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Abstract

Quality assurance and control (QA/QC) is an essential element of a breeding program’s

optimization efforts towards increased genetic gains. Due to auto-hexaploid genome com-

plexity, a low-cost marker platform for routine QA/QC in sweetpotato breeding programs is

still unavailable. We used 662 parents of the International Potato Center (CIP)’s global

breeding program spanning Peru, Uganda, Mozambique and Ghana, to develop a low-den-

sity highly informative single nucleotide polymorphism (SNP) marker set to be deployed for

routine QA/QC. Segregation of the selected 30 SNPs (two SNPs per base chromosome) in

a recombined breeding population was evaluated using 282 progeny from some of the

parents above. The progeny were replicated from in-vitro, screenhouse and field, and the

selected SNP-set was confirmed to identify relatively similar mislabeling error rates as a

high density SNP-set of 10,159 markers. Six additional trait-specific markers were added to

the selected SNP set from previous quantitative trait loci mapping studies. The 36-SNP set

will be deployed for QA/QC in breeding pipelines and in fingerprinting of advanced clones or

released varieties to monitor genetic gains in famers’ fields. The study also enabled evalua-

tion of CIP’s global breeding population structure and the effect of some of the most devas-

tating stresses like sweetpotato virus disease on genetic variation management. These

results will inform future deployment of genomic selection in sweetpotato.

Introduction

Development of user-friendly, low-cost, high-throughput markers for quality assurance and

control (QA/QC) in a genomic-assisted breeding (GAB) era is a critically important aspect in
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crop improvement and germplasm conservation [1,2]. This is because genetic fidelity and true-

ness-to-type are often not phenotypically obvious. The use of molecular markers for QA/QC

has been implemented in several plants and animals and single nucleotide polymorphism

(SNP) markers have become the markers of choice in germplasm characterization and QA/

QC [3]. For example, [4] developed transcriptome-derived SNP markers for cost-efficient for-

est seed stock identification, [5] developed ‘near-minimal’ sets of SNPs to differentiate opera-

tional taxonomic units in fruit flies, while [6] developed species-diagnostic SNP markers to

analyze admixture structure of varieties and rootstocks in citrus. Here we define QA and QC

according to [7] who defined QA as the process or set of processes used to measure the quality

of a product and QC as the process of ensuring products and services meet consumer expecta-

tions. In plant breeding, QA would refer to all measures put in place to prevent errors and cre-

ate a high-quality variety, while QC is the process of identifying the defects or errors in the

quality of the breeding line, germplasm accession, variety, or any other product from the

breeding pipeline. Solid QA/QC procedures are critical in plant breeding, as errors in the pro-

cess of developing new varieties can lead to wasted time and resources, and also reduce and/or

cancel out genetic gains achieved because of genotype mix-ups along the breeding pipeline.

For most crops, the same SNP set can be used in a QA program to characterize germplasm,

and study genetic diversity, genetic relationships and population structure, and in a QC pro-

gram to evaluate genetic identity, genetic purity, parent-offspring identity, validation of crosses

in nurseries and trait-specific testing [3, 7]. Genotype misclassification is a common problem

in most crops as has been reported in Oryza spp [8] and Brassica spp [9], that has consequences

in breeding and variety development. QA/QC have become even more important with the

advent of molecular markers for decision support in breeding programs. Whereas the impor-

tance of QC filtration methods for SNP markers are well established [10,11] and methods put

in place, QA/QC of the phenotypes that are combined with genotypes to predict performance

are generally not very well established. The general lack of phenotype/genotype concordance

has led to molecular decision support tools for increasing genetic gains in plant breeding such

as genomic selection not achieving their full potential. Although well acknowledged in human

and animal genetic fields [12,13], reports on the effects of poor QA/QC and genotype misclas-

sification in plant breeding are generally lacking. With next- and third-generation sequencing

methods enhancing rapid and cost-efficient development of large amounts of genomic data

[11, 14], one of the biggest challenges of plant breeding programs is putting in place highly pre-

cise mechanisms for QA/QC of the phenotyping/genotyping processes.

Sweetpotato is a crop of increasing importance in sub-Saharan Africa (SSA) contributing to

both food and nutritional security, from both adapted, starchy, white-fleshed varieties and

new improved high β-carotene, orange-fleshed varieties [15–17]. The International Potato

Center (CIP), one of the centers of the Consultative Group on International Agricultural

Research (CGIAR), runs a global sweetpotato improvement program. CIP is headquartered in

Lima, Peru and has established three additional breeding support platforms in SSA. The sup-

port platform at Lima offers global technical support, while the east and central Africa platform

focusses on end-user preferred varieties within this region including resistance to sweetpotato

virus disease (SPVD), a major production constraint within the region. The southern Africa

breeding support platform focusses on end-user preferred varieties in addition to drought tol-

erance, which is the major production constraint in this region, while the west African support

platform focusses on culinary aspects, especially the ‘less sweet’ sweetpotato which is preferred

in this region [17]. Being mainly an auto-hexaploid, GAB tools are just starting to be main-

streamed into the breeding program due to genome complexity. Several genomic tools have

been developed, in partnership with several development partners and a molecular breeding

team is currently stationed at CIP’s regional office for SSA in Nairobi, Kenya to facilitate this
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mainstreaming. Putting in place QA/QC measures is prerequisite to enhance the likelihood of

success applying GAB in sweetpotato breeding. The main objectives of the current study were:

i) to characterize breeding population parents from global support platforms for population

structure, ii) to estimate allele diversity among the breeding population parents from the four

global support platforms iii) to estimate levels of misclassification error through different steps

of a multi-stage, multi-country breeding pipeline, iv) to develop a low-cost diagnostic SNP set

for rapid QA/QC of sweetpotato breeding populations.

