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considered, from hormonal balance, nutritional requirements, and 
optimal gut microbiome to exposure to environmental toxins.

Role of obesity and fatty acids as modulators of sperm function
The prevalence of male obesity in reproductive age has nearly tripled 
in the last 30 years.7 There is increasing awareness that male obesity 
reduces sperm quality, in particular by altering the physical and 
molecular structure of germ cells in the testes and mature sperm, and 
raises the risk of sperm DNA damage linked to excess production of 
reactive oxygen species (ROS).8,9 Recently, growing evidence has linked 
abdominal obesity, together with insulin resistance and dyslipidemia, to 
male fertility.10 Obesity adversely affects male fertility through changes 
at the hormonal level, as well as by direct changes to sperm function 
and gamete molecular composition. Adipose tissue depots containing 
adipocytes and infiltrated immune cells generate inflammatory 
molecules that may also play an important role in the chronic 
pro-inflammatory state in the testicular microenvironment and/or 
excurrent ductal system. Increased adipose tissue is associated with 
overproduction of adipocytokines, such as leptin, resistin, adiponectin, 
ghrelin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), 
which have a negative influence on spermatogenesis.11

INTRODUCTION
In recent years, several studies have provided evidence that semen 
quality in humans is decreasing, which may lead to a significant 
decline in male fertility.1 Moreover, some studies have investigated 
the possible association between the infertile male phenotype and 
specific gene variants.2,3 Recent research on impaired sperm quality 
has demonstrated genetic variation in sperm DNA.4 In fact, the 
growing technology of genetic tools that use genomic information has 
also provided an avenue for experimental approaches to support the 
genetic causes of male infertility. Personal genetic testing can provide 
information that may be used to recommend dietary choices that are 
more effective at the individual level than the current dietary advice. 
A recent systematic review found that individuals are more likely to 
change health behaviors, including their dietary choices, when their 
genetic information include actionable advice.5 A large number of 
micronutrients are required as cofactors for enzymes, or as part of the 
structure of proteins involved in DNA synthesis and repair, prevention 
of oxidative damage to DNA, and maintenance methylation of DNA.6 
Therefore, genetic variants with poor nutritional and environmental 
factors may have an impact on fertility, fetal growth, and birth 
outcomes. To preserve male fertility, the whole person should be 
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Although some data are currently available on dietary modulation of 
lipid metabolism, little is known about the nutritional regulation of 
energy metabolism in sperm. In this regard, lipid profile alterations 
have been correlated with male infertility.12 There are three types 
of natural fatty acids, namely, saturated, monounsaturated, and 
polyunsaturated. Polyunsaturated fatty acids (PUFAs) are essential 
because they cannot be synthesized by the body. Docosahexaenoic acid 
(DHA), eicosapentaenoic acid (EPA), and α-linolenic acid are the main 
omega-3 PUFAs. Linoleic acid, γ-linolenic acid, and arachidonic acid 
are the main omega-6 PUFAs. The first mechanism by which PUFAs 
affect spermatogenesis is their incorporation into the spermatozoon 
cell membrane. PUFAs are structural components of spermatozoon 
membranes.13,14 Conquer et al.15 reported that DHA levels were lower 
and oleic acid levels were higher in spermatozoa of patients suffering 
from asthenozoospermia, compared to that of a control group. Another 
case-control study of idiopathic infertile men and a healthy control 
group showed that blood and spermatozoa levels of omega-3 were 
significantly higher in fertile men compared to that of their infertile 
counterparts. Moreover, the serum omega-6 to omega-3 proportion was 
considerably lower in fertile individuals.16 Some studies have reported 
a detrimental impact of body mass index (BMI) on sperm parameters, 
notably a decrease in sperm concentration.17,18 Consequently, the 
possibility of improving semen quality through weight reduction has 
also been considered. Improvement of hormonal status was mainly 
observed after weight loss;19 furthermore, a positive impact of weight 
loss on semen parameters has been observed.20

