave laminin and degrade thrombospondin-1
leading to the activation of integrin a3b1 and FAK/ERK/MLCK/YAP signaling,
resulting in reactivation of dormant cancer cells during tumor metastasis.

(108)

Colon, melanoma, lung and breast
cancer
In vitro: primary melanoma and LS174T,

Cancer cells trigger NETosis by CXCR1 and CXCR2 activation; NETs protect tumor
cells from contact with cytotoxic T cells and NK cells, promoting cancer cell
dissemination and lung metastasis.

(105)
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TABLE 1 | Continued

Biological effect ET type Cancer model Underlying mechanism Ref.

HT29 cells
In vivo: syngeneic subcutaneous (4T1,
LLC and HT29) and intradermic
(B16OVA and 4T1) cancer models

Lung cancer
In vitro: A549 cells
In vivo: experimental liver metastasis of
A549 cells (intrasplenic injection into
caecal ligation and puncture-induced
sepsis model)

Tumor- and NET-derived b1-integrin mediates adhesion of NETs to circulating tumor
cells, facilitating cancer cell adhesion to the liver sinusoids.

(102)

Ovarian cancer
In vitro: ES2 and ID8 cells
In vivo: syngeneic (ID8) and xenograft
(ES2), (intrabursal and intraperitoneal
injection) cancer models

Cancer-derived cytokines (IL8, G-CSF, GROa, GROb) promote NETosis; NETs
accumulate in premetastatic niche and enhance the formation of omental
metastases.

(20)

METs Colon cancer
In vivo: MC38 experimental colon cancer
metastasis model
Ex vivo: human colon cancer

Cancer cells promote MET formation via PAD2, enhancing the formation of liver
metastases.

(201)

Cancer-
associated
thrombosis

NETs Chronic myelogenous leukemia (CML),
breast and colon cancer
In vivo: syngeneic orthotopic breast (4T1)
and subcutaneous lung (LLC) and CML
mouse models

Cancer cells predispose neutrophils to form NETs via G-CSF, promoting
microthrombosis in the lung.

(97)

Breast cancer
In vivo: syngeneic orthotopic breast (4T1
and 67NR) models

Cancer-derived G-CSF induces neutrophilia and NETosis, leading to the
prothrombotic phenotype.

(113)

Glioma
Ex vivo: human glioma

Platelets of late-stage glioma patients induce NETosis via P-Selectin and NETs
promote hypercoagulant state and thrombogenicity in endothelial cells.

(125)

Myeloproliferative neoplasms (MPN)
In vivo: Jak2V617F mouse model
Ex vivo: human MPN

Jak2V617F mutation stimulates NET formation and thrombosis in a PAD4-dependent
manner.

(132)

Pancreatic cancer
In vitro: AsPC-1 cells
Ex vivo: pancreatic and biliary cancer

Tumor cells induce NET generation in a cAMP- and thrombin-dependent, and ROS-
independent manner; NETs enhance thrombin generation.

(16)

Pancreatic cancer
Ex vivo: orthotopic (Panc02) cancer
model, human pancreatic cancer

NETs induce RAGE-dependent platelet aggregation and increase TF expression,
thereby enhancing coagulation.

(127)

Pancreatic cancer
In vitro: AsPC-1 cells

Platelets primed by tumor cells induce rapid NET generation; NETs trap platelets and
stimulate thrombus formation under shear conditions.

(128)

Small intestine cancer
In vivo and ex vivo: ApcMin/+ mouse
model

Inflammation-associated complement activation via neutrophil C3aR induces
NETosis, hypercoagulation, and N2 neutrophil polarization in small intestine.

(130)

Ex vivo: human solid cancers
Prostate, liver, lung, bladder and breast

Malignant tumors enhance NETosis via G-CSF, inducing microthrombosis and the
occurrence of ischemic stroke with elevated troponin levels.

(134)

Secondary
organ damage

NETs Breast cancer and insulinoma
In vivo: MMTV-PyMT and RIP1-Tag2
transgenic models

Cancer cell-derived G-CSF induces systemic NETosis. NETs occlude kidney and
heart vessels, inducing irregular blood flow, increased endothelial cell activation with
upregulated expression of proinflammatory mediators, ICAM1, VCAM1, E-selectin,
IL1b, IL6, and CXCL1.

(98)

Poor prognosis
and therapeutic
resistance

NETs Bladder cancer
In vitro: MB49, UM-UC3 cells
In vivo: syngeneic heterotopic MB49
bladder cancer model
Ex vivo: human bladder tumor

Radiation induces HMGB1 release in tumor microenvironment, triggering NETosis
through TLR4; NETs enhance resistance to radiotherapy by suppressing CD8+ T cell
infiltration.

(111)

NETs,
METs

Ex vivo: human pancreatic
neuroendocrine tumors

Poor prognosis and postoperative recurrence of resected tumors. (200)

(Continued)
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approaches. Understanding the underlying mechanisms of
ETosis in cancer and grasping the impact of nucleases, anti-
thrombotic, anti-diabetic, anti-malaria and immunosuppressive
drugs on ETs may help to interconnect treatment strategies
between several disease contexts and propose new therapeutic
modalities for the prevention and treatment of cancer.
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