Materials and methods

Genetic materials

We collected parents from all four global breeding support platforms of CIP: Peru, being the

global support platform; Uganda, being the support platform for east and central Africa;

Mozambique, being the support platform for southern Africa; and Ghana, being the support

platform for west Africa. We had 331 parents from Peru, 126 parents from Uganda, 144

parents from Mozambique and 61 parents from Ghana, totaling 662 parents. The list of the

breeding population parents is provided in S1 Table. Since our objective was to mainstream

QA/QC in breeding trials, we used progeny from a segregating breeding population to validate

that the finally selected SNP set segregates in recombined individuals from parents and can

identify relatively the same error rates as a high-density SNP set. These validation materials

were derived from a breeding population progeny developed from the east and central African

support platform, named the Mwanga Diversity Panel (MDP).

Genotyping and SNP calling

DNA from the breeding population parents and segregating progeny was extracted at the Bio-

sciences east and central Africa (BecA) laboratories based at the International Livestock

Research Institute (ILRI), Nairobi. The extraction was done following a modified cetyl tri-

methylammonium bromide (CTAB) method optimized for sweetpotato. The DNA was treated

for contaminating RNA using RNAse A, quantified and normalized using standard protocols.

The DNA was then submitted for sequencing using the Diversity Array Technology’s DArT-

Seq method implemented by BecA’s Integrated Genotyping Service and Support platform

(IGSS) as described by [18], as separate genotyping projects. IGSS is a subsidized genotyping

platform supported by the Bill and Melinda Gates Foundation to enhance use of genomics in

breeding for SSA. Sequencing was done at 96-plex, high density and SNP calling done using

DArT’s proprietary software DArTSoft [18], with aligning to the diploid reference genome of

Ipomoea trifida, a relative of sweetpotato [19]. Given that most commercial genotyping plat-

forms have allele depth coverage ~25x to 30x, previous studies [20] have shown that this depth

of coverage is not adequate to call allele dosage with confidence in genotype quality for hexa-

ploid sweetpotato. The study also showed that in such cases, ‘diploidized’ biallelic loci which

are informative enough performed almost as well as data with high confidence dosage infor-

mation, for simple traits. Therefore, biallelic markers used in this study were called in a diploi-

dized version which means that the five heterozygous classes expected in sweetpotato were

collapsed into one heterozygous class and the SNPs were coded as 0 = AA, 1 = BB, 2 = AB and

“-”= Missing. All genotype-quality related parameters including call rate, frequency of loci

homozygous for the reference allele (FreqHomRef), frequency of loci homozygous for the SNP

allele (FreqHomSnp), frequency of heterozygous loci (FreqHets), polymorphic information

content of the SNP allele (PICSnp) and average polymorphic information content (AvgPIC)

were computed as part of the DArT’s proprietary software DArTSoft workflow. The metadata
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defining data columns as obtained from the DArTseq platform is provided as S1 File. The raw

data from the global parents is provided as S1 Data.

Data analysis and validation

Population structure of International Potato Center’s breeding parents. Since allele

frequencies through genotype calling are biased when allele depth of coverage is relatively low

[21] and given that we used diploidized markers for a hexaploid, we used non-parametric

methods as described by [22], to estimate allele sharing distance (ASD). These methods do not

assume Hardy-Weinberg equilibrium or linkage equilibrium and were implemented using the

program AWClust 3.1. The phylogenetic tree was constructed using MEGA X program [23].

For allele diversity, Nei’s coefficients of inbreeding (FIS) [24] and Wright’s inbreeding coeffi-

cients (FST or θ) according to [25], were estimated in R. Additionally, linkage disequilibrium

(LD) between pairs of markers used for parental population structure was done using the

LDheatmap package in R, with the option of estimating r2. The LD between pairs of markers

was carried out to evaluate the distribution and representativeness in the genome of the SNPs

used in structure and diversity analysis, rather than to estimate the LD decay in sweetpotato,

which would require a higher-density of SNPs and other considerations for allele dosage, link-

age phases and haplotypes.

Estimating the level of misclassification error during breeding operations and field

experiments. We used the MDP multi-family breeding population to estimate the level of

error expected from our standard cross-border breeding operations. This population was

developed by crossing 8B by 8A parents without reciprocals, from the east and central Africa

breeding platform in CIP-Uganda, thereby resulting in 64 families, with about 30 progeny per

family on average. The crossing was done following a B�A pseudo-heterotic grouping based

on genetic distance established by simple sequence repeat (SSR) markers [26]. The seed was

germinated and maintained in vitro at the Biosciences east and central Africa (BecA) hub by

CIP-Kenya, from where the in vitro plantlets were shipped back to CIP-Uganda for screen-

house multiplication and field experiments at Namulonge (0˚ 31’ 17.99" N, 32˚ 36’ 32.39" E).