Association between nutritional factors and the risk of male infertility
Nutritional factors are known to be critical determinants of normal 
reproductive function.21 Indeed, worldwide, environmental conditions 
have changed dramatically, especially with respect to diet and exercise, 
and the pronounced changes in these factors suggest that they may 
be involved in the etiology of declining male fertility and impairment 
of sperm production.22 In fact, diet and obesity are two important 
lifestyle factors that can influence spermatogenesis; in terms of both 
macro- and micro-nutrient intake, they have major effects on normal 
reproductive function.23 Within the last few decades, reproductive-age 
people have started eating more highly refined carbohydrate-rich 
food, food high in saturated fat and transfatty acids, and sodium and 
ultra-processed food, while simultaneously consuming less fresh fruit 
and vegetables.16 There is increasing evidence indicating a potential 
relationship between incorrect nutritional attitudes and lower sperm 
quality.12 Essential nutrients, especially vitamins such as folate, are 
involved in DNA and RNA synthesis, and thus play an important 
role in spermatogenesis by protecting the sperm’s DNA from free 
radical damage.24 A recent meta-analysis of randomized clinical trials 
suggests that some dietary supplements could beneficially modulate 
sperm quality parameters and affect male fertility.25 However, no 
consensus has been reached on systematic recommendation of oral 
supplementation.

Impacts of oxidative stress on male reproduction
Evidence has been increasing in recent years for oxidative stress 
playing a vital role in the pathogenesis of idiopathic male factor 
infertility. One of the factors that may contribute to the onset of male 
infertility is the overproduction of ROS.26 Aitken27 (2016) reviewed 
twenty studies of infertile male patients treated with antioxidants. 
The review showed a significant decrease in oxidative stress and 
improved motility in asthenozoospermic patients, but only 50% of the 
studies reported a pregnancy rate.28 However, there is weak evidence 

from a few randomized controlled trials suggesting that antioxidant 
supplementation in subfertile males may improve live birth rates in 
couples attending fertility clinics.25 Further studies are required to 
formulate an optimal dosage and ideal combination of nutrients, both 
necessary to provide the appropriate response to each patient.

GENETIC VARIANTS ASSOCIATED WITH NUTRITION AND 
MALE REPRODUCTIVE POTENTIAL 
Single-nucleotide polymorphisms (SNPs) represent genetic variation 
among individuals in a population. These variations in the DNA 
sequence may significantly affect an individual’s response to certain 
drugs or influence the risk of developing certain diseases. In the 
field of reproductive medicine, considerable research effort has 
been devoted to identifying polymorphisms which may influence 
steroidogenesis and fertility. Genetic risk involved in spermatogenesis 
is considered one of the main factors in male infertility. In recent years, 
various studies have reported possible associations between infertile 
phenotypes and specific genetic variants. The group of variants related 
to energy metabolism, folate metabolism, and antioxidant defense 
probably influences male fertility, with the impact of the variants 
potentially modulated by nutritional interventions. Genetic variation 
affecting responses to various micro- and macronutrients, as well as 
bioactives such as folate, and male infertility risk will be reviewed in 
this paper. Genes were selected based on their potential contribution 
to infertile male phenotypes and a presumed involvement in various 
parts of the pathogenic processes of male infertility.