To evaluate the genetic fidelity following movement from in vitro to screenhouse and then to

field experiments, we randomly sampled 94 genotypes from 1,886 genotypes of the MDP,

which constitutes about 5% of the population, and genotyped using DArTSeq, as described

above. The genotyping was done in 96-plex resulting in three 96-well plates (one each for in
vitro, screen house and field) and a total of 282 DNA samples (S2 Table). The raw data from

the segregating progeny is provided as S2 Data. The SNPs were filtered and used in further

analysis. The ASD was computed as for the parents above [22] and a phylogenetic tree was

generated using DARwin 6.0.21 [27]. Afterwards the clustering was examined based on posi-

tions on the tree and Sankey diagrams developed using the Alluvial package [28] in R. Addi-

tionally, Monte-Carlo tests were used to calculate the correlation among the separate distance

matrices from in vitro, screenhouse and field using the mantel.rtest function of ade4 package

in R.

Selection and validation of a diagnostic SNP set. For our objective to develop a QA/QC

SNP set that would be diagnostic for the global breeding population, we selected SNPs identi-

fied from parents as described above but also validated the selected SNPs using segregating

progeny from a breeding population. We therefore selected only high-quality SNP markers

that were present in both the parents and the MDP breeding population progeny. The selected

markers were confirmed if they kept the same population structure of the parents and still

identified the same misclassification error rate in the MDP population. Several studies have

selected rapid QA/QC sets with as low as 10 SNP markers e.g. in Maize [29]. However, the
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base chromosome number of sweetpotato is 15 and given that we were diploidizing hexaploid

loci, our aim was to have a minimum of two markers per base chromosome. We performed

principal component analysis of the intermediate marker set according to [29], but no appar-

ent grouping of the markers was determined. We therefore selected the final 30 SNP markers

based on chromosome number and genetic distance, from an intermediate marker set of 85

SNP markers. To establish the utility of the 30 selected SNPs for rapid QA/QC, we compared

the ASD of both parents and MDP populations based on the 30 selected SNPs and the ASD

based on their respective original filtered marker sets (205 SNPs for parents and 10,159 SNPs

for MDP), using DARwin 6.0.21 tree comparison function [27]. The filtered data, including

the 205-SNP set, 85-SNP set, and 85-SNP set for MDP are provided in S3 Data.

Results

SNP profile from the parental and segregating populations

A total of 9,670 SNP markers were obtained from genotyping the 662 parents of CIP’s breeding

population (S1 Data). The unfiltered dataset had call rates ranging from 0.4–1.0, FreqHomRef

ranging from 0.0–1.0, FreqHomSnp ranging from 0.0–1.0, FreqHets ranging from 0.0–0.3,

PICSnp and AvgPIC both ranging between 0.0–0.5 (Fig 1). With filtration of� 25% missing-

ness,� 0.25 polymorphic information content (PIC) and� 10% minimum allele frequency

(MAF) and an average of 30x allele depth of coverage we recovered 205 SNP markers that

were deemed appropriate for analysis of the breeding population structure (S3 Data). Fig 1

shows quality attributes of the unfiltered and filtered SNP data. After filtration, call rates ran-

ged from 0.75–1.0, FreqHomRef ranged from 0.6–0.85, FreqHomSnp ranged from 0.0–0.1,

FreqHets ranged from 0.0–0.35, PICSnp ranged from 0.25–0.45, while AvgPIC ranged from

0.1–0.3 (Fig 1). The number of filtered SNPs ranged from six to 18 per base chromosome.

The high-density genotyping of the MDP segregating progeny resulted in about 41,194

SNPs (S2 Data). Stringent filtering of these based on polymorphic information content (PIC)

� 0.25, minimum allele frequency� 20% and call rate� 90%, removing all SNPs with no

chromosome position and those on chromosome zero (Chr00) resulted in 10,159 SNPs that

were used in further analyses.

Population structure of CIP’s breeding population

We examined population structure of the parents using 205 SNP markers. As expected from a

global breeding program, population structuring indicated evidence of germplasm transfer

among the breeding support platforms, although there was also evident local adaptation to

each support platform (Fig 2). The global support platform in Peru had the highest number of

parents in the current study. Clustering showed that there is a group of parents from Peru that

are closely related to African breeding parents especially those from Ghana and Mozambique.

However, an additional group was only unique to Peru (Fig 2). This group can also be seen

between the first and second dimensions of a 2D multidimensional scale (S1 Fig). The east

and central Africa support platform in Uganda had a distinct group of parents but also a small

admixed group with Mozambique (Fig 2). The Uganda platform did not have a lot of admix-

tures from Peru. Given that the west African support platform was recently established (ca.

2010), and is the smallest in terms of size, the clustering indicates intake of breeding materials

from other breeding support platforms especially from Mozambique and Peru, with minimal

transfer to Ghana from Uganda. However, on a higher level, the structure can be generalized

into two, with one cluster made up of materials from Peru and Ghana, and the other made up

of materials from Uganda, Mozambique and Peru.
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Allele diversity and chromosome-wise linkage disequilibrium between

markers

Nei’s coefficients of inbreeding using 205 SNPs indicated an average of FIS = 0.14 across all

populations and that parents from Uganda had the highest inbreeding coefficient FIS = 0.33,

followed by Mozambique with FIS = 0.24. Ghana, followed by Peru had the lowest coefficients

of inbreeding at FIS = 0.008 and FIS = 0.07, respectively. The estimated variance components

and fixation indices showed that the correlation of genes within individuals or inbreeding was

F = 0.18, the correlation of genes in different individuals within the same population was θ =

0.07, and the correlation of genes within individuals within populations f = 0.12. Comparing θ
values (FST) between pairs of populations (support platforms in this case) showed that Uganda

was the most distinct group with θ = 0.08, θ = 0.09, and θ = 0.1 with Ghana, Mozambique and

Peru, respectively. The paired θ values among Ghana, Mozambique, and Peru were fairly con-

sistent ranging from θ = 0.041 to θ = 0.049. Data is summarized in Table 1. We further

Fig 1. Quality attributes of unfiltered (9,670; Top) and filtered (205; Bottom) SNPs from DArTSeq indicating call rate

(A), frequency of homozygotes for the reference allele (B), frequency of homozygotes for the alternative allele (SNP; C),

frequency of heterozygotes in the data (D), polymorphic information content of the SNP (E), and average polymorphic

information content between reference and SNP alleles (F).

https://doi.org/10.1371/journal.pone.0232173.g001
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analyzed for LD between pairs of markers as proxy to check for the distribution of markers

genome-wide and per chromosome. Analysis of LD between markers indicated minimal LD

among the SNP markers used with the genome-wide LD having an average r2� 0.1. LD per

chromosome is presented in Fig 3. The results show that very few loci were in LD at r2� 0.1,

as majority of loci within a chromosome also had r2� 0.1. These results indicated that the data

set was adequately distributed for use in analyzing population structure and diversity. To

Fig 2. Phylogenetic tree (Neighbor-Joining) showing the population structure of the International Potato Center

(CIP)’s global breeding parents. Genotypes in Black represent parents from the global support platform in Peru,

genotypes in Blue represent parents from the southern Africa support platform in Mozambique, genotypes in Green

represent parents from the east and central Africa support platform in Uganda, while genotypes in Red represent

parents from the west African support platform in Ghana. The tree was developed using MEGA X.

https://doi.org/10.1371/journal.pone.0232173.g002

Table 1. Allelic diversity parameters among parents of the International Potato Center (CIP)’s breeding parents from Ghana, Mozambique, Peru and Uganda.

Nei’s FIS

Ghana Mozambique Peru Uganda Average

0.008 0.24 0.07 0.33 0.14

Variance and fixation indices

F = 0.18 θ = 0.07 f = 0.12

FST (θ) among pairs of populations

Ghana Mozambique Peru Uganda

Ghana 0

Mozambique 0.049 0

Peru 0.046 0.041 0

Uganda 0.08 0.09 0.1 0

https://doi.org/10.1371/journal.pone.0232173.t001
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evaluate the utility of the selected markers for QA/QC, we calculated Nei’s coefficients of

inbreeding using the 30 selected SNPs. The results showed the same trend as when using 205

SNPs, where, average FIS = 0.21 across all populations. Parents from Uganda still had the

Fig 3. Linkage disequilibrium among 205 markers used in analysis of population structure of 662 breeding parents of the International Potato Center’s global

breeding program. The linkage disequilibrium was analyzed per chromosomes for the 15 base chromosomes of hexaploid sweetpotato.

https://doi.org/10.1371/journal.pone.0232173.g003
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highest inbreeding coefficient FIS = 0.35, followed by Mozambique with FIS = 0.27. Ghana, fol-

lowed by Peru had the lowest coefficients of inbreeding at FIS = 0.08 and FIS = 0.13, respectively

(data not shown).

Estimated misclassification errors within the breeding process

Misclassification is used here to indicate mislabeling errors leading to distorted clustering of

the same genotype in vitro, in the screen house and in the field. Cluster analysis indicated that

26 out of 94 genotypes evaluated did not cluster as expected among in vitro, screen house and

field samples thereby indicating about 27.7% misclassification errors as the germplasm moved

from in vitro to screenhouse and then to the field as can be seen from the Sankey diagram (Fig

5, Top). The Monte-Carlo tests comparing correlation among the separate distance matrices

for in vitro, screenhouse and field indicated that more misclassification occurred when the

genotypes moved from in-vitro (Nairobi, Kenya) to screenhouse when compared to movement

from screenhouse to the field (both in Namulonge, Uganda). The correlation between distance

matrices of in vitro and screenhouse was r = 0.84, between in vitro and field was r = 0.87 and

between screenhouse and field r = 0.93. These indicated misclassification rates of 16%, 13%

and 7% respectively (data not shown).

Identifying diagnostic markers for routine quality assurance and control of

breeding populations

Using 10,159 SNPs for QC as used above is ‘rich’ for routine QA/QC within most breeding

programs. The desired low-cost, low-density QA/QC SNP set was therefore selected in this

study based on the described criteria. This resulted in further filtration of the 205 SNP markers

used for population structure of the parents above, down to 85 SNP markers (S3 Data), which

could be used for ‘general QC’ in the sweetpotato breeding programs as proposed by [29].