Genetic variants involved in energy balance and lipid metabolism, 
and their influence on male fertility
The physiological mechanisms that control energy balance are 
reciprocally linked to those that control reproduction; these mechanisms 
optimize reproductive success under fluctuating metabolic conditions. 
Mechanisms regulating energy balance involve complex interactions 
between genetic, environmental, and behavioral factors. The major 
driving force behind obesity in modern society is overeating, which 
is largely coded in genes that are responsible for appetite and satiety 
regulation. About fifty genes that regulate satiety in humans have been 
reported; fat mass and obesity-associated gene (FTO) and melanocortin 
4 receptor (MC4R) are the two best-known examples (Table 1). MC4R 
codes for a protein that is mainly found in the hypothalamus, an area 
responsible for controlling appetite and satiety.29 The FTO gene has 
been reported to demethylate mRNA N6-methyladenosine (m6A) in 
mammalian cells.30 FTO-depleted cells exhibit higher levels of m6A than 
control cells; the demethylase activity of FTO protein is required for 
differentiation of preadipocytes.31 Indeed, the discovery of two missense 
mutations with potentially detrimental effects on the functionality 
of the methylation protein FTO, as well as a genetic variant of the 
same protein that is associated with altered semen quality, suggests 
that aberrant demethylation of mRNA is a factor involved in reduced 
male fertility.32 In addition to low satiety, FTO risk variants can also 
affect food preferences; FTO carriers tend to overeat and prefer high-
sugar and high-fat foods. For these reasons, it is essential to adapt 
the dietary intervention in order to modulate the impact of genetic 
variations, which can also induce alteration in sperm parameters due to 
disturbance of the energy balance. The crucial role of lipid homoeostasis 
and energy balance in endocrine regulation of spermatogenesis is 
well known. Thus, genes of the spermatozoon membrane structure 
represent a logical target for mutational analysis in infertile males. 
Cholesterol and lipid homoeostasis are important for male fecundity.33 
It is reported that 65% of infertile men show hypercholesterolemia 
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and/or triglyceridemia.34 Moreover, Ergün et al.35 (2007) reported 
that increased very-low-density lipoprotein (VLDL) impaired seminal 
parameters, and that increased triglycerides may have deleterious 
effects on spermatogenesis. In addition, Schisterman et al.36 reported 
that lipid concentrations may affect semen parameters, specifically 
sperm head morphology, highlighting the importance of cholesterol 
and lipid homoeostasis for male fecundity. Lipid components of the 
spermatozoon have an important role in the functional activity of 
this cell.

Apolipoprotein E (APOE) has a central role in lipid transport by 
mediating the binding of lipoprotein particles to their receptors.37 
APOE is a constituent apoprotein of VLDL, intermediate-density 
lipoprotein, high-density lipoprotein (HDL), and chylomicron 
particles.38 Three important polymorphisms have been discovered 
in the human APOE gene. These co-dominant alleles, designated ε2, 
ε3, and ε4, give rise to functionally distinct proteins, namely, APOE2, 
APOE3, and APOE4.39 APOE polymorphisms have also been found 
to affect male fertility and cause marked differences in reproductive 
efficiency.40 Setarehbadi et al.37 found significant differences in the 
distribution of APOE allelic combinations between fertile men and 
infertile men, with a higher percentage of fertile males possessing 
the ε3/ε3 genotype. APOE genotypes may be linked to differences 
in the efficacy of the expressed APOE isoforms in promoting sperm 
maturation during epididymal transit.37 Diet is the major reason for 
variation in lipid metabolism in human populations. Several recent 
studies have demonstrated that a specific dietary intervention may 
elicit extraordinary effects in certain genetic subgroups of patients.41 
The ability of dietary intervention to improve plasma lipoprotein–
lipid profiles varies greatly among individuals with different APOE 
genotypes. Ordovas and Galluzzi42 focused on the APOE genotype 
and dietary response in a comprehensive review of 27 studies. In 
general, the ε4 allele appears to be the most responsive to a low-fat 
and low-cholesterol dietary intervention; however, it may not be the 
most responsive to changes in other aspects of the diet. For example, 
subjects carrying the ε2 allele had the greatest change in total and 
LDL cholesterol in response to wheat- or oat-bran supplementation. 
Plasma lipid levels in subjects carrying the APOE2 allele show a more 
favorable response to tea drinking, and possibly to a fruit-and-vegetable 

diet. A long-term increase in dietary soluble fiber does not affect fat 
metabolism after meals in subjects with the APOE4 allele; however, it 
does enhance fat absorption in subjects with the APOE3/3 phenotype.

Hyperinsulinemia and hyperglycemia are common occurrences 
in obese individuals, and are constant confounding factors in 
many rodent studies of male obesity.43 Both hyperinsulinemia and 
hyperglycemia have been shown to have an inhibitory effect on sperm 
quantity and quality, and, therefore, may contribute to the reduced 
fertility seen in obese men.44 One of the gene variants that plays an 
important role in the development of type 2 diabetes mellitus in 
individuals with metabolic syndrome is transcription factor 7-like 2 
(TCF7L2) gene (Table 1). Variants of this gene, such as rs12255372 
and rs7903146, have been consistently shown to raise the genetic risk 
of β-cell dysfunction and development of type 2 diabetes.45 Increased 
ROS and sperm DNA damage are also seen in diabetic patients with 
commonly altered markers of sperm function. High circulating levels 
of insulin are suggested as one possible mechanism for the above 
effects, with increased insulin reducing the production of sex hormone-
binding globulin (SHBG).44,46 The decreased levels of SHBG to sustain 
homoeostatic levels of testosterone could contribute to the decreased 
levels of testosterone and reduced sperm counts seen in these patients.