However, for routine QC, this marker number is still probably too high for most breeding pro-

grams. Principal component analysis of the 85 markers did not show any specific grouping of

markers, with PC1 and PC2 only explaining 9.1% of the variation (S2 Fig). Therefore, the final

30 SNP markers were selected based on genetic distance per chromosome. The set of 85 mark-

ers were not evenly distributed for all chromosomes and chromosome 15 had only one marker.

To achieve the target of two markers per base chromosome, we selected one marker from the

original set of 205 SNPs, based on genetic distance relative to the one marker present in the set

of 85 SNPs, for chromosome 15. Comparing the population structure of the parents using 205,

Fig 4. Phylogenetic trees (Neighbor-Joining) comparing the clustering of the 662 International Potato Center

(CIP)’s breeding parents using 205 highly informative SNP markers (left), 85-SNP intermediate marker set

(center) and the 30-SNP selected QA/QC set markers (right). Genotypes in Violet represent parents from the global

support platform in Peru, genotypes in Green represent parents from the southern Africa support platform in

Mozambique, genotypes in Orange represent parents from the east and central Africa support platform in Uganda,

while genotypes in Blue represent parents from the west African support platform in Ghana. Trees were developed

using DARwin 6.0.21.

https://doi.org/10.1371/journal.pone.0232173.g004
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85 and 30 SNP markers for parents indicated that the 30 markers kept the general structure of

the populations, though the clustering was considerably different compared with the use of

205 SNPs (Fig 4). Comparing clustering trees indicated that the tree developed with 205 SNPs

was 17.1% different from the tree with 30 SNPs when strict conditions were used. For valida-

tion of the selected marker set, we also compared the level of misclassification error identified

in the breeding population progeny (MDP) using 10,159 SNPs, 85 SNPs and 30 SNPs (Fig 5).

The misclassification error was calculated as the percentage of genotypes that did not cluster as

expected in in vitro, screenhouse and field. Results show that 10,159 SNPs identified 27.7%

misclassification, 85 SNPs identified 29.8% misclassification and 30 SNPs identified 31.9%

misclassification. Tree comparison between 10,159 SNPs and 30 SNPs for MDP progeny indi-

cated that they were 24.6% dissimilar when strict conditions were applied. Combined, these

results suggest that the selected 30 SNPs could be used as a cost-effective rapid QA/QC set for

sweetpotato in CIP’s breeding populations, while trading-off the 4% difference in error detec-

tion between 10,159 SNPs and 30 SNPs, for a significantly reduced cost of QA/QC. The

selected SNPs are listed in Table 2.

Addition of trait specific markers to the selected quality control set

Previous studies had mapped quantitative trait loci (QTL) for yield and component traits [30,

31] as well as quality-related traits [32]. From these QTL mapping results, we selected six SNP

markers that were associated with dry matter, starch, β-carotene, flesh color and total root

yield. The markers labeled ‘trait specific’ are shown in Table 2. The first four traits were

selected because they are correlated and important contributors to culinary traits that affect

adoption of new varieties in sweetpotato. Dry matter and starch are positively correlated but

are negatively correlated to both β-carotene and flesh color, and this negative correlation

affects ‘culinary quality’. Additionally, these traits are oligogenic hence results are repeatable

within the QTL. Total storage root yield was selected as a primary trait and the selected marker

Fig 5. Sankey diagrams showing mislabeling error as Mwanga diversity Panel (MDP) population moved from in-
vitro to screen house to field, based on 10,159 SNPs, 85-SNP intermediate marker set and 30-SNP selected quality

control (QC)-set. The Pink color indicates those that did not cluster (with mislabeling errors) while the grey color

indicates those that clustered as expected, implying no mislabeling errors.

https://doi.org/10.1371/journal.pone.0232173.g005
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Table 2. Details of the 36 SNPs selected for ‘rapid QC’ in sweetpotato. AlleleID refers to the identity of the specific allele on the DArT platform, AlleleSeq refers to the

flanking sequence of the SNP, Chr indicates the chromosome number, Pos indicates the position of a SNP on the specific chromosome, SNP is single nucleotide

polymorphism.

No AlleleID AlleleSeq Chr Pos SNP

1 7557698|F|0–64:T>A-64:

T>A

TGCAGATAATAATACAAAACGTGATTTCTATTGTGCACCTAGAAGTGAGCAGAGTTGTCTGCCATAAGT Chr01 30898063 64:

T>A

2 100736260|F|0–18:C>T-

18:C>T

TGCAGTCAGCGACTCTCTCCAATGATATTCTTCTTCTGGAGCTGAGTGGAACTTCTTTCTTTGATTCTA Chr01 881461 18:

C>T

3 7629110|F|0–28:G>T-28:

G>T

TGCAGTCTTTGCTCTCAAAAGTTTCTTTGGAGTTCTCATATGAATTCTGAACATCACTAATTTGGATTG Chr02 13184152 28:

G>T

4 7609930|F|0–10:T>G-10:

T>G

TGCAGTCATCTGTTTGTCTGAAGCAATTAGCCTATGATCTTGTTGAGCTGCTGTTGTCATCTGCATTTC Chr02 6247633 10:

T>G

5 7629039|F|0–39:A>T-39:

A>T

TGCAGTACAGAAAACCAACCAGCAGAAGATAATTTTTATAATGAACAGCTCAGGAACCCAGTTGGCTAG Chr03 24217089 39:

A>T

6 7561292|F|0–28:A>G-28:

A>G

TGCAGTTGACTCATCCCAACCGACCTACACATTATCAAAACAATTACAGATCGGAAGAGCGGTTCAGCA Chr03 3304180 28:

A>G

7 11826044|F|0–66:G>A-66:

G>A

TGCAGTCCATATCAGAATGACAATTCTGTAGAGATTGCACAATCCTTTGGGTTTTCTTCTGCGTACGAT Chr04 31341133 66:

G>A

8 7569592|F|0–50:G>A-50:

G>A

TGCAGAAGATGGTGGTTGCGACAGAATGAAAGAATGGAGTAAGCAGAGAAGGCCATTACCCCTTCTGAT Chr04 5305718 50:

G>A

9 7552489|F|0–18:T>G-18:

T>G

TGCAGATAAAAGGTAAAATCAAACCACAAATCTAACTGTCCTCTACATTCCTTTCTATCAAATATTTGG Chr05 24475925 18:

T>G

10 7562059|F|0–41:A>G-41:

A>G

TGCAGATGAAATGAAATGAAAACTTTTAGTGCATATCATGTAAGCAATGTAATTGAAATCCACTAAGAG Chr05 892499 41:

A>G

11 9847708|F|0–17:G>C-17:

G>C

TGCAGAAAAACATACGCGGTGGATTGATGGTTCTCAAACAAATGGAAGATGCAGAAGTGAAACCTGACT Chr06 19672316 17:

G>C

12 7558428|F|0–52:C>T-52:

C>T

TGCAGCTACAACTTTGACAAGCTGGCATCTATTAGTTACGTTTTGTTCCCTTCATGTGGCACTCTTGAT Chr06 4639839 52:

C>T

13 9845663|F|0–25:T>G-25:

T>G

TGCAGTTTATCTAAGTAAGATGATATTCAGCGAGATGAAAACCCTAGGATGAGTGTGAAGGAATACAAG Chr07 23485155 25:

T>G

14 7618077|F|0–38:G>A-38:

G>A

TGCAGATCTTGAGCAGGTTGTAAATAAAGTGTGAGAGTGAATTAGTTACCACAATTCTTGTAAATTTAG Chr07 5042144 38:

G>A

15 100588703|F|0–44:T>C-

44:T>C

TGCAGGCAACTTTATTGAAATGTTGACTAAAATCTTGTTTTCTGTCAAGCTTCAACATAGACCTCATTG Chr08 15171824 44:

T>C

16 100512185|F|0–24:A>G-

24:A>G

TGCAGTATCCGAAATCCCTTTCCAAATGTTTGCTTATAAGCTGGTTGAGAAGGAGAAAAGTTTAGGGAA Chr08 6218106 24:

A>G

17 7568783|F|0–21:T>A-21:

T>A

TGCAGTGCATGCATGAGCCTCTGGCAACGTTGAGAAGTCACCCGCTTGCAGTTTCTCGGTCACGTCGGT Chr09 22534529 21:

T>A

18 14313832|F|0–18:G>A-18:

G>A

TGCAGATATAATGAAAAAGCACATAAAAAGTGACAAGAAATTATCAAATTAGGTACACTTGCTGCATCT Chr09 520352 18:

G>A

19 7554048|F|0–9:G>A-9:

G>A

TGCAGTATCGAAAGCAATGTCTTTGGTCTTCTTGTTAGGTTTCTCTTCCTTTTCCATTTCTATTTCACA Chr10 4446069 9:G>A

20 7574585|F|0–20:A>G-20:

A>G

TGCAGAAACTCCCAAAGGAGATAGGAAATTTGCATCATCTAAGGTACATTGATTTACAGATCGGAAGAG Chr10 6952705 20:

A>G

21 7619107|F|0–63:G>T-63:

G>T

TGCAGTGACGATTCTTCCAATTAGCTCTTCTGCCCTTGAACAACAATCAAACATAACTAGCTTGCTGTT Chr11 18928235 63:

G>T

22 7611165|F|0–24:G>T-24:

G>T

TGCAGTCAATCAGATAGAACAATCGTTTAGTCTTTAGTTATGGTGATTGATAGGGGGAGTATACGATTA Chr11 2783237 24:

G>T

23 7558251|F|0–66:C>A-66:

C>A

TGCAGCCACGTGACACCAACAAACCCCTATTTTTCCGCCCAGTTTTGTTCTCACTTGGCGGGAAACCCC Chr12 1719732 66:

C>A

24 7619930|F|0–17:C>A-17:

C>A

TGCAGAGGATAAAAGTTCTGTACCCAAACAGGGGCTTTTTACAGATCGGAAGAGCGGTTCAGCAGGAAT Chr12 24038510 17:

C>A

25 7562142|F|0–54:C>T-54:

C>T

TGCAGATTGTGTAATCCCTTTAGAGTCAGCAACAGAGGCACTCTCGGTGATTCTCTTCTCATTATTATC Chr13 22402544 54:

C>T

26 100589662|F|0–45:C>T-

45:C>T

TGCAGTAATGATTTGGATATAGCACATACACATATAAATTATATACAATATAGTATTATTTTCAGCAAA Chr13 7074575 45:

C>T

(Continued)
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of a QTL was found to be a constitutive marker for this trait across several environments based

on multi-environment testing of a full-sib population [30].