Genetic variants that affect the one-carbon metabolic pathway and 
their influence on male fertility
Male fertility depends on the normal process of spermatogenesis 
which is itself a complex process regulated by a number of genes 
involved in growth, differentiation, apoptosis, and DNA damage. 
This complex pathway is associated with another important pathway, 
one-carbon metabolism. Folate and the normal activity of one-carbon 
metabolic enzymes are central to nucleotide synthesis, methylation, 
and maintenance of genomic integrity, as well as protection from DNA 
damage. The key enzymes implicated in these metabolic pathways are 
methylene-tetrahydrofolate reductase (MTHFR), methionine synthase 
(MTR), and methionine synthase reductase (MTRR) (Table 2).47 
Polymorphisms of important genes in the one-carbon metabolic 
pathway that affect several physiological processes also have an 
impact on spermatogenesis, and may directly or indirectly influence 
the quality of sperm parameters and male infertility.48 Homocysteine 

Table 1: Summary of genetic variants involved in energy balance and homoeostatic lipid metabolism, and their influence on male fertility

Gene 
symbol

Gene name SNPs Gene 
consequence

Phenotype impact Study Protein function Dietary recommendation 
based on

FTO FTO, alpha‑ 
ketoglutarate‑ 
dependent 
dioxygenase

rs9939609 Intron variant Obesity risk
Type 2 diabetes risk
Low fat oxidation rates
Higher weight and abdominal 

circumference

32,104 RNA demethylase that 
mediates oxidative 
demethylation of 
different RNA species

Acts as a regulator of fat 
mass, adipogenesis, and 
energy homoeostasis

Genetic profile 
matched to low‑fat, 
low‑carbohydrate, 
Mediterranean 
or balanced diet, 
including genetic 
risks for metabolic 
health factors (e.g., 
blood sugar, lipids)

rs1558902 Intron variant

rs7193144 Intron variant

MC4R Melanocortin 4 
receptor

rs17782313 Intergenic 
variant

Increased appetite and decreased 
satiety

Overweight
Autosomal dominant obesity
Higher BMI

29,105 Plays a central role 
as a leptin‑targeted 
neural circuit in energy 
homoeostasis and 
somatic growth

APOE Apolipoprotein E rs429358 Missense 
variant

Hypertriglyceridemia
Hyperlipoproteinemia
Cardiovascular risk
Atherosclerosis
Increased risk factor for male infertility

37 Transports lipoproteins, 
vitamins, and 
cholesterol, particularly 
in the brain

rs7412 Missense 
variant

TCF7L2 Transcription 
factor 7‑like 2

rs12255372 Intron variant Increased type 2 diabetes risk
Reduction of insulin sensitivity
Fasting proinsulin

106,107 Implicated in blood 
glucose homoeostasisrs7903146 Intron variant

SNPs: single‑nucleotide polymorphisms; BMI: body mass index
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is a sulfur-containing amino acid, which is an intermediate product 
in the metabolism of the amino acid methionine. The homocysteine, 
folate, and methyl group metabolic pathways are linked processes. 
The choline, methionine, and folate metabolic pathways interact at 
the point where homocysteine is converted to methionine (Figure 1). 
Homocysteine can be methylated to form methionine49 by two parallel 
pathways, both of which decrease homocysteine concentrations.50 
The alternative pathway for methylation of homocysteine to form 
methionine is catalyzed by betaine-homocysteine S-methyltransferase 
(BHMT).51 Betaine, derived from dietary choline by the action of 
choline dehydrogenase (CHDH), is the methyl group donor in this 
reaction, and supplemental oral betaine can lower plasma homocysteine 
concentrations.52 Dysfunction of folate metabolism pathways due to 
insufficient dietary folate intake, vitamin B9 deficiency,53 and genetic 
variations that impair the activity of enzymes involved in these 
processes will lead to a reduction in the conversion of homocysteine 
to methionine.54,55 This may lead to hyperhomocysteinemia associated 
with an increased risk of cardiovascular disease and disturbed DNA 
synthesis and/or DNA methylation reactions, causing DNA mutations 
and altered gene expression.

A few studies have assessed an association between male infertility 
and variants in key genes, MTR, MTRR, and MTHFR, for enzymes 
involved in methylation and homocysteine metabolism, with mixed 

results.48,56 MTHFR is one of the main regulatory enzymes involved 
in folate metabolism, DNA synthesis, and remethylation reactions. 
Moreover, MTHFR, which performs a key function in the metabolism 
of folate and homocysteine, is potentially one of the candidates for 
genetic vulnerability to spermatogenic failure. Carriers of the MTHFR 
rs1801133 (C677T) variant have been shown to have decreased activity 
of MTHFR enzyme – by 35% in the presence of heterozygosis and 
70% in homozygosis.57 Similarly, the MTHFR rs1801131 (A1298C) 
polymorphism has been shown to be associated with lower enzymatic 
activity in vitro, but to a lesser degree than MTHFR rs1801133,58 
with a resultant increase in homocysteine levels.59 Some authors 
have described a statistically significant correlation between MTHFR 
polymorphisms and human male infertility.60–62 Possible negative effects 
of the MTHFR rs1801133 mutation on male fertility may be caused 
by alteration of the expression of genes involved in spermatogenesis 
induced by undermethylation,63 or spermatozoa may be damaged 
by higher production of ROS metabolites, causing DNA damage 
(Figure 2) and reduced sperm counts.64,65 Significant experimental 
data show that the chief enzymes of the folate metabolism cycle are 
vital to male spermatogenesis.60

Genetic variants involved in vitamin D metabolism and their 
influence on male fertility
The male reproductive tract is one of the sites where vitamin D 
is metabolized. Vitamin D receptor (VDR) expression in various 
reproductive tissues, such as the smooth muscles of the epididymis, 
spermatogonia, Sertoli cells, and spermatozoa (especially the midpiece 
and nucleus), shows that it plays a crucial role in reproduction, 
and, therefore, fertility (Table 3).66 The role of  vitamin D in the 
modulation of testicular functions, including hormone production 
and spermatogenesis, has been investigated in animals and humans.67 
Experimental studies support a beneficial effect of vitamin D on male 
fertility, by modulating hormone production through genomic and 
nongenomic actions, and, particularly, by improving semen quality, 
essentially through nongenomic actions.68 Indeed, vitamin D seems 
to contribute to the modulation of the bioavailable rather than total 
testosterone. Moreover, although an increased prevalence or risk of 
testosterone deficiency was reported in men with vitamin D deficiency 
in observational studies, most interventional studies demonstrated a 
lack of effect of vitamin D supplementation on circulating levels of 
testosterone. The most consistent effect of vitamin D was reported for 

Table 2: Summary of genetic variants involved in folate metabolism, and their influence on male fertility

Gene 
symbol

Gene name SNPs Gene 
consequence

Phenotype impact Study Protein function Dietary recommendation 
based on

MTHFR Methylene‑tetrahydrofolate 
reductase

rs1801133 Missense variant Lower folate status
Idiopathic male infertility
Homocystinuria
Reduced activity of MTHFR