Discussion

We obtained less than 10,000 bi-allelic SNP markers from genotyping our parental population.

Stringent filtering resulted in an even smaller data set of 205 SNP markers. Similarly, only

about 41,194 SNP markers were obtained from genotyping a segregating progeny, which were

filtered down to 10,159 SNPs. This is in contrast with the high number of markers normally

reported from GBS-based genotyping in diploid crops. The considerable reduction in highly

informative markers can be associated with the difficulty in genotyping polyploids. With a

mostly auto-hexaploid genome [19], sweetpotato presents allele dosage uncertainty due to

ambiguous copy numbers of each allele. Additionally, the assumption of random inheritance

of alleles may not hold true in this case due to uncharacterized consequences of whole genome

duplication [33,34]. DArTSeq implements new protocols of sequencing complexity reduced

representations [35] in combination with the next-generation sequencing methods [36,37].

Implementing genotyping-by-sequencing-like procedures, DArTSeq involves a two-restriction

enzyme system composed of a ‘rare-cutter’ and a ‘common-cutter’, mainly Pst1-Mse1, to

enhance uniform complexity reduction within the genome [38,39]. In such next-generation

sequencing methods, depth of sequencing determines genotyping quality as low depth of cov-

erage results in genotyping errors, misalignments and a lot of missing data which eventually

cause biases in downstream population-genetic analyses [21, 40,41]. For instance, [42] showed

that low sequencing depth resulted in SNPs that underestimated genomic heritability due to

overestimation of inbreeding and underestimation of heterozygosity in ryegrass. We chose to

use ‘diploidized’ data in the current analysis because the depth of coverage from most genotyp-

ing platforms is not adequate to reliably characterize heterozygous loci, such as those likely to

be found in polyploids, for which deeper sequencing is required [43]. Furthermore, analyses

comparing genotypic data from DArTSeq and those from a deep sequencing optimization

platform for sweetpotato called GBSpoly [44] have confirmed that highly informative ‘diploi-

dized’ DArTseq data performed just as well as high confidence data with dosage in genomic

predictions of sweetpotato for traits with simple trait architecture [20]. This therefore implies

Table 2. (Continued)

27 100619651|F|0–17:C>T-

17:C>T

TGCAGTTGCTTAGCTTCCGCTACTTTGTTGGGTGGCCTTCTCTTTGCAGGTAATTTGAAGTACTAATCA Chr14 17915206 17:

C>T

28 15728547|F|0–52:T>A-52:

T>A

TGCAGTTTTATTGAAGCTGAAAGTTTGATCAGAGAGGGAGAGAGAGTTTGAGTGAGGAAAAGAATGAAG Chr14 3121906 52:

T>A

29 7559173|F|0–7:T>C-7:

T>C

TGCAGTATATGTATTATCAAATATGTGAAACGAGAATGATGACAGGTCAATCTAGAAGTGTAGCACATT Chr15 11417254 7:T>C

30 9845617|F|0–25:C>A-25:

C>A

TGCAGTTCCTGCACTTCCAGTGAACCCCGATATATATGCTCTCCGCATATAACACTCAGCAATGAATTC Chr15 8808402 25:

C>A

Trait-Specific Markers

Trait Genetic Position Chr Pos SNP

31 Dry matter & Starch 37.44 Chr03 3185578 C>T

32 β-Carotene & Flesh color 36.14 Chr03 2994719 C>G

33 β-Carotene & Flesh color 146.02 Chr12 22131994 G>A

34 Starch 147.31 Chr12 22197168 T>A

35 Dry matter 150.05 Chr12 22369268 A>T

36 Storage root yield 4.19 Chr15 452966 A>C

https://doi.org/10.1371/journal.pone.0232173.t002
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that such markers are adequate to carry out routine activities such as population structure and

diversity that do not necessarily depend on details of allele dosage and haplotyping.

Population structure as well as allele diversity analyses in the current study indicated that

parental genotypes from Uganda were the more distinct and inbred. This observation can be

associated with the high sweetpotato virus disease (SPVD) pressure around the lake region of

eastern Africa and a general lack of germplasm with high levels of resistance to SPVD necessi-

tating the use of the same lines frequently as parents in the Ugandan breeding program [45–

47]. SPVD is the most important virus complex in SSA and its effects are most pronounced in

east Africa, causing yield loses of about 56–98% in farmers’ fields [48,49]. [50] noted that

SPVD prevalence in east Africa resulted in the failure of nearly all orange-fleshed varieties

introduced into this region. SPVD is caused by a synergistic and complex infection by sweet-

potato feathery mottle virus and sweetpotato chlorotic stunt virus, transmitted by aphids and

white flies, respectively [51]. [52] indicated that different regions have different strains of the

individual virus, and that east Africa has distinct strains. Studies have also showed that sweet-

potato chlorotic stunt virus strains are more related in east and southern Africa and are dis-

tinct from those in the other regions of the world [53]. These results are supported by our

current population structuring which shows that Uganda has some admixing with Mozam-

bique, but very little admixing with either Peru or Ghana. These results have implications

extending to other breeding decisions such as determining the effective population sizes espe-

cially for the Uganda breeding platform where migration of germplasm into the platform is

restricted due to SPVD.