57,108 Converts MeTHF to 
MTHF

Genetic profile matched 
to folic acid‑fortified 
foods and vitamin 
B‑supplemented diet, 
including genetic 
risks of higher blood 
homocysteine

rs1801131 Missense variant

MTRR 5‑methyl‑tetrahydrofolate‑ 
homocysteine 
methyltransferase 
reductase

rs1801394 Missense variant Homocystinuria
Reduced activity of MTRR 

enzyme
Hyperhomocysteinemia

109 Regenerates functional 
methionine synthase 
via reductive 
methylation

BHMT Betaine–homocysteine 
S‑methyltransferase

rs7356530 Intron variant Increased homocysteine 
levels in the blood

110 Converts betaine and 
homocysteine to 
dimethylglycine and 
methionine

CHDH Choline dehydrogenase rs12676 Missense variant Choline deficiency
Changes in human sperm 

cell function

111 Involved in step 1 of 
the subpathway that 
synthesizes betaine 
aldehyde from choline

SNPs: single‑nucleotide polymorphisms; MeTHF: 5,10‑methylenetetrahydrofolate; MTHF: 5‑methlytetrahydrofolate

Figure 1: Choline metabolism and its links to methionine and folate 
metabolism. The pathways described are all present in the liver, with 
other tissues having one or more of these pathways. B12: cobalamin; 
BHMT: betaine‑homocysteine S‑methyltransferase; CHDH: choline 
dehydrogenase; DMG: dimethylglycine; MTHFD: methylene‑tetrahydrofolate 
dehydrogenase; MTHFR: methylene‑tetrahydrofolate reductase; 
PEMT: phosphatidylethanolamine N‑methyltransferase; THF: tetrahydrofolate.
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semen quality.69 Vitamin D has been shown to increase sperm motility by 
increasing intracellular calcium concentrations in spermatozoa through 
the VDR. We conclude that VDR polymorphism may play a major role 
in male factor infertility, either directly or indirectly, by reducing the 
effects of vitamin D.70 Four SNPs are associated with changes in VDR 
activity, one of which is the rs2228570 variant (Table 3). Furthermore, 
one SNP within the GC gene is associated with reduced levels of vitamin 
D. Studies have shown that men with higher dietary and supplemental 
intake of vitamin D may produce sperm with less DNA damage.71

Genetic variants that affect antioxidant defense and their influence 
on male fertility
Extensive research suggests that oxidative stress may be an important 
cause of male infertility, and that the pathology of infertility in 

30%–80% of infertile men may be oxidative damage to spermatozoa.72 
This is primarily due to DNA and cell membrane damage; however, 
little is known about the genetic causes underlying suboptimal 
functioning of the seminal enzymatic antioxidant system. Oxidative 
stress induces sperm DNA damage,73 a reduction in sperm motility,74 a 
decline in sperm’s fertilizing ability,75 a reduction in membrane fluidity, 
apoptosis,27,76 and defective sperm membrane integrity by the way of 
lipid peroxidation.77 The presence of ROS in seminal plasma is normally 
balanced by homoeostatic antioxidant systems that facilitate an 
appropriate level of ROS required for normal physiological processes, 
such as sperm capacitation, hyperactivation, acrosome reaction, and 
sperm–oocyte fusion.78 Semen is shown to possess large amounts of 
antioxidants to counterbalance the effects of ROS, thereby protecting 
mature spermatozoa from oxidative damage. The antioxidants in 

Table 3: Summary of genetic variants involved in vitamin D metabolism, and their influence on male fertility

Gene 
symbol

Gene name SNPs Gene 
consequence

Phenotype 
impact

Study Protein function Dietary recommendation 
based on

VDR Vitamin D 
receptor

rs2228570 Start‑lost Deficient in 
vitamin D

112 Plays a key role in the absorption of calcium from 
the gut, which is required for healthy bone 
formation, muscle, and heart activity, as well as 
numerous other cell functions

Genetic predisposition 
to food and nutrient 
needs profile and 
sensitivity to vitamin 
deficiencyGC GC Vitamin 

D binding 
protein

rs2282679 Intron 
variant

Associated 
with reduced 
levels of 
vitamin D

113 Responsible for binding with the bioactive form 
of vitamin D, calcitriol, and shuttling it through 
the circulatory system into tissue and then 
presenting it to the VDR to allow its binding

SNPs: single‑nucleotide polymorphisms; VDR: vitamin D receptor

Figure 2: Effects of MTHFR polymorphisms on male fertility. The MTHFR gene, located on the short arm of chromosome 1 (1p36.3), is composed of 11 exons. 
It possesses 14 common or rare single‑nucleotide polymorphisms that are associated with enzymatic deficiency. Among them, rs1801133 (C677T) and 
rs1801131 (A1298C) are the most reported to possibly reduce MTHFR activity to various degrees. Reduced enzymatic activity due to MTHFR polymorphisms is 
considered a risk factor for many diseases, including infertility. B2: riboflavin; B6: pyridoxine; B12: cobalamin; BHMT: betaine‑homocysteine methyltransferase; 
CBS: cystathionine‑β‑synthase; CL: cystathionine‑γ‑lyase; DMG: dimethylglycine; MS: methionine synthase; MTHFR: methylenetetrahydrofolate reductase; 
SAM: S‑adenosyl methionine; SAH: A‑adenosyl homocysteine; THF: tetrahydrofolate.
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semen are present both in spermatozoa and the seminal plasma; 
however, they are most abundant in the latter because the amount of 
spermatozoan cytoplasm is small, thereby limiting antioxidant defense 
within the cells.79 Seminal plasma is enriched with both enzymatic 
antioxidants, such as superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), and glutathione S-transferase (GST), and 
nonenzymatic antioxidants, such as glutathione, vitamin A, vitamin 
C, vitamin E, and coenzyme Q10.80 SOD2 is an enzyme that catalyzes 
the detoxification of superoxide radicals in the mitochondrion. CAT 
has the capacity to detoxify hydrogen peroxide (H2O2) by converting 
it to water (H2O) and oxygen (O2). GPx1 is related to the final electron 
transporter in mitochondria and neutralizes peroxide radicals 
into water, whereas GST conjugates toxic electrophiles and other 
intermediates, with glutathione neutralizing their toxicity. Dietary 
selenium intake is an important determinant of GPx1 activity, with 
selenium supplementation leading to an increase in blood GPx1 
activity. Large interindividual differences have been observed in the 
response of GPx1 to selenium supplementation.81 These variations are 
mainly due to differences in the baseline selenium status; however, 
interactions between genetic polymorphisms in the GPX1 gene and 
dietary selenium intake may account for some of the interindividual 
variations.82

Deficiencies in enzymatic or nonenzymatic antioxidant systems 
in seminal plasma are widely associated with male infertility as the 
absence of any of these systems leads to the accumulation of excessive 
levels of ROS, resulting in impairment of both the structural and 
functional integrity of spermatozoa.83 Although these enzymes appear 
to be conserved phylogenetically, intraspecific polymorphisms may still 
cause changes in their activities, and, therefore, they may be useful in 
understanding the underlying origins of idiopathic infertility. Genetic 
variation in one or more enzymes involved in redox balance may 
induce alteration of antioxidant activity in hypofertile men (Table 3). 
Paraoxonase 1 (PON1) is one such gene that can have an impact on 
male infertility. PON proteins, localized in the seminiferous tubules 
and spermatozoa, have been implicated in the pathogenesis of male 
infertility.84,85 Impaired oxidative stress regulation in the seminal plasma 
of patients with abnormal sperm parameters has been proposed to be 
the result of decreased PON1 activity.86 PON possesses antioxidant 
properties and protects cells against oxidative stress.87 Lazaros et al.88 
showed, for the first time, the association between PON gene variants 
and semen concentration and motility. Glutathione S-transferase 
mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) have 
the highest frequency of polymorphisms among all glutathione 
S-transferase genes (Table 4). They are characterized by deletion 
polymorphisms manifested in the absence of enzymatic activity of 
relevant proteins, and with a frequency of 42%–60% for GSTM1 
and 13%–26% for GSTT1 in Caucasian populations.89–91 Genetically 
determined imbalance in the detoxification system, due to reduced 
activity of glutathione system enzymes, can be the cause of various 
pathological processes, including infertility.92

Nitric oxide, produced by nitric oxide synthase 3 (NOS3), is 
considered to be an important mediator of oxidative stress in testicular 
tissue.93 Studies have shown that NOS is involved in sperm motility, 
capacitation, and acrosome reaction.94 Nitric oxide, as one of the 
most potent free radicals of nitrogen, reacts rapidly with superoxide 
(O2