Different alleles are represented in different genetic backgrounds and our results show allele

diversity between other support platforms with especially the Uganda population. Therefore,

understanding population diversity especially of a global breeding program is important for

breeding decisioning. Breeding programs are currently moving towards GAB. Repeatability of

quantitative trait loci in different genetic backgrounds is one prerequisite for the success of

GAB methods such as QTL mapping, genome-wide association mapping, and genomic selec-

tion [54,55]. In genome-wide association mapping, accounting for population structure avoids

false positives and allows selection of causative variants, while accurate prediction of untested

future genotypes in genomic selection is only possible when familial relatedness is accounted

for, allowing for a reliable association between markers and QTL [56]. In the case of our global

breeding population, the current information will be important when designing a genomic

selection scheme to facilitate decisions such as prediction within or across sub-populations.

Similarities and differences in genetic architecture of complex traits between populations can

also be understood by studying the genetic correlation between the populations [55]. Our

results indicate that the Ugandan sub-population was also the most distinct from the three oth-

ers when θ values (FST) between pairs of populations was examined. This would imply that pre-

dictions may be carried out separately for the Ugandan populations in future GAB activities,

while the predictions may be tested across the platforms in Peru, Mozambique and Ghana,

given similar environmental conditions. Since GAB requires that markers be in LD with QTL,

our results indicating very minimal LD among markers confirm that this marker density is not

enough for making selection decisions [57,58]. Although the number of markers used in the

current study are adequate for the purposes of the current objectives of population structuring,

more dense markers along the genome will be required to reliably study the LD decay in sweet-

potato. However, ‘high density’ has cost implications and hence the optimum number of

markers required for routine GAB use will need to be reliably estimated through reducing

within-haplotype density by selecting the minimum number of markers that can define com-

mon haplotypes [59].
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In the current study, we used filtration and validation methods of DArTSeq developed

markers to select a marker set of 30 SNPs that can be used for QA/QC purposes in sweetpotato.

Our selection of informative markers included considerations for depth of coverage, missing-

ness, chromosome position, genetic distances, validation for repeatability in progeny and

inclusion of trait-specific markers to result in a total of 36 SNPs. Development of SNP sets for

QA/QC has been done in several crops. Extensive tests were carried out to develop a SNP set

for ‘broad’ and ‘rapid’ QC in maize [29]. In their study, they showed that marker coverage

between 2 and 15, markers with less than 20% missing values, including markers with known

chromosome positions, markers with less than 6% heterogeneity, inclusion of trait specific

markers, and selection of markers from groups based on average group distance gave the best

marker set towards developing a ‘rapid’ QC set, using DArTSeq markers. Prior to this, [1],

used about 1,597 SNP markers from the KASPar and GoldenGate platforms to select highly

informative markers for low-cost QC genotyping in maize. They recommended a set of 50–

100 SNPs for routine QC after finding about 29% heterogeneity in inbred lines. In rice, [2] rec-

ommended a subset of 24–36 SNP markers filtered from DArTSeq developed markers for

genetic purity analyses. In sweetpotato, QA/QC problems in breeding operations have been

shown in the current manuscript by monitoring the rate of misclassification as materials

moved through different stages of breeding trialing. Our results show about 30% misclassifica-

tion issues in one breeding population. Routine application of QA/QC in sweetpotato breeding

trials will therefore improve precision and breeding efficiency through use of new methods

like forward breeding and genomic selection currently being adopted by CGIAR programs.

These new breeding strategies are aimed towards increasing the rate of genetic gains from

breeding to address issues related with population increase and climate change. Therefore,

QA/QC of breeding processes will improve the likelihood of success.

Since the real impact from breeding can only be measured by the improvements observed

in farmers’ fields, controlling and assuring the quality of finished varieties is also important to

breeding programs. Issues with QA/QC of released varieties have been reported in sweetpotato

and this is exacerbated because the extent of adoption of new varieties cannot be determined

accurately especially with informal seed systems where genetic integrity is seldom considered

[60]. In Ethiopia, [18] used 17,220 DArTSeq developed markers to establish that about 20% of

farmers confused local varieties for improved varieties and vice versa, and that farmers

assigned different local names to the same variety or vice versa. Their study confirmed that

data from survey studies [61,62] were mostly unreliable. Despite this important revelation,

high density genotyping at 17,220 markers is not amenable for widespread routine use, there-

fore leaving household surveys as the predominant way of carrying out adoption studies. The

currently developed marker set will therefore be useful in also addressing adoption-related

needs in sweetpotato.

Towards deployment in breeding programs, the identified markers will be converted into

competitive allele-specific PCR (KASP) system, for routine use of the target SNPs for QA/QC.

However, to achieve increased genetic gains in the sweetpotato breeding programs, QA/QC

will need to be combined with other approaches of optimizing breeding schemes.
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