−) to form highly toxic peroxynitrite (ONOO−). Both superoxide 
and peroxynitrite have the ability to damage DNA directly. Excessive 
concentrations of nitric oxide in the semen of asthenozoospermic 
patients have overall negative effects on the kinetic characteristics of 
spermatozoa and, consequently, reduce sperm motility and sperm DNA 

integrity.95 Nitric oxide concentration has been found to be significantly 
higher in the seminal plasma of some infertile males than in that of 
healthy males.96 Associations between NOS3 gene polymorphisms and 
male infertility have been reported.97 Multivariate logistic regression 
analyses revealed that carriers of the NOS3 rs1799983 variant among 
GT heterozygotes were associated with a marginally significant increase 
in the risk of male infertility.98 In the dominant model, combined 
rs1799983 genotypes (GT/TT) were associated with a significant 
34% increase in the risk of male infertility. Buldreghini et al.99 (2010) 
showed that the T allele of NOS3 rs1799983 polymorphism (Table 4) 
contributed to poor sperm motility. Common genetic variants affecting 
uptake, distribution, transport, or metabolism of dietary antioxidants 
have been linked to variation in antioxidant serum levels and response 
to supplementation.100,101 Elucidating the relationship between common 
genetic variants and antioxidant status may have important health 
implications through identification of individuals and subgroups that 
benefit the most from dietary intervention or supplementation with 
antioxidants.

CONCLUSIONS
This paper provides an overview of the current science linking genetic 
variants to nutritional or supplemental needs with a focus on direct 
and indirect factors that influence male infertility. This concept is 
nutrigenomic which assesses interaction between nutrients and 
gene expression. It is a preliminary review of the potential impacts 
of various genetic polymorphisms, associated with efficiency of 
energy expenditure, antioxidant defense, and energetic metabolism, 
that influence male fertility. It is conceivable that the effects of some 
genes on fertility phenotypes may be nutrient sensitive. Indeed, 
diet composition may modulate gene expression through complex 
transcriptional mechanisms as well as more downstream processes 
involving the gene products. 

Following the present review, a clinical trial is being set up to study 
the effect of a personalized lifestyle and nutrition program based on 
a specific set of genetic variants that we identify in this paper. The 
study was approved by the French ethics committee and registered in 
ClinicalTrials.gov with reference number NCT03475199.

With the advent of personalized medicine, identification of 
polymorphisms related to the reproductive function in men and 
elucidation of their functional importance remain an important area 
of research. Indeed, epigenetic modifications play a potential role in 
spermatogenesis via regulation of molecular pathways to maintain 
testicular homoeostasis. The best-known epigenetic process is DNA 
methylation. A recent genome-wide study has shown that aberrant 
DNA methylation is imprinted, and developmental genes may have a 
role in male infertility.102 In addition to genetic factors, environmental 
genotoxins, endocrine disruptors, and micronutrient deficiency play an 
important role in the increasing rates of human infertility. These factors 
may have deleterious effects on human reproductive health through 
numerous mechanisms and may also explain some cases of idiopathic 
infertility in men, especially when the male factor in infertility problems 
of couples has been neglected for a long time. Emerging observations 
support the conclusion that parental influences begin before conception 
and compel us to further explore preconception pathways by which 
parents contribute more than genetic material to offspring.103 There is 
now clear evidence that beyond genetic alterations alone, there is an 
epigenetic transmission from the father to his offspring. In fact, paternal 
smoking, age, and occupational chemical exposure are well known 
to be linked to increased risk of cancer and neurological disorders in 
children. It is less appreciated that the father’s body mass has a greater 
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impact than the mother’s on prepubertal child’s body fat and metabolic 
measures. In addition to sperm DNA damage, in some instances, there 
is accumulating evidence for pathways of parental transgenerational 
epigenetic effects, attributable to sperm and seminal fluid, that transmit 
the effects of environmental exposure to the next generation.

Ultimately, once pathways are defined and prioritized according 
to their importance for health outcomes, it will be possible to define 
how prospective parents can alter their lifestyles and food choices 
and adopt interventions to protect children from adverse outcomes. 
However, further research is required to fully clarify the potential effect 
of specific SNPs involved in metabolism on male infertility.
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